
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 69, 505-510 (1979) 

On the Semi-Reflexivity of Biprojective Tensor Product Spaces 

LEONIDAS TSITSAS 

Mathematical Institute, University of Athens, Greece 

Submitted by Ky Fan 

1. INTRODUCTION 

Let E and F be Banach spaces. If both E and F contain a Schauder basis, it is 
proved by Holub [5] that the Banach space Yb(E, F) of continuous linear maps 
from E into F, carried the topology of bounded convergence in E, is reflexive if, 
and only if, all the maps of it are compact. This result is later extended by 
Ruckle [lo] to the case both E and F have the approximation property and by 
Holub [6] to that either E or F has the approximation property. Heinrich [4] 
has also proved it under a weaker assumption than the approximation property 
of E or F. In all the preceding considerations. tensor product techniques are 
essentially applied. On the other hand, by a conditional weak compactness 
criterium of Lewis [9], it follows that the reflexivity of certain tensor products 
of reflexive Banach Spaces is equivalent to their weak sequential completeness 
(ibid.). In [15] an extension of the above criterium to a fairly large class of locally 
convex spaces is obtained, which yields Theorem 3.1 below, so that the techni- 
ques and the results of [16] actually supply the present work. 

Thus, let E and F be complete locally convex spaces, E BE F the respective 
completed (biprojective) e-tensor product and let T be the (vector) subspace of 
(E’ OF’)*, consisting of the o((E’ OF’)*, E’ @ F’)-limits of all weakly Cauchy 
sequences in E BE F. First, for certain semi-reflexive spaces E and F, it is therein 
verified that E Gi. F is semi-reflexive if, and only if, it is weakly sequentially 
complete (Theorem 3.1). On the other hand, under some mild restrictions on E 
and F, it is also proved that E a, F is semi-reflexive if, and only if, both E and F 
are semi-reflexive and moreover, every linear map u E T transfers equicontinuous 
subsets of E’ into relatively compact subsets of F (Theorem 3.2). From these 
results and certain results of [16] a number of corollaries, referred to the semi- 
reflexivity of several (locally convex) spaces of vector-valued maps are derived. 
In particular, they have, among otherthings, a special bearing, into the case 
under consideration, on the reflexivity criterium for the Banach space &(E, F), 
stated above. 
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2. NOTATIONS AND PRELIMINARIES 

All vector spaces considered in the following are over the field @ of complex 
numbers. The topological spaces involved are assumed to be Hausdorff. For a 
dual pair (X, Y) of vector spaces we denote by u(X, Y), T(X, Y) and b(X, Y) 
the weak, the Mackey and the strong topology of X respectively. The locally 
convex spaces thus obtained are denoted by X0 , X, and X,, . If E is a locally 
convex space, we denote by E* and E’ the algebraic and the topological dual 
of E respectively. Moreover, we consider the topology c(E’, E) of the absolutely 
convex compact convergence in E and denote by EL the respective locally convex 
space. 

Now, we state, for the sake of references, the following terminology (cf. [15]). 
A locally convex space E is said to be an (s)-space, if every separable (topological 
vector) subspace G of it has a (weakly) o(G’, G)-separable topological dual G’. 
By the techniques of [8, p, 311, 24.1(3)], a locally convex space (E, t) such that 
there exists a metrizable locally convex (vector space) topology on E, which is 
coarser than t, is an ($)-space. In particular, if E is a metrizable locally convex 
space, or a strict (LF)-space, or if EA is separable, then E is an ($)-space. Now, 
by a .t?mulian space we mean a locally convex space E with the property that each 
relatively weakly countably compact subset of it is relatively weakly sequentially 
compact. By the arguments of [S, p. 311, 24.1(3)], every (s)-space is Smulian. 

3. ON SEMI-REFLEXIVE TENSOR PRODUCTS 

Let E and F be locally convex spaces. We denote by L(E, F) and P(E, F) the 
(vector) space of linear maps and continuous linear maps from E into F res- 
pectively. We consider the (vector) space 6p(E: , F) of continuous linear maps 
of E: into F, which, of course, coincides with the space 5?(EL , F,) of (weakly) 
continuous linear maps of EA into F, (cf. [14, p. 429, Proposition 42.21). Further- 
more, we denote by dtz,(E: , F) the space Lif(E: , F), equipped with the topology 
of equicontinuous convergence in E’ and consider the (topological vector) 
subspace .J$(EL , F) of it, where J?(&, F) is the (vector) space of continuous 
linear maps from EL into F. On the other hand, we consider the (vector) space 
K(E’, F) of all linear maps from E’ into F, which transfers equicontinuous 
subsets of E’ into relatively compact subsets of F and denote by S(E’, F) its 
(vector) subspace of all weakly (a(E’, E), a(F,F’)) continuous linear maps. By 
[12, p. 35, Proposition 51, L?(Ei , F) = Z(E’, F). For a map u EL(E, F) we 
denote by % its transpose. If u E L?(E: ,F), then % e Z(F: , E). Now, let 
E @F be the tensor product (vector) space of E and F. We denote by E Gj, F 
the completion of the locally convex space E @,F, the (vector) space E @F 
equipped with the biprojective tensor product topology E. E Gi, F is contained 
in Z(Ei , F), whenever the last space is complete. Examples of locally convex 
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spaces E and F with Z(Ei , F) complete are treated in [I] and [2]. Now, an 
element u of E &F is said to be of se@rable Lange (abbreviated to (a)-element), 
if there exists a separable (topological vector) subspace G of F such that u belong 

