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a b s t r a c t

London, like many major cities, has a noted air pollution problem, and a better understanding of the
sources of airborne particles in the different size fractions will facilitate the implementation and effec-
tiveness of control strategies to reduce air pollution. Thus, the trace elemental composition of the fine
and coarse fraction were analysed at hourly time resolution at urban background (North Kensington, NK)
and roadside (Marylebone Road, MR) sites within central London. Unlike previous work, the current
study focuses on measurements during the summer providing a snapshot of contributing sources, uti-
lising the high time resolution to improve source identification. Roadside enrichment was observed for a
large number of elements associated with traffic emissions (Al, S, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Rb
and Zr), while those elements that are typically frommore regional sources (e.g. Na, Cl, S and K) were not
found to have an appreciable increment. Positive Matrix Factorization (PMF) was applied for the source
apportionment of the particle mass at both sites with similar sources being identified, including sea salt,
airborne soil, traffic emissions, secondary inorganic aerosols and a Zn-Pb source. In the fine fraction,
traffic emissions was the largest contributing source at MR (31.9%), whereas it was incorporated within
an “urban background” source at NK, which had contributions from wood smoke, vehicle emissions and
secondary particles. Regional sources were the major contributors to the coarse fraction at both sites.
Secondary inorganic aerosols (which contained influences from shipping emissions and coal combus-
tion) source factors accounted for around 33% of the PM10 at NK and were found to have the highest
contributions from regional sources, including from the European mainland. Exhaust and non-exhaust
sources both contribute appreciably to PM10 levels at the MR site, highlighting the continuing impor-
tance of vehicle-related air pollutants at roadside.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Exposure to airborne particles, both short and long-term, has
been linked with a number of detrimental effects on human health
(Cohen et al., 2005; Kampa and Castanas, 2008). The size and
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chemical composition of airborne particles are thought to be key
factors affecting their toxicity (Heal et al., 2012). Smaller particles
are thought by many to be more harmful than larger particles, and
clear relationships have been observed between exposure to fine
particles (PM2.5, particles with an aerodynamic diameter less than
2.5 mm) and adverse health effects (Brook et al., 2010; Pope et al.,
2002). As a result, PM2.5 is an air pollution metric widely used to
assess air quality, with the EU having set targets for reduction in
PM2.5 levels and population exposure.

In an urban environment, there are a number of sources, both
natural and anthropogenic, which emit particles across a broad size
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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range. Sources typically differ for fine and coarse fractions, with fine
particles most often from anthropogenic combustion sources, such
as vehicle tailpipes, industrial emissions and biomass burning, and
from secondary production within the atmosphere. In contrast,
particles in the coarse fraction (PM2.5e10, particles with an aero-
dynamic diameter between 2.5 and 10 mm) mainly arise from
abrasion processes and can include crustal material and vehicle
wear products (Minguill�on et al., 2012; Richard et al., 2011). While
trace metals typically only constitute a small proportion of the total
particle mass (as low as 1% (Handler et al., 2008)), analysis of the
elemental composition of ambient fine and coarse particle fractions
can be effective in determining source contributions, particularly
for measurements performed at a high time resolution (Gao et al.,
2016; Visser et al., 2015a; Dall’Osto et al., 2013; Moreno et al.,
2011; Viana et al., 2008).

London, like many major cities, has a noted air pollution prob-
lem, and a better understanding of the sources of airborne particles
in the different size fractions will facilitate the implementation and
effectiveness of control strategies to reduce air pollution. As a result
there has been a concerted recent effort to characterise the sources
of airborne particles in London, notably as part of the REgents PARk
and Tower Environmental Experiment (REPARTEE) and Clean Air
for London (ClearfLo) projects (Harrison et al., 2012a;
Bohnenstengel et al., 2015). The ClearfLo project, included both
long-term studies (e.g. Young et al., 2015a) as well as summer and
winter intensive observational periods. There have been a number
of source apportionment studies that have focused on the winter
measurements investigating organic aerosols (Yin et al., 2015;
Young et al., 2015b) and trace elemental datasets (Visser et al.,
2015a). From these source apportionment studies it was found
that during winter, major sources of primary organic aerosols were
vehicle emissions and cooking (Yin et al., 2015). In addition, coarse
fraction particles (PM2.5e10) were influenced primarily by marine
factors and traffic emissions whereas particles in the fine fraction
(PM1) were predominantly from more regional sources in winter
(S-rich and solid fuel burning, Visser et al., 2015a).

A previous source apportionment analysis of a long-term (2
year) dataset comprisingmainly trace element concentrations at an
urban background site in London determined six sources; Urban
background, Marine, Secondary, Non-exhaust traffic/Crustal, Fuel
oil and Traffic (Beddows et al., 2015). This analysis was unable to
fully resolve the traffic contributions, with the urban background
source factor found to have a strong traffic signature, possibly due
to the low time resolution (daily) of the measured elemental con-
centrations. Therefore in the present work we analyse trace
elemental composition of particles in the fine and coarse fractions
at an urban background and roadside site in London collected at a
high (hourly) temporal resolution, with the aim to improve the
source apportionment, particularly of traffic emissions. In contrast
to previous studies in London using elemental analysis (Beddows
et al., 2015; Visser et al., 2015a, 2015b), the current work focusses
on measurements during the summer, and thus provides a snap-
shot of the contributing sources for this period. The results are
compared at both roadside and urban background sites, in order to
examine the contribution of vehicle emissions and its source
characteristics. We employ a receptor model, Positive Matrix
Factorization (PMF), to apportion the sources at both sites, utilising
the high time resolution of the elemental data to improve the
source identification. The resultant sources and size fractions
determined for each site are compared to examine the differences
in contributing sources.
2. Method

2.1. Sampling sites

The measurements were a part of the ClearfLo project (Clean Air
for London, www.clearflo.ac.uk), which aimed to investigate
boundary layer pollution in London; an overview is provided by
Bohnenstengel et al. (2015). Sampling was conducted during the
summer intensive observation period in JulyeAugust 2012 at two
sites locatedwithin central London. The first site, classified as urban
background, was within a school grounds in a residential area of
North Kensington (NK). The air pollution climate at NK has been
described in detail by Bigi and Harrison (2010), and is considered as
representative of the background air quality for most of London.
The second site, classified as roadside, was located 1 m from Mar-
ylebone Road (MR), a busy six lane road (ca. 80,000 vehicles a day)
in central London. Both sites are also permanent stations of the
Automatic Urban and Rural Network (AURN) from which moni-
toring data for the classical air pollutants were obtained. At both
sampling sites black carbon (BC, 2 wavelength Aethalometer), ni-
trate (URG-9000B ambient ion monitor), NOx (chemiluminescence)
and PM2.5 mass concentrations (FDMS-TEOM) were obtained from
the national AURN and Speciation Networks. PM10 mass concen-
trations were available from the AURN for NK but not at MR due to
instrument malfunction. A map detailing the locations of the
sampling sites can be found in Bohnenstengel et al. (2015).

2.2. Sampling methodology and instrumentation

Aerosol samples were collected by low volume continuous
‘Streaker’ samplers, which allowed the determination of the
elemental concentrations with hourly resolution, in both the fine
(Da < 2.5 mm) and the coarse (2.5 mm < Da < 10 mm) fraction of
particulate matter (Crespo et al., 2012; D’Alessandro et al., 2003).
Briefly, in a Streaker sampler, particles are separated in two
different stages by a pre-impactor and an impactor. The pre-
impactor removes particulate matter with aerodynamic diameter
Dae > 10 mm. The aerosol coarse fraction impacts on a Kapton foil
where it is deposited while the fine fraction is collected on a
Nuclepore filter having 0.4 mm pores. The two collecting plates
(Kapton and Nuclepore) are paired on a cartridge, which rotates at
constant speed (~1.8� per hour) for a week: this produces a circular
continuous deposit of particular matter (the ‘streak’) on both
stages.

