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Abstract

Under the hypothesis that NP has positive p-dimension, we prove that any approximation
algorithm .7 for MAX3SAT must satisfy at least one of the following:

1. For some 6 > 0, .o/ uses at least 2”(S time.

2. For all ¢ > 0, o/ has performance ratio less than % + & on an exponentially dense set of

satisfiable instances.

As a corollary, this solves one of Lutz and Mayordomo’s “Twelve problems on resource-bounded
measure” (Bull. European Assoc. Theoret. Comput. Sci. 68 (1999) 64-80). (© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

MAX3SAT is a well-studied optimization problem. Tight bounds on its polynomial-
time approximability are known:
(1) There exists a polynomial-time %-approximation algorithm [5, 3].!
(2) If P#£NP, then for all £>0, there does not exist a polynomial-time (% + €)-
approximation algorithm [4].
Recently, there has been some investigation of approximating MAX3SAT in exponen-
tial time. For example, for any ¢ € (0, %], Dantsin et al. [2] give a (% + ¢)-approximation

* This research was supported in part by National Science Foundation Grant 9988483.

E-mail address: jhitchco@cs.iastate.edu (John M. Hitchcock).

! An algorithm with conjectured performance ratio % was given in Ref. [5], and this conjecture has since
been proved according to Ref. [3].
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algorithm for MAX3SAT running in time 2% where k is the number of clauses in a
formula.

Given these results, it is natural to ask for stronger lower bounds on computation
time for MAX3SAT approximation algorithms that have performance ratio greater than
%. Such lower bounds are not known to follow from the hypothesis P NP. In this
note we address this question using a stronger hypothesis involving resource-bounded
dimension.

About a decade ago, Lutz [6] presented resource-bounded measure as an analogue
for classical Lebesgue measure in complexity theory. Resource-bounded measure pro-
vides strong, reasonable hypotheses which seem to have more explanatory power than
weaker, traditional complexity-theoretic hypotheses. The hypothesis that NP does not
have p-measure 0, p,(NP)#0, implies P# NP and is known to have many plausible
consequences that are not known to follow from P # NP.

Resource-bounded dimension was recently introduced by Lutz [7] as an analogue
of classical Hausdorff dimension for complexity theory. Resource-bounded dimension
refines resource-bounded measure by providing a spectrum of weaker, but still strong,
hypotheses. We will use the hypothesis that NP has positive p-dimension, dimp(NP)>0.
This hypothesis is implied by p,(NP)# 0 and implies P # NP.

Under the hypothesis dim,(NP)>0, we give an exponential-time lower bound for
approximating MAX3SAT beyond the known polynomial-time achievable ratio of % on
all but a subexponentially-dense set of satisfiable instances. Put another way, we prove:

If dim,(NP) >0, then any approximation algorithm .o/ for MAX3SAT must satisfy

at least one of the following: _

(1) For some 3>0, .o/ uses at least 2" time.
(2) For all >0, .o/ has performance ratio less than % + ¢ on an exponentially dense
set of satisfiable instances.

Lutz and Mayordomo asked whether the hypothesis 1,(NP) # 0 implies an exponen-
tial-time lower bound on approximation schemes for MAXSAT [8]. Our main theorem
gives a strong affirmative answer to this question: we obtain a stronger conclusion from
the weaker dimy(NP)>0 hypothesis. In fact, after we present the theorem, we give
an easy proposition that achieves an exponential-time lower bound from a hypothesis
even weaker than dim,(NP)>0.

In Section 2 we give our notation and basic definitions. Resource-bounded measure
and dimension are briefly reviewed in Section 3. Section 4 contains a dimension result
used in proving our main theorem. The main theorem is proved in Section 5. Section 6
concludes by summarizing the inapproximability results for MAX3SAT under strong
hypotheses.

2. Preliminaries

The set of all finite binary strings is {0,1}*. We use the standard enumeration of
binary strings so =4, s1 =0, s, =1, s3=00,... . The length of a string x € {0,1}* is
denoted by |x|.
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All languages (decision problems) in this paper are encoded as subsets of {0,1}*.
For a language 4 C {0,1}*, we define A<, ={x € 4| |x|<n}. We write 4[0..n — 1] for
the n-bit prefix of the characteristic sequence of 4 according to the standard enumera-
tion of strings.

We say that a language A is (exponentially) dense if there is an «>0 such that
|4<,|>2" holds for all but finitely many n. We write DENSE for the class of all
dense languages.

For any classes 4 and & of languages we define the classes

tw2={AUB|A€¥,Bc I}
and
P(%) = {4 C {0,1}"| (3B € 6)4 <P, B}.

A real-valued function f:{0,1}* — [0,00) is polynomial-time computable if there ex-
ists a polynomial-time computable function g: N x {0,1}* — [0,00)NQ such that

| f(x) = g(n,x)| < 27"

for all x€{0,1}* and ne N where n is represented in unary.

For an instance x of 3SAT we write MAX3SAT(x) for the maximum fraction of
clauses of x that can be satisfied by a single assignment.