to E a, G. We denote by E “0 F the set of (sr)-elements of E Gj, F. For E and F 

complete, E g F is a vector subspace of E a, F (cf. [15, Lemma 4.21). On the 

other hand, for any subset M of E g F, x’ E E’ and y’ EF’ we will consider the 
sets M(x’) = (I: u E M} CF and tM(y’) = (%(y’): ?I E M} C E. 

Now, if (uJ is a (weakly) a(E &F, (E Bj, F)‘)-Cauchy sequence in E a, F, 
then, by the Grothendieck’s completeness theorem, (un) is contained in 
(E’ OF’)* and it is also clearly u((sl OF’)*, E’ OF’)-Cauchy, so that by the 
completeness of ((E’ OF’)*, a((E’ OF’)*, E’ OF’)), there exists the 
o((E’ OF’)“, E’ OF’)-1 imit of (Us). Thus, let T denote the (vector) subspace of 
(E’ OF’)* =L(E’,F’*), consisting of the o((E’ OF’)*, E’ OF’)-limits of all 
(weakly) o(E ai, F, (E @< F)‘)-Cauchy se q uences in E @, F. For complete and 
weakly sequentially complete (locally convex) spaces E and F, T is contained in 
-Y(EJ , F) (cf. [16, p. 121, Lemma 3.11). 

We are now in a position to state and prove the main theorems of this note. 
That is, we first have 

THEOREM 3.1. Let E and F be semi-reflexive complete locally convex spaces 

such that E be $mulian and F be (s)-space. Suppose, moreover, that E 5 F = 
E Bj, F. Then, the following assertions are equivalent: 

(1) E Bj, F is semi-reflexive. 

(2) E &F is weakly sequentially complete. 

Proof. (1) implies (2). It follows by [ll, p. 144, Section 5.51. Now, (2) 
implies (1). In fact, if Ad is a bounded subset of E Bj, F, then all the sets M(x’) 
and tM( y’) are obviously bounded and hence, by the semi-reflexivity of E and F, 
weakly relatively compact. On the other hand, by hypothesis that E is a Smulian 
space, each tM(y’) is conditionally weakly compact, so that, by [15, Theorem 
4.31, the set M is conditionally weakly compact. Thus, by hypothesis (2), the 
completeness of E a, F and the theorem of Eberlein (cf. [8, p. 313,24.2(l)]), M 
is clearly weakly relatively compact and the proof is finished. 

On the other hand, we also get 

THEOREM 3.2. Let E and F be complete locally convex spaces with E Smulian and 

F(s)-space. Suppose, moreover, that E $$ F = E a, F and consider the following 
statements (1) and (2): 

(1) (a) Both E and F are semi-reflexive. 

(b) T is contained in K(E’, F). 

(2) E Bj, F is semi-reflexive. 
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Then, (2) implies (1). If, moreover, one of the spaces E, F, EL and FA has the appro- 
ximation property, (I) implies also (2). 

Proof. (1) implies (2). By hypothesis and [16, p. 121, Theorem 3.21, 
E a,, F is weakly sequentially complete and hence semi-reflexive (Theorem 3.1 
above). Now, (2) implies (1). By the completeness of E and F and the arguments 
of [l I, p. 167, Section 9.11, it follows that both E and F are closed subsets of 
E a,, F and hence semi-reflexive (cf. [7, p. 272, Proposition 21). On the other 
hand, (1) (b) follows by [16, p. 121, Theorem 3.21 and the proof is completed. 

Now, we get the following corollaries of the preceding theorem. 
First, by [I, p. 197, Satz 91 and Theorem 3.2 above, we have 

COROLLARV 3.3. Let E and F be complete locally convex spaces with E Smulian 

andF(s)-space such that E &F = E @,, F and 9(-E: , F,) = X(E’, F). Suppose, 
moreover, that one of the spaces E, F, EL and FL has the approximation property. 
.Then, E $jjj, F (=$p,(EL , F) == Za(E: , F)) is semi-reflexive if, and only if, both E 
and F are. 

Remark 3.4. Let E and F be locally convex spaces. If F has Pi separable, 
or both E and F are metrizable, then, by the techniques of [15, Theorem 4.31, we 

v 
may clearly suppose that E @F = E &F and hence we have 

COROLLARY 3.5. Let E and F be complete locally convex spaces such that E be 
Smulian and Fi be separable (or both E and F be Frkhet ). IMoreover, suppose that 
S(E; , FJ = X(E’, F) an d one of the spaces E, F, EL and FL has the approximation 
property. Then, E Bj, F is semi-reflexive ;f, and only if, both E and F are. 