The resulting samples were analysed via PIXE (Particle-Induced
X-Ray Emission) performed with 2.7 MeV protons from the 3 MV
Tandetron accelerator of the Laboratorio di tecniche nucleari per
l’Ambiente e i BEni Culturali (LABEC) laboratory of Istituto Nazio-
nale di Fisica Nucleare (INFN) in Florence, with the external beam
set-up described extensively elsewhere (Lucarelli et al., 2014). The
beam (30e200 nA) scanned the streak in steps corresponding to 1 h
of aerosol sampling; each spot was irradiated for about 180 s. The
resulting PIXE spectra were fitted using the GUPIX software pack-
age (Maxwell et al., 1995) and elemental concentrations were ob-
tained via a calibration curve from a set of thin standards of known
areal density. The uncertainty of hourly elemental concentrations
was determined by a combination of independent uncertainties in:
standard sample thickness (5%), sampling parameters (5%) and X-
ray counting statistics (2e20%). Detection limits were about
10 ng m�3 for low-atomic number elements and 1 ng m�3 or below
for medium-high atomic number elements. The following elements
were detected: Na, Mg, Al, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn,
Sr and Pb. Occasionally Bi was also detected. Unfortunately, the
Nuclepore filters were contaminated by Si and Br whose ambient
concentrations were consequently not possible to determine. We

http://www.clearflo.ac.uk
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analysed the filters collected between 20th July 2012 and 3rd
August 2012 for a total sampling time of 306 h. Data coverage
during this period was 91% at the NK and 98% at the MR site. The
overlap between the two sites was high, with 90% of the time
having simultaneous measurements.

At both sampling sites black carbon (BC), nitrate, NOx, and PM2.5
mass concentrations were obtained from the national AURN and
Speciation Networks. PM10 mass concentrations were available
from the AURN for NK but not at MR due to instrument
malfunction.

2.3. Data analysis

Wind rose plots, diurnal variations and conditional probability
function (CPF) analyses were all performed in R using the Openair
package (Carslaw and Ropkins, 2012). CPF is a data analysis tool to
find the direction of source contributions and was applied to both
the elemental concentration and the PMF source factors. Polar plots
are used to present the CPF analyses, where the number of events
with a concentration greater than the 90th percentile is plotted as
function of bothwind speed and direction, as shown in Equation (1)

CPF ¼ mq,j/nq,j (1)

where mq,j is the number of samples in wind sector q and wind
speed sector j with a concentration greater than the 90th percentile
and nq,j is the total number of samples with the same wind direc-
tion and speed (Carslaw, 2013). The resultant CPF polar plots pre-
sent the probability that high concentrations of a pollutant came
from a particular wind direction and speed (Carslaw, 2013) and can
give insight into the contributions from local and regional sources.
Wind data were derived from the Heathrow Airport site, which has
previously proved to be a good indicator of air mass movements
across London (Beddows et al., 2015).

2.3.1. PMF analysis
Positive Matrix Factorization (PMF) was applied to the hourly

data sets from NK and MR, aiming at the identification and quan-
tification of the major aerosol sources, using the EPA PMF5.0 soft-
ware. PMF is an advanced factor analysis technique based on a
weighted least square fit approach (Paatero and Tapper, 1994); it
uses realistic error estimates to weight data values and imposes
non-negativity constraints in the factor computational process.
Briefly, the PMF factor model can be written as X¼ G$FþE, where X
is a known n by m matrix of the m measured chemical species in n
samples; G is an n by p matrix of source contributions to the
samples (i.e. time variations of the p factor scores); F is a p by m
matrix of factors composition (often called source profiles). G and F
are factor matrices to be determined and E is defined as a residual
matrix. In addition to the elemental data, concentrations of BC (fine
fraction only) and nitrate (measured in PM10 and included in both
fine and coarse fractions) were included in the analysis. Input data
were prepared using the procedure suggested by Polissar et al.
(1998). Since PMF is a weighted least-squares method, individual
estimates of the uncertainty in each data value are needed. The
uncertainty estimates were based on the approaches by Polissar
et al. (1998). Species that retained a significant signal were sepa-
rated from the ones dominated by noise, following the signal-to-
noise (S/N) criterion defined by Paatero and Hopke (2003). Spe-
cies with S/N < 0.2 are considered as bad variables and removed
from the analysis and species with 0.2 < S/N < 2 are defined as
weak variables and down weighted by a factor of 3. Nevertheless,
since S/N is very sensitive to sporadic values much higher than the
level of noise, the percentage of data above detection limit was used
as a complementary criterion. PMF results for a different number of
factors and multiple values of FPEAK were systematically explored
to determine the most reasonable solution (20 pseudorandom
initializations were run for each test). As PMF is a descriptive
model, there are no objective criteria for choosing the right number
of factors (Paatero et al., 2002). Therefore a number of criteria were
applied including extracting realistic source profiles, distribution of
scaled residuals, Q/Qexp and the comparison between the PMF
modelled and measured elemental mass. For selecting a PMF so-
lution, the key criterion applied was based on extracting realistic
and reasonable source profiles and contributions. This included the
extracted sources demonstrating diurnal profiles as expected for
that source and logical correlations with external tracers (e.g. NOx
with traffic sources). The Q/Qexp index was monitored with
increasing number of factors, as a large decrease is indicative of
increased explanatory power in themodel of the data, while a small
decrease suggestive of little improvement with extra factors.
Consequently, the number of factors was chosen after Q/Qexp
decreased significantly. The G and F factor outputs were normalised
against the particle mass concentrations. At MR, there was no PM10
mass concentration data available from the AURN and so the G and
F factor outputs were normalised against a reconstructed mass. The
reconstructed mass for the coarse fraction at MR was calculated by
summing the estimated concentration of sulphate and nitrate salts,
crustal metal oxides and sea spray from measured elemental con-
centrations based on molecular weight ratios. The FPEAK param-
eter explores the rotational ambiguity of the solution (see Paatero
(2000) for more details), and as changing the FPEAK value did
not appear to improve the source profiles, base model results are
shown (FPEAK ¼ 0).

3. Results and discussion

3.1. Average concentration at MR and NK sites

The average concentrations of the analysed elements for each
site and size fraction is shown in Fig. S1, with summary statistics for
both sites and size fractions provided in Tables S1e4 (Supporting
Information). From Fig. S1, the most abundant elements were (in
order) Fe, S, Cl, Ca, Si and Na, which are typically primarily of crustal
or marine origin, while the elements with a greater anthropogenic
contribution such as Cu, Zn and Pb had lower concentrations.
Generally, MR had higher concentrations than NK. In the fine
fraction, all elements except for Na, P, Se and Pb had statistically
significantly higher (p < 0.05) concentrations at MR compared to
NK. In the coarse fraction, Na,Mg, Si, P, Cl, K, Se, and Br were present
at similar concentrations at both sites, while all other elements had
statistically significantly higher concentrations (p < 0.05) at MR
compared to NK. Thus in both fractions the majority of elements
(Al, S, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Rb, Zr) exhibited roadside
enrichment, as did Mo and Pb in the coarse fraction, and likely had
a contribution from sources related to traffic emissions. The ele-
ments that recorded similar concentrations at both sites are
indicative of sources unrelated to vehicle emissions and include sea
salt (Na, Cl, Mg), biomass burning (K) (Chow et al., 2007; Harrison
et al., 2012b) and industrial emissions (e.g. Pb and Sr) (Dall’Osto
et al., 2013; Widory et al., 2010). The observed roadside enrich-
ment levels in this study are broadly consistent with previous work
at these sites (Visser et al., 2015b).