An approximation algorithm o/ for MAX3SAT outputs an assignment of the vari-
ables for each instance of 3SAT. For each instance x we write .«/(x) for the fraction
of clauses satisfied by the assignment produced by .o for x.

An approximation algorithm .o/ has performance ratio o on x if .o/(x) > o-MAX3SAT
(x). If o7 has performance ratio a on all instances, then .o/ is an o-approximation
algorithm.

Hastad proved the following in order to show that satisfiable instances of 3SAT
cannot be distinguished from instances x with MAX3SAT(x)<% + ¢ in polynomial-
time unless P=NP.

Theorem 2.1 (Hastad [4]). For each ¢>0, there exists a polynomial-time computable
function f, such that for all x € {0,1}*,

x € SAT = MAX3SAT(f,(x)) = 1

x & SAT = MAX3SAT(f:(x)) <  +&.

We will use the functions f; from Theorem 2.1 later in the paper.

3. Resource-bounded measure and dimension

In this section we review enough resource-bounded measure and dimension to present
our result. Full details of these theories are available in Lutz’s introductory papers [6, 7].
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Definition 3.1. Let 5 €[0,00).
(1) A function d:{0,1}* —[0,00) is an s-gale if for all we {0,1}*,

d(w0) +d(wl)

d(w) = >

(2) A martingale is a 1-gale.

Intuitively, a gale is viewed as a function betting on an unknown binary sequence.
If w is a prefix of the sequence, then the capital of the gale after placing its first |w]|
bets is given by d(w). Assuming that w is a prefix of the sequence, the gale places
bets on w0 and wl also being prefixes. The parameter s determines the fairness of the
betting; as s decreases the betting is less fair. The goal of a gale is to bet successfully
on languages.

Definition 3.2. Let s €[0,00) and let d be an s-gale.
(1) We say d succeeds on a language A if

lim sup d(A[0..n — 1]) = oo.

n—oo

(2) The success set of d is
S[d] ={4 C{0,1}* | d succeeds on A}.

Measure and dimension are defined in terms of succeeding martingales and gales,
respectively.

Definition 3.3. Let % be a class of languages.

(1) % has p-measure 0, written u,(%) =0, if there exists a polynomial-time martingale
d with € C S*°[d].

(2) The p-dimension of % is

dimy(%) = inf {s

there exists a polynomial-time
s-gale d for which € C S*°[d] |~

For any class €, dim,(%) € [0, 1]. We are interested in hypotheses on the p-dimension
and p-measure of NP. The following implications are easy to verify.

Up(NP) # 0 = dim,(NP) =1
= dim,(NP) > 0
= P # NP.

The following simple lemma will be useful in proving our main result.
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Lemma 3.4. Let € be a class of languages and ¢ € N.
(1) If up(%)=0, then p,(¢ ¥ DTIME(2"))=0.
(2) dimy(% ¥ DTIME(2")) = dimp(%).

Proof. Let s<[0,1] be rational and assume that there is a polynomial-time s-gale
d succeeding on %. It suffices to give a polynomial-time s-gale succeeding on % &
DTIME(2"). By the Exact Computing Lemma of [7], we may assume that d is exactly
computable in polynomial-time. Let My, Mj,... be a standard enumeration of all Turing
machines running in time 2. Define for each i€ N and w € {0, 1}*,

2°d(w) if M; accepts s),,|,

di(wl) = { GeDdi(w) if d(w) #0,
0 otherwise,

d(w0) = 2°d;(w) — d;(wl).

Let d’ = >"°,27'd;. Then d’ is a polynomial-time computable s-gale. Let 4 € ¢ and
B=L(M;) € DTIME(2¢"). Then for all n€ N, d;((AUB)[0..n — 1])=2"'d(A[0..n — 1]).
Because 4 € S°[d], AUB€e S>®[d;]CS>[d']. O

4. Dimension of P,(DENSE®)

Lutz and Mayordomo [9] proved that a superclass of P,(DENSE®) has p-measure
0, so up(Pn(DENSE?))=0. In this section we prove the stronger result that
dim, (P (DENSE®)) =0.

We use the binary entropy function 5 :[0,1]— [0, 1] defined by

{ —xlogx — (1 —x)log(l —x) if x €(0,1),

A = if x € {0,1}.

Lemma 4.1. For all ne N and 0<k<n,

n n" A H(k/n)n
< — =
(k) = kk(n — k)b 2 ’

Lemma 4.1 appears as an exercise in [1]. The following lemma is also easy to verify.

Lemma 4.2. For all ¢€(0,1),
A2 2" = 0(27).

We now show that only a p-dimension 0 set of languages are <h-reducible to non-
dense languages.