We say that a Banach space E has the metric (s)-approximation property if, for 
all E > 0 and x1 , x2 ,..., x, E E, there is a finite rank (continuous linear) operator 
u on E with // u /) < 1 and /I u(+) - xi // < l for all i = 1,2 ,..., m (cf. [13, p. 93). 

By Theorem 3.2 in the foregoing and [16, p. 122, Corollary 3.41, we have the 
following result, which may be considered as a partial converse of the preceding 
Corollary. That is, we get 

COROLLARY 3.6. Let E and F be Banach spaces such that E or F have the 
metric (s)-approximation property and let E Bi, F be semi-reflexive. Then, 9(Ei , F) 
= Z(E’, F). 

Let E and F be Banach spaces with strong duals E’ and F’ respectively. If E 
is reflexive, then E has the approximation property if, and only if, this is the case 
for E’ (cf. [ll, p. 198, Exercise 301). Th us, if both E and F are reflexive and one 
of them has the approximation property, then E’ Bj, F coinsides with the vector 
space of all compact linear maps of E into F (cf. [l 1, p. 113, Theorem 9.51). From 
this and Corollary 3.5 above we clearly get the following result, which is the 
reflexivity criterium for the Banach space sb(E, F) stated in Section 1. 
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COROLLARY 3.7. Let E and F be Banach spaces such that E or F have the 
approximation property. Then, the Banach space Zb(E, F) is reflexive if, and only if, 
both E and F are reflexive and, moreover, all the maps of it are compact. 

On the other hand, if E is a bornological locally convex space, then both 
EL and Ei are complete (cf. [8, p. 385, 28.5(l)]. Thus, by Remark 3.4, Theorem 
3.2 in the foregoing and [2, p. 7, Satz 61 we also get the following 

COROLLARY 3.8. Let E and F be complete locally convex spaces such that E be 
bornological (resp. Monte1 (LF)-space) with the approximation property. Suppose, 
moreover, that Ei (resp. Ei) is Smulian andFi separable. Then, gC(E, F) = EL @, F 
(resp. P*(E, F) = Ei $&F) is semi-rejlexive if, and only if, both EL and F (resp. 
Ei and F) are. 

Furthermore, if E and F are complete locally convex spaces with F a semi- 
Monte1 space, which has the approximation property, then, by standard argu- 
ments, given, for example, in [14, p. 522, Proposition 50.41, it follows that 
E @j, F = Pe(E; , F), so that, by Remark 3.4 and Theorem 3.2 we also have 

COROLLARY 3.9. Let E and F be complete locally convex spaces such that 
E be Smulian and F be a semi-Monte1 space with the approximation property (or, 

in particular, F be a nuclear space) and Fi be separable. Then, E 6, F = -uZ,( Ei , F) 
is semi-reflexive if, and only 17, E is semi-rejexive. 

Now, let (X, 2, cl) be a complex measure space, 1 < p < + cc and let E be a 
complete locally convex space. We consider the space L:(p) of (classes of) 
E-valued maps f on X with q 0 f E L+) for every continuous seminorm q on E 
(cf. l-15, Section 51). If, moreover, E is nuclear, then L;(p) = L+) Bj, E (as 
topological vector spaces) (ibid.). Th us, by Remark 3.4 and Theorem 3.2 we get 
the following 

COROLLARY 3.10. Let (X, Z, TV) be a complex measure space, 1 < p < {- co 
and let E be a complete nuclear locally convex space with Ei separable (or, let E be a 
nuclear Frechet space). Then, L&L) is semi-rejexive. 

After Arens, a (completely regular) topological space X is called hemicompact, 
if there exists a countable fundamental family of compact subsets of it [17]. In 
this respect, the following final result extends it [17, p. 274, Theorem lo]. 

COROLLARY 3.11. Let X be a (completely regular) hemicompact space and let E 
be a complete locally convex space with EA separable (or, let E be a Frechet space), 
which has the approximation property. Then, the space %‘(X, E) of all continuous 
E-valued maps on X, equipped with the topology of compact convergence in X, is 
semi-repexive if, and only a& X is descrete and E semi-reflexive. 
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Proof. By [3, p. 203, Theorem 31, U(X, E) = V(X) Gj, E. On the other hand, 
by hypothesis that X is hemicompact and [17, p. 267, Theorem 21, U(X) is 
metrizable, so that, by hypotheses for E and Remark 3.4, we may suppose that 

U(X) g E = V(X) Bi, E. Suppose now that %(X, E) is semi-reflexive. Then 
by Theorem 3.2 in the foregoing, E and U(X) are semi-reflexive and hence X 
is descrete (cf. [17, p. 274, Theorem lo]). On the other hand, suppose that X 
is descrete and E semi-reflexive. Then, by [17, p. 274, Theorem lo], V(X) is 
Monte1 and hence clearly every (weakly) continuous linear map from E’ into 
U(X) transfers equicontinuous subsets of E’ into relatively compact subsets of 
U(X), so that the assertion follows by Corollary 3.3 in the foregoing and the proof 
is finished. 
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