As expected, BC shows a huge enrichment at MR as a result of its
presence in diesel engine emissions (Tables S1 and S3). Less ex-
pected is the enrichment of nitrate, with almost double the mean
concentrations observed at MR compared to NK (Tables S2 and S4).
This could result from enhanced NOx oxidation in the street canyon,
which seems unlikely given the short residence times of the air. It
might also be due to emissions of ammonia from vehicles causing



Table 1
Summary of the PMF solutions at NK and MR. The contribution refers to the percentage of the total particle mass, with the average particle mass given (mg m�3), with the
exception of the coarse fraction at MR which was normalised to a reconstructed particle mass. Hence concentrations reported for MR coarse fraction refer to the percentage of
detected particle mass (mg m�3). SIA refers to secondary inorganic aerosols.

Site NK MR NK MR

Fraction Fine Fine Coarse Coarse

Source Contribution Source Contribution Source Contribution Source Contribution

1 Sea Salt 5.1% Sea Salt 9.8% Fresh sea salt 22.2% Fresh sea salt 7.0%
2 SIA 31.4% SIA (1) 21.8% Aged sea salt 12.9% Aged sea salt/nitrate 42.3%
3 Soil 10.4% Construction 8.6% Soil 16.2% Construction 6.3%
4 Traffic 10.2% Traffic 32.6% Traffic 17.8% Vehicle wear 13.4%
5 Zn-Pb 4.0% Zn-Pb 0.5% Nitrate 31.0% Re-suspended road dust 31.0%
6 Urban background 39.0% SIA (2) 26.8% e e e e

Particle Mass 11 21 6 10
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enhanced conversion of nitric acid vapour to particulate nitrate.
However, concentrations of ammonium were similar at the two
sites (0.98 ± 0.7 mg m�3 at NK and 0.94 ± 0.9 mg m�3 at MR), so this
is thought unlikely.

The size distribution of individual elements was similar across
both sites, with S, Ni, Zn, As, Se and Pb having higher concentrations
in the fine fraction, while Na, Mg, Al, P, Cl, Ti, Mn, Fe, Cu, Rb, Zr and
Mo had higher concentrations in the coarse fraction (p < 0.05). At
MR Ca, Cr and Sr had a similar concentration across both size
fractions whereas at NK, Ca and Sr were found preferentially in the
coarse fraction and Cr in the fine fraction. Typically elements from
combustion sources are found preferentially in the finer particles
(Minguill�on et al., 2012), and thus fossil fuel combustion and in-
dustrial emissions may be a source of S, V, Ni, Zn, As, Se and Pb
(Dall’Osto et al., 2013; Moreno et al., 2010; Ning et al., 2008). Me-
chanically generated sea salt particles are normally found in the
coarser size fractionwhich further points to a marine source for Na,
Mg and Cl. As expected, elements normally associated with a
crustal source, such as Al, Ca, Ti, Fe were generally found prefer-
entially in the coarse fraction (Minguill�on et al., 2012; Richard et al.,
2011), with the exception of Ca at MR, which suggests an additional
source. Soil Enrichment Factors (EF) were calculated for these
crustal elements, using Al as reference element and the crustal
composition given by Taylor (1964), see Table S5, Supporting In-
formation. The calculated EF was generally close to 1 for Si and K,
Ca, Ti and Sr in the coarse fraction, indicating that crustal material
was the main source. The exception was during episodic peaks in
concentration of K, Ca and Sr (See Fig. S2), when the EF was greater
than 1, indicating that were other sources of these elements. Fe had
a higher EF than the other crustal elements, as there are other
sources of Fe such as vehicle abrasion processes. Particles emitted
by these abrasion processes, such as brake and engine wear, have
been shown to be in both the coarse and fine fractions and in
addition to Fe include elements such as Mn, Cu, Rb, Zr and Mo
(Richard et al., 2011; Thorpe and Harrison, 2008), supporting this
source assignment for these elements, particularly with the
observed roadside enrichment.
3.2. Source apportionment by PMF

PMF analysis was performed separately at NK and MR for the
fine and coarse datasets independently. In all of the presented PMF
solutions, most of the scaled residuals (portion of data for each
element unexplained by model divided its uncertainty) were be-
tween ±3.0 and normally distributed, as suggested by Paatero and
Hopke (2003). Furthermore, concentrations of all species were
reconstructed towithin 20% by themodel with a few exceptions. As
there is no organic component included in the PMF, the presented
particle mass contributions are representative of the measured
species, and hence the majority of the particle mass. The resultant
solutions at NK and MR are summarised in Table 1, with 6 and 5
factor solutions chosen for the fine and coarse fraction, respectively
at both NK and MR. The source profiles are given in Figs. 1e4 while
the times series can be found in the Figs. S3e7, Supporting Infor-
mation. Overall, similar sources were observed at MR and NK, with
the exception of a construction dust source identified only at MR
and a nitrate and urban background source at NK (Table 1). As
expected, as MR is a roadside site, higher traffic contributions were
observed at MR compared to NK (Table 1). A detailed description of
the identified sources at NK and MR is presented in the following
sections.
3.2.1. Sea salt/marine sources
At both sites, there were factors that were characterised by

notable contributions from the typical marine elements Na, Mg and
Cl, which was the basis for assigning these factors to sea salt
particles.

At both sites, only one sea salt source was identified in the fine
fraction, while there were two coarse fraction marine sources
identified. While Na and Mg had notable contributions in both
coarse marine sources, the two sources were differentiated based
on the level of Cl (Figs. 2 and 4) and were assigned to aged and fresh
sea salt particles. For both the aged and fresh sea salt sources, the
Na/Mg ratio was comparable to the expected ratio for seawater
(4e6), alongwith the Na/Cl ratio in the fresh sea salt factors (0.6). In
the aged sea salt factors, Cl levels were almost zero presumably
resulting from the well-known heterogeneous reactions between
airborne sea-salt particles and acidic pollutants (e.g. nitric and
sulfuric acid), which result in the volatilization of HCl (Seinfeld and
Pandis, 1998; Singh, 1995). In the fine fraction, the single marine
source at NK and MR showed Cl/Na ratios well below those of
seawater indicating substantial ageing but still had a substantial
contribution from Cl unlike coarse aged sea salt (Figs. 1e4). At both
sites, the fine fractionmarine sourcewas well correlated (r2 of 0.85)
with the fresh sea salt factors unlike the aged sea salt (r2 < 0.2) in
the coarse fraction, suggesting that the fine marine source was
indeed sea salt.

At both MR and NK, application of CPF analysis found that the
highest source contributions for the two coarse fraction marine
sources came from different directions, with the results shown in
Fig. 5. For the fresh sea salt particles, highest contributions were
from the south/southwest at high wind speeds (Fig. 5), with similar
results observed for the fine fraction sea salt factors (Fig. S7, Sup-
porting Information). During sampling, the prevailing wind direc-
tion was from the south/southwest (Fig. S8, Supporting
Information) and is the likely reasonwhy the highest contributions
for fresh sea salt were from the south/southwest, even though the
closest coastline to London is to the east. The highest contributions
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for the aged sea salt factors were from the east/north east at lower
wind speeds (Fig. 5), possibly as a result of the interaction of sea salt
from the North Sea with polluted air masses from the European
mainland, further supported by the notable contributions from
elements not normally associated with marine sources (e.g. Cr, Sr,
Mo, Pb; see Figs. 2 and 4). The coarse aged sea salt at MR (Fig. 4)
shows a very high concentration of nitrate and this factor has hence
been called aged sea salt/nitrate. Chloride ion volatilization as well
as nitrate and sulphate formation is due to different reactions be-
tween airborne sea-salt particles and pollutants such as nitric and
sulfuric acid (Seinfeld and Pandis, 1998; Singh, 1995). Thus, this
source is a mixture of anthropogenic and natural contributions. It
also shows some temporal features (Fig. S6), which are very similar
to those of the NK coarse nitrate factor (Fig. S4).