Theorem 4.3.

dim, (P, (DENSE®)) = 0.
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Proof. Let s>0 be rational. It suffices to show that dim,(P,(DENSE®))<s.
Let {(fm,&mn)}men be a standard enumeration of all pairs of polynomial-time com-
putable functions f,:{0,1}* — {0,1}* and rationals &, € (0,1). Define

(Vi,j = 22)( fou(si) = fuls)) = uli] = u[/])}

Am,n =Jquc {0, 1}2n+1_] ) -
and |{fu(s;)|7 = 2"* and u[i] = 1}| < 2"

For each string u with 2”2 < |u| < 2""' — 1, define the integers

collision,,,(u) = [{(i,/)[2"* <i<j<l|ul, fu(si)= fuls;), and uli] # ulj1}],
committed,, () = {fn(s)|2"? < i < |u| and u[i] = 1}|

and
free, (1) = {fu(so)l lul < i < 2" =1} = {fu(s0)2"? < i < |ul}.
Then for each u with |u| > 2"/? there are

& .
2" ~committed,, , ()

<freemi,n(u)> if collision,,(u) = 0,

0 otherwise,

count,, ,(u) = -0

strings v for which uv € 4,, .
Define for each m,n€ N a function d,, ,:{0,1}* —[0,00) by

22Dl if [u <22
count,, ,(u) s\u|72”/2 : n/2 nt+l
dm,n(u) = count,,,,,,(u[O..Z”/z—1])2 if 2 < |u‘ <2 1

2<S*1)(lul*2”“+1>d(u[0..2”“ —2]) otherwise.

Then each d,,, is a well-defined s-gale because count,, ,(u)=count,, ,(u0) +
count,, ,(u1) for all u. Define a polynomial-time computable s-gale

d=>2"">27"dy,.
m=0 n=0

Let A <? D € DENSE® by a reduction f running in time n’. Let ¢ be a positive rational

such that for infinitely many n, |D /| <2". Let m € N be such that f,, = f and ¢, =e.

Using Lemmas 4.1 and 4.2, for each u € {0, 1}2"/2, we have

. ( | £({0,1357)] )

count,, ,(u) < >
i=0 l

2l
ceen(y)

<@+ e
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im
<2

< 252"72"’272;1
~

for all sufficiently large n. Whenever |D_,/|<2", we have 4[0.2""! —2] € 4,,, ,. There-
fore for infinitely many n,

d(A[0.2"1 = 21) = 2=(mtmg, (4[0.2"! —2])

)count,,,,n(A[O..Z”+1 = 2]) s

_ 27(m+n
count,, ,(A4[0..2%/2 — 17)

o 2n/2

2S(2n+l -1 )_2n’2

> y—(m+n)
>2 0521 —2"2—2n

> on—m

Therefore 4 € S*°[d]. This shows that P,,(DENSE®)C S*°[d], from which it follows
that dim,(P,(DENSE))=0. [

5. Main theorem

Theorem 5.1. If dimy(NP)>0, then for all ¢>0 there exists a 6>0 such that any

2" -time approximation algorithm for MAX3SAT has performance ratio less than
% + ¢ on a dense set of satisfiable instances.

Proof. We prove the contrapositive. Let ¢>0 be rational. For any MAX3SAT approx-
imation algorithm .o7, define the set

F={x € 3SAT | (x) < %4—6}.

Assume that for each d>0, there exists a 2" -time approximation algorithm .75 for
MAX3SAT with F,, € DENSE®. By Theorem 4.3 and Lemma 3.4, it is sufficient to
show that NP C P,,(DENSE®) W DTIME(2").

Let BENP and let » be a <P -reduction of B to SAT. Let n* be an almost-
everywhere time bound for computing f, or where f, is as in Theorem 2.1. Then

x € B&r(x) € SAT
< MAX3SAT((for)(x)) =1

S S 1((fior)(x) = g +eor (f0r)(x) € Fyy,.

Define the languages

C={x|(feor)x) €Fy,,} and D= {x|/iu((fs0r)(x)) > g +e}.
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Then B=CUD, C <k F,,, € DENSEC, and D can be decided in time 2¢")" =2 for
all sufficiently large n, so B € P,(DENSE®) & DTIME(2"). [

Theorem 5.1 provides a strong positive answer to Problem 8 of Lutz and
Mayordomo [8]:

Does up,(NP)#0 imply an exponential lower bound on approximation schemes

for MAXSAT?
We observe that a weaker positive answer can be more easily obtained by using a
simplified version of our argument to prove the following result.

Proposition 5.2. If
NP ¢ () DTIME(2"),

>0

then for all €>0 there exists a 6 >0 such that there does not exist a 27" -time (% +¢)-
approximation algorithm for MAX3SAT.

6. Conclusion

We close by summarizing the inapproximability results for MAX3SAT derivable
from various strong hypotheses in the following figure:

Hp(NP) # 0
]

There exists a 6>0 such that any 2" -time
dim,(NP)>0 _. | approximation algorithm for MAX3SAT
has performance ratio less than % + & on
a dense set of satisfiable instances.

4 ¢

] There exists a 6>0 such that no 2"-
NP & (,.(DTIMEQ2" ) |=| time (% + ¢&)-approximation algorithm for
MAX3SAT exists.

¢ Y

No polynomial-time (% + ¢)-approximation
algorithm for MAX3SAT exists.

P #NP =
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