3.2.2. Airborne soil and construction dust
PMF factors were identified at each site, which were charac-

terised by contributions from the typically crustal elements Al, Si,
Ca and Ti, and to a lesser extent Mg, K, Mn, Fe and Sr (see Figs. 1e4).
The factor elemental profiles in the coarse fraction are shown in
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Fig. 6 for both sites, normalised to Al alongwith a comparison to the
average upper continental crust (UCC) values (Taylor, 1964). From
Fig. 6, based on distinct differences observed in the elemental
profiles and diurnal cycles, these factors were assigned to different
sources; airborne soil particles, construction dust, and re-
suspended road dust.

Present in both size fractions at MR was a source characterised
by high loadings from Ca (EF of around 37) and Sr (EF of 7)
compared to the soil source (Fig. 6), two elements that have pre-
viously been associated with construction and cement work
(Bernardoni et al., 2011; Dall’Osto et al., 2013; Widory et al., 2010),
and was therefore assigned to construction dust. Further evidence
is found in the diurnal concentration profile, which peaked during
the day and decreased to almost zero outside of normal working
times (8am until 4pm), shown in Fig. 7 for the coarse fraction. A
similar diurnal cycle was observed in the fine fraction (Supporting
Information, Fig. S9). The temporal pattern of the construction
factor is in agreement with results reported in Dall’Osto et al. (2013)
and Vecchi et al. (2009) who also found a high correlation between
Ca and S hourly concentrations during construction works, thus



Fig. 5. CPF analysis of the aged and fresh sea salt factors in the coarse fraction at NK (left column) and MR (right column). Wind speed is in m s�1.
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supporting the high normalised concentrations for S and Ca re-
ported in Fig. 6.

At MR in the coarse fraction, the source profile and diurnal cycle
of the second crustal source had characteristic differences
compared to the construction dust source. Along with Al, Si, Ca and
Ti, elements associated with traffic emissions (Mn, Ni, Zn and Br,
see Section 3.2.3) had notable contributions in this factor (Fig. 4).
While the observed cycle was not as expected for traffic emissions
(Fig. 7), the observed concentration peak that coincided with
morning peak hour traffic, points to traffic as a contributing source.
Thus, along with the contributions from traffic related elements,
this factor was assigned to re-suspended road dust.

The soil source factor observed at NK in both fractions had a
similar profile to the UCC, with the elements Mg, Si, K and Ti
observed to have a EF (calculated with respect to Al) of around 1. Of
the other crustal elements, in both size fractions Ca had a high EF
(~6), which points to a notable influence from construction work.
Mn and Fe also had a high enrichment (EF between 2 and 3), sug-
gestive of traffic emissions as the source of the additional Fe.
Furthermore in both size fractions, the diurnal cycle of the soil
factor peaked at around 7e8am (Fig. S10, Supporting Information),
Fig. 6. Normalised concentrations of the soil and construction dust source profiles in the c
reported for comparison (Taylor, 1964) and all values are normalised to the concentration
similar to the re-suspended road dust factor at MR (Fig. 7), sug-
gesting an influence from this source. Therefore, at NK this factor
likely had a combined influence from airborne soil and construc-
tion dust.

3.2.3. Traffic emissions
A factorwas attributed to traffic emissions for both size fractions

at MR and NK, based primarily on the chemical profiles (Figs. 1e4)
and the diurnal cycles (Fig. 8). At MR the traffic-related source
factors differed between the two size fractions and were distin-
guished primarily by their source profiles. In the fine fraction at MR,
the traffic factor accounted for the majority of the BC (Fig. 3), a
typical marker for vehicle exhaust emissions but also included
notable contributions from elements that are normally associated
more with vehicle wear particles e.g. Cr, Mn, Cu, Fe, Zr and Mo
(Thorpe and Harrison, 2008). In the coarse fraction at MR, the traffic
factor had high contributions from Ti, Cr, Mn, Fe, Ni, Cu, Rb, Zr and
Mo (Fig. 4), elements that have been previously associated with
tyre, engine and brake wear particles (Pant and Harrison, 2013 and
references therein). Both traffic factors at MR exhibited a more
strongly bi-modal cycle that followed times of peak traffic (Fig. 8)
oarse fraction at MR and NK. The average continental upper crust composition is also
of Al.



Fig. 7. Diurnal cycles of the re-suspended road dust and the construction dust factors
at MR in the coarse fraction. Shaded areas represent the 95% confidence intervals. Note
the presented source concentrations were normalised to a reconstructed particle mass,
hence representative of the detected particle mass.
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unlike that observed for NOx (Fig. S11, Supporting Information),
likely due to the high braking load for vehicles in peak traffic,
resulting in increased emissions of vehicle wear particles. Thus it
would suggest that in the coarse fraction the main source was
vehicle wear emissions, as particles emitted by this source are
Fig. 8. Diurnal cycles of the traffic related factors in the fine fraction (top row) and coars
confidence intervals. Note the different y-axis scales for NK compared to MR. Note the pres
particle mass, hence representative of the detected particle mass, unlike the other three an
typically foundmore in the coarse fraction (Pant and Harrison, 2013
and references therein). However in the fine fraction, the observed
high loadings from BC point to a strong influence from exhaust
emissions, hence our assignment to more general traffic emissions.

As seen in Fig. 8, at NK there was a factor in each size fraction
with a bi-modal diurnal cycle comparable to the diurnal trends for
NOx (Fig. S11), which was correlated with NOx concentrations (r2 of
0.51), implicating traffic emissions as the source. In both fractions at
NK, the traffic factor profiles had high loadings from Cr, Mn, Fe, Cu,
which are typical brake and engine wear elements and points to
vehicle wear emissions as a contributing source.

Furthermore, the fine fraction traffic emission factor at NK did
not account for the majority of BC; rather it was another factor
which also had high loadings from Cl, K, V, Cr, Cu and As (Fig. 1).
This elemental profile does not clearly indicate a source but a
number of these species (e.g. V, Cr, Cu, As and BC) have been pre-
viously associated with vehicle exhaust emissions (Ning et al.,
2008; Pant et al., 2014). Furthermore, the diurnal profile (Fig. S12,
Supporting Information) was similar to that observed for NOx
(Fig. S11), suggesting vehicle emissions as a source. However, the
high loading from K and BC can also point to an influence from
wood smoke (Crilley et al., 2015) in addition to vehicle emissions.
Beddows et al. (2015) previously identified at NK in a year-long
dataset a factor, which had no clear source but had contributions
from both wood smoke and traffic emissions and named it an
“urban background” source. Therefore, this factor was also assigned
to an urban background source. The large nitrate concentration
(Fig. 1) and large nocturnal concentrations suggests a secondary
e fraction (bottom row) at NK (left) and MR (right). Shaded areas represent the 95%
ented source concentrations at MR coarse fraction were normalised to a reconstructed
alyses (MR fine, NK fine and coarse).



Fig. 9. CPF analysis polar plots of the secondary inorganic aerosols factors at NK (left column) and MR (right column). The size fraction for each factor is also indicated. Wind speed
is in m s�1.
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contribution to this factor.
As the PMF analysis for the coarse fraction at MR was normal-

ised to a reconstructed particle mass, direct comparison between
the absolute concentrations to other PMF analyses, which were
normalised to measured total particle mass, are not valid. There-
fore, considering the fine fraction only, higher contributions from
the traffic emission factors were observed at the roadside site (MR)
compared to the urban background site (NK), as expected (Table 1
and Fig. 8). Furthermore, using reconstructed particle mass may
explain why traffic emissions appear to have much higher contri-
butions in the fine compared to the coarse fraction at MR (Fig. 8).
However, if the coarse re-suspended road dust factor (also attrib-
uted to traffic emissions, see previous section), is combined with
the vehicle wear factor, traffic emissions contributed roughly equal
proportion to fine and coarse fractions (Table 1), in agreement with
previous results (Harrison et al., 2001; Querol et al., 2004).

3.2.4. Secondary inorganic aerosol
At both sites in the fine fraction, therewere factors characterised

by high loadings from S, Se and nitrate, which were assigned to
secondary inorganic aerosol (SIA, Figs. 1 and 3). Two such SIA
sources were identified at MR, with one accounting for a large
percentage of Ni (SIA (2)) and the other characterised by higher
loadings of crustal elements and Pb (SIA (1)), suggesting different
primary sources contributed to the SIA, such as fuel oil combustion
for SIA (2). The time series for the SIA (1) and (2) factors at MRwere
not correlated (r2 of 0.02), combined with the observed notable
differences in source profile (Fig. 3) suggests that these are two
distinct sources rather than ‘splitting’ of one factor. The differences
in source profiles suggest different primary sources contributing to
the formation of SIA. Only one SIA factor was identified at NK,
possibly as the second was indistinguishable from the urban
background source, which also had high contributions from Se and
Ni (Fig. 1). The two MR SIA time series were correlated with the SIA
at NK, with SIA (2) more correlated than SIA (1) (r2 of 0.72 and 0.41,
respectively). The high loadings from S, Ni and Se, established
tracers for oil combustion and coal combustion (Moreno et al.,
2010, 2013), point to shipping and power plant emissions as
contributing sources. Both of these sources emit large quantities of
SO2, which reacts in the atmosphere to form sulphate and could
explain the overlapping sources. CPF analysis (Fig. 9) indicated that
the for all SIA factors the highest contributions were from the east
at high wind speeds at both sites, suggesting similar source loca-
tions. In this easterly direction lie a number of industrial activities
including power stations and major east coast ports of Felixstowe
and Harwich, which may contribute.

In addition, a source was identified at NK in the coarse fraction
characterised by high contributions to crustal elements (e.g. Al, Si, K
and Ca), Zn, Pb and nitrate (Fig. 2). The coating of nitrate on the
surfaces of mineral dust particles formed by heterogeneous re-
actions is well known (see e.g (Li and Shao, 2009; Usher et al.,
2003). but the concentrations of elements such as Ca which is
known to bind with nitrate appear insufficient, and hence its
composition may be that of ammonium nitrate. Minguill�on et al.
(2012) also observed high loadings of Zn and Pb in an ammonium
nitrate source in the coarse fraction. This nitrate factor was corre-
lated with the SIA factors (r2 of 0.4e0.5) and CPF analysis also
indicated the highest contributions from regional sources to the
east (Fig. 9). Furthermore, the CPF results for the SIA and nitrate
(Fig. 9) are in agreement with Charron et al. (2013), who demon-
strated that long-range transport of secondary particles (including
sulphate and nitrate) originating from mainland Europe were a
significant source of particles in London. Overall, secondary inor-
ganic aerosols accounted for a considerable portion of the fine
particle elemental mass at MR and the coarse and fine elemental
mass at NK (Table 1). This result suggests that regional sources,
which include emissions from industrial plants and shipping
located to the east of London, have a significant influence on the
fine particle composition in London, consistent with the conclu-
sions of Beddows et al. (2015) based upon an analysis of 24 months
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of data.

3.2.5. Zn-Pb factor
A factor was identified in the fine fraction at NK and MR ac-

counting for a high proportion of the variance of Zn and Pb (Figs. 1
and 3), although the main chemical constituents were in both cases
BC and nitrate. The time series for these factors was characterised
by a number of episodic peaks, suggesting an industrial source
(Figs. S3 and S5). Based on the high contributions from Zn and Pb,
the source may be industrial emissions such as metal workshops or
smelters (Dall’Osto et al., 2013; Moreno et al., 2013; Richard et al.,
2011). However, at MR the diurnal cycle demonstrated a clear
peak at around 9am (Fig. S13, Supporting Information), suggesting
there may have been influence from a source related to traffic as
well. Overall, this factor accounted for a small percentage (<4%) of
the total fine fraction particle mass at MR and NK, and so does not
represent a significant source.

3.3. Comparison to previous source apportionment in London

Previous source apportionment studies of airborne particles
utilising elemental datasets in London were conducted in winter
(Visser et al., 2015b) or on long-term datasets (Beddows et al.,
2015). Thus, while quantitative comparison to current work is
problematic owing to the different seasons covered, qualitative
evaluation of the sources identified is possible. In addition, while
Beddows et al. (2015) applied a similar source apportionment
technique to the current work, albeit to 24 h samples, Visser et al.
(2015a) utilised a different methodology. Nevertheless, while
there were similar sources identified overall (e.g. marine, second-
ary, traffic and crustal), some notable differences were evident
between the three studies. Beddows et al. (2015) identified an ur-
ban background factor, which had influences fromwood smoke and
traffic, and despite the higher time resolution a similar factor was
also extracted for the fine fraction at NK in the current study. That
this source was identified by both studies with datasets of differing
time resolutions would appear to underline the difficulty in sepa-
rating co-linear sources in the urban background.

The use of higher time resolution data did improve source
identification, with a distinct solid fuel burning source identified
during the winter (Visser et al., 2015a) probably due to (expected)
seasonal variation in emissions due to heating. An industrial source,
characterised by episodic concentration peaks, was found both in
the present study and Visser et al. (2015a), possibly due to the
higher time resolution of the elemental data in these studies
compared to Beddows et al. (2015). However, the industrial sources
were characterised by different elements; Cr and Ni (Visser et al.,
2015a), and Zn and Pb (present work) suggesting different sour-
ces (or activity). It is noteworthy that the urban background factor
described in Beddows et al. (2015) also contained high loadings
from Zn and Pb. Separate traffic factors were extracted in all three
studies (Beddows et a. 2015; Visser et al., 2015a; present work),
therewas however variation in the proportional contributions from
traffic to the particle size fractions. For the long-term measure-
ments of Beddows et al. (2015), only 4.5% of PM10 mass was
accounted for at NK by a distinct traffic factor, much lower than that
observed in the current work (Table 1). This may be due to higher
time resolution in the current work enabling better discrimination
of vehicle emissions from the urban background factor. Visser et al.
(2015a) observed that traffic-related factors were mainly in the
coarse mode, whereas in the current work the traffic sources were
found to be more evenly distributed across the size fractions
(Table 1). This difference may be due to the different species (e.g.
BC) and source apportionment techniques between the current
work and Visser et al. (2015a).
4. Conclusions

The trace elemental composition of the fine and coarse fractions
of airborne particles were analysed during summer 2012 at a high
time resolution at urban background and roadside sites within
central London to examine the contributing sources. Roadside
enrichment was observed for a large number of elements associ-
ated with traffic emissions (Al, S, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As,
Rb and Zr) while those elements that are typically from more
regional sources (e.g. Na, Cl, S and K) were not found to have an
appreciable increment. PMF was applied for the source appor-
tionment of the particle mass at both sites with similar sources
being identified, which included sea salt, airborne soil, traffic
emissions, secondary inorganic aerosols and an industrial (Zn-Pb)
source. In addition, a distinct construction dust source factor was
identified at MR, though the airborne soil source factor at NK had
evidence of possible influence from construction activities. Distinct
sources were also identified at NK and include urban background
and nitrate sources. Utilising high time resolution elemental data
was found to improve the source apportionment compared to
previous work in London (Beddows et al., 2015), notably for sources
that have a distinct temporal variation in their emissions, such as
traffic emissions and construction activities.

In the fine fraction, traffic emissions were the largest contrib-
uting source at MR whereas at NK it was an urban background
source, with combined contributions from both wood smoke and
vehicle emissions. In the coarse fraction the largest sources were
regional sources (nitrate and aged sea salt). Secondary inorganic
aerosol (which notably contained influences from shipping emis-
sions and coal combustion) accounted for around 33% of the PM10
at NK and was found to have the highest contributions from
regional sources, possibly from the European mainland. These re-
sults suggest that emissions from industrial plants and shipping
located to the east of London have a significant influence on the
PM10 particle composition in London. This is consistent with earlier
work (Charron et al., 2007), which demonstrated the importance of
both local and regional sources in contributing to exceedences of
the daily limit value for PM10 of 50 mg m�3.

Acknowledgements

The ClearfLo project was funded by the UK Natural Environment
Research Council (NE/H003142/1).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.envpol.2016.06.002.

References

Beddows, D.C.S., Harrison, R.M., Green, D.C., Fuller, G.W., 2015. Receptor modelling
of both particle composition and size distribution from a background site in
London, UK. Atmos. Chem. Phys. 15, 10107e10125.

Bernardoni, V., Vecchi, R., Valli, G., Piazzalunga, A., Fermo, P., 2011. PM10 source
apportionment in Milan (Italy) using time-resolved data. Sci. Total Environ. 409,
4788e4795.

Bigi, A., Harrison, R.M., 2010. Analysis of the air pollution climate at a central urban
background site. Atmos. Environ. 44, 2004e2012.

Bohnenstengel, S.I., Belcher, S.E., Aiken, A., Allan, J.D., Allen, G., Bacak, A.,
Bannan, T.J., Barlow, J.F., Beddows, D.C.S., Bloss, W.J., Booth, A.M., Chemel, C.,
Coceal, O., Di Marco, C.F., Dubey, M.K., Faloon, K.H., Fleming, Z.L., Furger, M.,
Gietl, J.K., Graves, R.R., Green, D.C., Grimmond, C.S.B., Halios, C.H., Hamilton, J.F.,
Harrison, R.M., Heal, M.R., Heard, D.E., Helfter, C., Herndon, S.C., Holmes, R.E.,
Hopkins, J.R., Jones, A.M., Kelly, F.J., Kotthaus, S., Langford, B., Lee, J.D., Leigh, R.J.,
Lewis, A.C., Lidster, R.T., Lopez-Hilfiker, F.D., McQuaid, J.B., Mohr, C., Monks, P.S.,
Nemitz, E., Ng, N.L., Percival, C.J., Pr�evôt, A.S.H., Ricketts, H.M.A., Sokhi, R.,
Stone, D., Thornton, J.A., Tremper, A.H., Valach, A.C., Visser, S., Whalley, L.K.,
Williams, L.R., Xu, L., Young, D.E., Zotter, P., 2015. Meteorology, air quality, and

http://dx.doi.org/10.1016/j.envpol.2016.06.002
http://dx.doi.org/10.1016/j.envpol.2016.06.002
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref1
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref1
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref1
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref1
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref2
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref2
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref2
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref2
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref3
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref3
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref3
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref4
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref4
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref4
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref4
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref4
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref4
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref4
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref4
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref4
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref4
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref4
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref4


L.R. Crilley et al. / Environmental Pollution 220 (2017) 766e778778
health in London: the ClearfLo project. Bull. Am. Meteorological Soc. 779e804.
Brook, R.D., Rajagopalan, S., Pope III, C.A., Brook, J.R., Bhatnagar, A., Diez-Roux, A.V.,

Holguin, F., Hong, Y., Luepker, R.V., Mittleman, M.A., Peters, A., Siscovick, D.,
Smith Jr., S.C., Whitsel, L., Kaufman, J.D., on behalf of the American Heart As-
sociation Council on Epidemiology and Prevention, Council on the Kidney in
Cardiovascular Disease, and Council on Nutrition, Physical Activity and Meta-
bolism, 2010. Particulate matter air pollution and cardiovascular disease: an
update to the scientific statement from the american heart association. Circu-
lation 121, 2331e2378.

Carslaw, D.C., 2013. The Openair ManualdOpen-source Tools for Analysing Air
Pollution Data. King’s College London.

Carslaw, D.C., Ropkins, K., 2012. Openairdan R package for air quality data analysis.
Environ. Model. Softw. 27e28, 52e61.

Charron, A., Degrendele, C., Laongsri, B., Harrison, R.M., 2013. Receptor modelling of
secondary and carbonaceous particulate matter at a southern UK site. Atmos.
Chem. Phys. 13, 1879e1894.

Charron, A., Harrison, R.M., Quincey, P., 2007. What are the sources and conditions
responsible for exceedences of the 24 h PM10 limit value (50 mg m-3) at a heavily
trafficked London Site? Atmos. Environ. 41, 1960e1975.

Chow, J.C., Watson, J.G., Lowenthal, D.H., Chen, L.W.A., Zielinska, B., Mazzoleni, L.R.,
Magliano, K.L., 2007. Evaluation of organic markers for chemical mass balance
source apportionment at the Fresno Supersite. Atmos. Chem. Phys. 7,
1741e1754.

Cohen, A.J., Ross Anderson, H., Ostro, B., Pandey, K.D., Krzyzanowski, M., Künzli, N.,
Gutschmidt, K., Pope, A., Romieu, I., Samet, J.M., Smith, K., 2005. The global
burden of disease due to outdoor air pollution. J. Toxicol. Environ. Health Part A
68, 1301e1307.

Crespo, J., Yubero, E., Nicol�as, J.F., Lucarelli, F., Nava, S., Chiari, M., Calzolai, G., 2012.
High-time resolution and size-segregated elemental composition in high-
intensity pyrotechnic exposures. J. Hazard. Mater. 241, 82e91.

Crilley, L.R., Bloss, W.J., Yin, J., Beddows, D.C.S., Harrison, R.M., Allan, J.D., Young, D.E.,
Flynn, M., Williams, P., Zotter, P., Prevot, A.S.H., Heal, M.R., Barlow, J.F.,
Halios, C.H., Lee, J.D., Szidat, S., Mohr, C., 2015. Sources and contributions of
wood smoke during winter in London: assessing local and regional influences.
Atmos. Chem. Phys. 15, 3149e3171.

D’Alessandro, A., Lucarelli, F., Mando, P., Marcazzan, G., Nava, S., Prati, P., Valli, G.,
Vecchi, R., Zucchiatti, A., 2003. Hourly elemental composition and sources
identification of fine and coarse PM10 particulate matter in four Italian towns.
J. Aerosol Sci. 34, 243e259.

Dall’Osto, M., Querol, X., Amato, F., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G.,
Chiari, M., 2013. Hourly elemental concentrations in PM2.5 aerosols sampled
simultaneously at urban background and road site during SAPUSS e diurnal
variations and PMF receptor modelling. Atmos. Chem. Phys. 13, 4375e4392.

Gao, J., Peng, X., Chen, G., Xu, J., Shi, G., Zhang, Y., Feng, Y., 2016. Insights into the
chemical characterization and sources of PM2.5 in Beijing at a 1-h time reso-
lution. Sci. Total Environ. 542, 162e171.

Handler, M., Puls, C., Zbiral, J., Marr, I., Puxbaum, H., Limbeck, A., 2008. Size and
composition of particulate emissions from motor vehicles in the Kaisermühlen-
Tunnel, Vienna. Atmos. Environ. 42, 2173e2186.

Harrison, R.M., Yin, J., Mark, D., Stedman, J., Appleby, R.S., Booker, J., Moorcroft, S.,
2001. Studies of the coarse particle (2.5e10mm) component in UK urban at-
mospheres. Atmos. Environ. 35, 3667e3679.

Harrison, R.M., Dall’Osto, M., Beddows, D.C.S., Thorpe, A.J., Bloss, W.J., Allan, J.D.,
Coe, H., Dorsey, J.R., Gallagher, M., Martin, C., Whitehead, J., Williams, P.I.,
Jones, R.L., Langridge, J.M., Benton, A.K., Ball, S.M., Langford, B., Hewitt, C.N.,
Davison, B., Martin, D., Petersson, K., Henshaw, S.J., White, I.R., Shallcross, D.E.,
Barlow, J.F., Dunbar, T., Davies, F., Nemitz, E., Phillips, G.J., Helfter, C., Di
Marco, C.F., Smith, S., 2012a. Atmospheric chemistry and physics in the atmo-
sphere of a developed megacity (London): an overview of the REPARTEE
experiment and its conclusions. Atmos. Phys. Chem. 12, 3065e3114.

Harrison, R.M., Beddows, D.C.S., Hu, L., Yin, J., 2012b. Comparison of methods for
evaluation of wood smoke and estimation of UK ambient concentrations.
Atmos. Chem. Phys. 12, 8271e8283.

Heal, M.R., Kumar, P., Harrison, R.M., 2012. Particles, air quality, policy and health.
Chem. Soc. Rev. 41, 6606e6630.

Kampa, M., Castanas, E., 2008. Human health effects of air pollution. Environ. Pollut.
151, 362e367.

Li, W.J., Shao, L.Y., 2009. Observation of nitrate coatings on atmospheric mineral
dust particles. Atmos. Chem. Phys. 9, 1863e1871.

Lucarelli, F., Calzolai, G., Chiari, M., Giannoni, M., Mochi, D., Nava, S., Carraresi, L.,
2014. The upgraded external-beam PIXE/PIGE set-up at LABEC for very fast
measurements on aerosol samples. Nucl. Instrum. Methods Phys. Res. Sect. B
Beam Interact. Mater. Atoms 318, 55e59.

Maxwell, J., Teesdale, W., Campbell, J., 1995. The Guelph PIXE software package II.
Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 95,
407e421.

Minguill�on, M.C., Querol, X., Baltensperger, U., Pr�evôt, A.S.H., 2012. Fine and coarse
PM composition and sources in rural and urban sites in Switzerland: local or
regional pollution? Sci. Total Environ. 427e428, 191e202.

Moreno, T., Karanasiou, A., Amato, F., Lucarelli, F., Nava, S., Calzolai, G., Chiari, M.,
Coz, E., Artí~nano, B., Lumbreras, J., Borge, R., Boldo, E., Linares, C., Alastuey, A.,
Querol, X., Gibbons, W., 2013. Daily and hourly sourcing of metallic and mineral
dust in urban air contaminated by traffic and coal-burning emissions. Atmos.
Environ. 68, 33e44.
Moreno, T., Querol, X., Alastuey, A., Reche, C., Cusack, M., Amato, F., Pandolfi, M.,
Pey, J., Richard, A., Pr�evôt, A.S.H., Furger, M., Gibbons, W., 2011. Variations in
time and space of trace metal aerosol concentrations in urban areas and their
surroundings. Atmos. Chem. Phys. 11, 9415e9430.

Moreno, T., Querol, X., Alastuey, A., de la Rosa, J., S�anchez de la Campa, A.M.,
Minguill�on, M., Pandolfi, M., Gonz�alez-Castanedo, Y., Monfort, E., Gibbons, W.,
2010. Variations in vanadium, nickel and lanthanide element concentrations in
urban air. Sci. Total Environ. 408, 4569e4579.

Ning, Z., Polidori, A., Schauer, J.J., Sioutas, C., 2008. Emission factors of PM species
based on freeway measurements and comparison with tunnel and dynamom-
eter studies. Atmos. Environ. 42, 3099e3114.

Paatero, P., Tapper, U., 1994. Positive matrix factorization: a non-negative factor
model with optimal utilization of error estimates of data values. Environmetrics
5, 111e126.

Paatero, P., 2000. User’s Guide for Positive Matrix Factorization Programs PMF2 and
PMF3 Part 2. Reference. prepared by University of Helsinki, Helsinki, Finland.

Paatero, P., Hopke, P.K., Song, X., Ramadan, Z., 2002. Understanding and controlling
rotations in factor analytic models. Chemom. Intell. Lab. Syst. 60, 253e264.

Paatero, P., Hopke, P.K., 2003. Discarding or downweighting high-noise variables in
factor analytic models. Anal. Chim. Acta 490, 277e289.

Pant, P., Harrison, R.M., 2013. Estimation of the contribution of road traffic emis-
sions to particulate matter concentrations from field measurements: a review.
Atmos. Environ. 77, 78e97.

Pant, P., Yin, J., Harrison, R.M., 2014. Sensitivity of a chemical mass balance model to
different molecular marker traffic source profiles. Atmos. Environ. 82, 238e249.

Polissar, A.V., Hopke, P.K., Paatero, P., Malm, W.C., Sisler, J.F., 1998. Atmospheric
aerosol over Alaska: 2. Elemental composition and sources. J. Geophys. Res.
Atmos. 103, 19045e19057.

Pope, I.C., Burnett, R.T., Thun, M.J., et al., 2002. LUng cancer, cardiopulmonary
mortality, and long-term exposure to fine particulate air pollution. JAMA 287,
1132e1141.

Querol, X., Alastuey, A., Ruiz, C.R., Arti~nano, B., Hansson, H.C., Harrison, R.M.,
Buringh, E., ten Brink, H.M., Lutz, M., Bruckmann, P., Straehl, P., Schneider, J.,
2004. Speciation and origin of PM10 and PM2.5 in selected European cities.
Atmos. Environ. 38, 6547e6555.

Richard, A., Gianini, M.F.D., Mohr, C., Furger, M., Bukowiecki, N., Minguill�on, M.C.,
Lienemann, P., Flechsig, U., Appel, K., DeCarlo, P.F., Heringa, M.F., Chirico, R.,
Baltensperger, U., Pr�evôt, A.S.H., 2011. Source apportionment of size and time
resolved trace elements and organic aerosols from an urban courtyard site in
Switzerland. Atmos. Chem. Phys. 11, 8945e8963.

Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics. Wiley.
Singh, H.B., 1995. Composition, Chemistry and Climate of the Atmosphere. Van

Nostrand Reinhold, New York.
Taylor, S.R., 1964. Abundance of chemical elements in the continental crust: a new

table. Geochim. Cosmochim. Acta 28, 1273e1285.
Thorpe, A., Harrison, R.M., 2008. Sources and properties of non-exhaust particulate

matter from road traffic: a review. Sci. Total Environ. 400, 270e282.
Usher, C.R., Michel, A.E., Grassian, V.H., 2003. Reactions on mineral dust. Chem. Rev.

103, 4883e4940.
Vecchi, R., Bernardoni, V., Fermo, P., Lucarelli, F., Mazzei, F., Nava, S., Prati, P.,

Piazzalunga, A., Valli, G., 2009. 4-hours resolution data to study PM10 in a “hot
spot” area in Europe. Environ. Monit. Assess. 154, 283e300.

Viana, M., Kuhlbusch, T.A.J., Querol, X., Alastuey, A., Harrison, R.M., Hopke, P.K.,
Winiwarter, W., Vallius, M., Szidat, S., Pr�evôt, A.S.H., Hueglin, C., Bloemen, H.,
Wåhlin, P., Vecchi, R., Miranda, A.I., Kasper-Giebl, A., Maenhaut, W.,
Hitzenberger, R., 2008. Source apportionment of particulate matter in Europe: a
review of methods and results. J. Aerosol Sci. 39, 827e849.

Visser, S., Slowik, J.G., Furger, M., Zotter, P., Bukowiecki, N., Canonaco, F., Flechsig, U.,
Appel, K., Green, D.C., Tremper, A.H., Young, D.E., Williams, P.I., Allan, J.D.,
Coe, H., Williams, L.R., Mohr, C., Xu, L., Ng, N.L., Nemitz, E., Barlow, J.F.,
Halios, C.H., Fleming, Z.L., Baltensperger, U., Pr�evôt, A.S.H., 2015a. Advanced
source apportionment of size-resolved trace elements at multiple sites in
London during winter. Atmos. Chem. Phys. Discuss. 15, 14733e14781.

Visser, S., Slowik, J.G., Furger, M., Zotter, P., Bukowiecki, N., Dressler, R., Flechsig, U.,
Appel, K., Green, D.C., Tremper, A.H., Young, D.E., Williams, P.I., Allan, J.D.,
Herndon, S.C., Williams, L.R., Mohr, C., Xu, L., Ng, N.L., Detournay, A., Barlow, J.F.,
Halios, C.H., Fleming, Z.L., Baltensperger, U., Pr�evôt, A.S.H., 2015b. Kerb and
urban increment of highly time-resolved trace elements in PM10, PM2.5 and
PM1.0 winter aerosol in London during ClearfLo 2012. Atmos. Chem. Phys. 15,
2367e2386.

Widory, D., Liu, X., Dong, S., 2010. Isotopes as tracers of sources of lead and
strontium in aerosols (TSP & PM2.5) in Beijing. Atmos. Environ. 44, 3679e3687.

Yin, J., Cumberland, S.A., Harrison, R.M., Allan, J., Young, D.E., Williams, P.I., Coe, H.,
2015. Receptor modelling of fine particles in southern England using CMB
including comparison with AMS-PMF factors. Atmos. Chem. Phys. 15,
2139e2158.

Young, D.E., Allan, J.D., Williams, P.I., Green, D.C., Flynn, M.J., Harrison, R.M., Yin, J.,
Gallagher, M.W., Coe, H., 2015a. Investigating the annual behaviour of submi-
cron secondary inorganic and organic aerosols in London. Atmos. Chem. Phys.
15, 6351e6366.

Young, D.E., Allan, J.D., Williams, P.I., Green, D.C., Harrison, R.M., Yin, J., Flynn, M.J.,
Gallagher, M.W., Coe, H., 2015b. Investigating a two-component model of solid
fuel organic aerosol in London: processes, PM1 contributions, and seasonality.
Atmos. Chem. Phys. 15, 2429e2443.

http://refhub.elsevier.com/S0269-7491(16)30483-3/sref4
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref4
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref5
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref5
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref5
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref5
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref5
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref5
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref5
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref5
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref5
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref6
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref6
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref6
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref7
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref7
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref7
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref7
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref7
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref8
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref8
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref8
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref8
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref9
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref9
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref9
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref9
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref9
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref9
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref10
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref10
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref10
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref10
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref10
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref11
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref11
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref11
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref11
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref11
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref12
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref12
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref12
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref12
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref12
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref13
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref13
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref13
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref13
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref13
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref13
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref14
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref14
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref14
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref14
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref14
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref15
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref15
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref15
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref15
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref15
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref15
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref16
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref16
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref16
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref16
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref17
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref17
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref17
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref17
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref18
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref18
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref18
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref18
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref18
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref19
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref19
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref19
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref19
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref19
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref19
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref19
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref19
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref19
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref20
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref20
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref20
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref20
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref21
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref21
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref21
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref22
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref22
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref22
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref23
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref23
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref23
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref24
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref24
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref24
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref24
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref24
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref25
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref25
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref25
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref25
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref26
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref26
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref26
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref26
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref26
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref26
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref26
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref26
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref27
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref27
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref27
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref27
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref27
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref27
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref27
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref28
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref28
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref28
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref28
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref28
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref28
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref28
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref29
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref29
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref29
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref29
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref29
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref29
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref29
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref29
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref30
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref30
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref30
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref30
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref31
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref31
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref31
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref31
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref32
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref32
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref33
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref33
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref33
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref34
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref34
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref34
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref35
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref35
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref35
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref35
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref36
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref36
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref36
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref37
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref37
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref37
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref37
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref38
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref38
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref38
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref38
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref39
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref39
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref39
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref39
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref39
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref39
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref40
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref40
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref40
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref40
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref40
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref40
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref40
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref40
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref40
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref41
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref42
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref42
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref43
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref43
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref43
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref44
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref44
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref44
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref45
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref45
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref45
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref46
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref46
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref46
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref46
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref47
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref47
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref47
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref47
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref47
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref47
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref47
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref47
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref48
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref48
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref48
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref48
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref48
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref48
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref48
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref48
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref48
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref49
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref49
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref49
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref49
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref49
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref49
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref49
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref49
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref49
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref49
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref50
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref50
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref50
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref50
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref51
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref51
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref51
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref51
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref51
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref52
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref52
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref52
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref52
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref52
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref53
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref53
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref53
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref53
http://refhub.elsevier.com/S0269-7491(16)30483-3/sref53

	Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer  ...
	1. Introduction
	2. Method
	2.1. Sampling sites
	2.2. Sampling methodology and instrumentation
	2.3. Data analysis
	2.3.1. PMF analysis


	3. Results and discussion
	3.1. Average concentration at MR and NK sites
	3.2. Source apportionment by PMF
	3.2.1. Sea salt/marine sources
	3.2.2. Airborne soil and construction dust
	3.2.3. Traffic emissions
	3.2.4. Secondary inorganic aerosol
	3.2.5. Zn-Pb factor

	3.3. Comparison to previous source apportionment in London

	4. Conclusions
	Acknowledgements
	Appendix A. Supplementary data
	References


