

Theoretical Computer Science 289 (2002) 861-869

Theoretical Computer Science

www.elsevier.com/locate/tcs

Note

MAX3SAT is exponentially hard to approximate if NP has positive dimension $\stackrel{\leftrightarrow}{\asymp}$

John M. Hitchcock

Department of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, IA 50011-1040, USA

Received May 2001; received in revised form July 2001; accepted July 2001 Communicated by J. Díaz

Abstract

Under the hypothesis that NP has positive p-dimension, we prove that any approximation algorithm \mathscr{A} for MAX3SAT must satisfy at least one of the following:

- 1. For some $\delta > 0$, \mathscr{A} uses at least $2^{n^{\delta}}$ time.
- 2. For all $\varepsilon > 0$, \mathscr{A} has performance ratio less than $\frac{7}{8} + \varepsilon$ on an exponentially dense set of satisfiable instances.

As a corollary, this solves one of Lutz and Mayordomo's "Twelve problems on resource-bounded measure" (Bull. European Assoc. Theoret. Comput. Sci. 68 (1999) 64–80). © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Resource-bounded measure; Resource-bounded dimension; Inapproximability; MAX3SAT

1. Introduction

MAX3SAT is a well-studied optimization problem. Tight bounds on its polynomialtime approximability are known:

- (1) There exists a polynomial-time $\frac{7}{8}$ -approximation algorithm [5, 3].¹
- (2) If $P \neq NP$, then for all $\varepsilon > 0$, there does not exist a polynomial-time $(\frac{7}{8} + \varepsilon)$ -approximation algorithm [4].

Recently, there has been some investigation of approximating MAX3SAT in exponential time. For example, for any $\varepsilon \in (0, \frac{1}{8}]$, Dantsin et al. [2] give a $(\frac{7}{8} + \varepsilon)$ -approximation

 $^{^{}m tr}$ This research was supported in part by National Science Foundation Grant 9988483.

E-mail address: jhitchco@cs.iastate.edu (John M. Hitchcock).

¹ An algorithm with conjectured performance ratio $\frac{7}{8}$ was given in Ref. [5], and this conjecture has since been proved according to Ref. [3].

algorithm for MAX3SAT running in time $2^{8\varepsilon k}$ where k is the number of clauses in a formula.

Given these results, it is natural to ask for stronger lower bounds on computation time for MAX3SAT approximation algorithms that have performance ratio greater than $\frac{7}{8}$. Such lower bounds are not known to follow from the hypothesis $P \neq NP$. In this note we address this question using a stronger hypothesis involving resource-bounded dimension.

About a decade ago, Lutz [6] presented resource-bounded measure as an analogue for classical Lebesgue measure in complexity theory. Resource-bounded measure provides strong, reasonable hypotheses which seem to have more explanatory power than weaker, traditional complexity-theoretic hypotheses. The hypothesis that NP does not have p-measure 0, $\mu_p(NP) \neq 0$, implies $P \neq NP$ and is known to have many plausible consequences that are not known to follow from $P \neq NP$.

Resource-bounded dimension was recently introduced by Lutz [7] as an analogue of classical Hausdorff dimension for complexity theory. Resource-bounded dimension refines resource-bounded measure by providing a spectrum of weaker, but still strong, hypotheses. We will use the hypothesis that NP has positive p-dimension, dim_p(NP)>0. This hypothesis is implied by $\mu_p(NP) \neq 0$ and implies $P \neq NP$.

Under the hypothesis dim_p(NP)>0, we give an exponential-time lower bound for approximating MAX3SAT beyond the known polynomial-time achievable ratio of $\frac{7}{8}$ on all but a subexponentially-dense set of satisfiable instances. Put another way, we prove:

- If $\dim_p(NP) > 0$, then any approximation algorithm \mathscr{A} for MAX3SAT must satisfy at least one of the following:
- (1) For some $\delta > 0$, \mathscr{A} uses at least $2^{n^{\delta}}$ time.
- (2) For all $\varepsilon > 0$, \mathscr{A} has performance ratio less than $\frac{7}{8} + \varepsilon$ on an exponentially dense set of satisfiable instances.

Lutz and Mayordomo asked whether the hypothesis $\mu_p(NP) \neq 0$ implies an exponential-time lower bound on approximation schemes for MAXSAT [8]. Our main theorem gives a strong affirmative answer to this question: we obtain a stronger conclusion from the weaker dim_p(NP)>0 hypothesis. In fact, after we present the theorem, we give an easy proposition that achieves an exponential-time lower bound from a hypothesis even weaker than dim_p(NP)>0.

In Section 2 we give our notation and basic definitions. Resource-bounded measure and dimension are briefly reviewed in Section 3. Section 4 contains a dimension result used in proving our main theorem. The main theorem is proved in Section 5. Section 6 concludes by summarizing the inapproximability results for MAX3SAT under strong hypotheses.

2. Preliminaries

The set of all finite binary strings is $\{0,1\}^*$. We use the standard enumeration of binary strings $s_0 = \lambda$, $s_1 = 0$, $s_2 = 1$, $s_3 = 00, \ldots$. The length of a string $x \in \{0,1\}^*$ is denoted by |x|.

862

All *languages* (decision problems) in this paper are encoded as subsets of $\{0, 1\}^*$. For a language $A \subseteq \{0, 1\}^*$, we define $A_{\leq n} = \{x \in A \mid |x| \leq n\}$. We write A[0..n-1] for the *n*-bit prefix of the characteristic sequence of A according to the standard enumeration of strings.

We say that a language A is (exponentially) dense if there is an $\alpha > 0$ such that $|A_{\leq n}| > 2^{n^{\alpha}}$ holds for all but finitely many n. We write DENSE for the class of all dense languages.

For any classes \mathscr{C} and \mathscr{D} of languages we define the classes

$$\mathscr{C} \uplus \mathscr{D} = \{ A \cup B \, | \, A \in \mathscr{C}, B \in \mathscr{D} \}$$

and

$$\mathbf{P}_{\mathrm{m}}(\mathscr{C}) = \{ A \subseteq \{0,1\}^* \, | \, (\exists B \in \mathscr{C})A \leqslant_{\mathrm{m}}^{\mathrm{p}} B \}.$$

A real-valued function $f: \{0, 1\}^* \to [0, \infty)$ is polynomial-time computable if there exists a polynomial-time computable function $g: \mathbb{N} \times \{0, 1\}^* \to [0, \infty) \cap \mathbb{Q}$ such that

 $|f(x) - g(n,x)| \leq 2^{-n}$

for all $x \in \{0, 1\}^*$ and $n \in \mathbb{N}$ where *n* is represented in unary.

For an instance x of 3SAT we write MAX3SAT(x) for the maximum fraction of clauses of x that can be satisfied by a single assignment.

An *approximation algorithm* \mathscr{A} for MAX3SAT outputs an assignment of the variables for each instance of 3SAT. For each instance x we write $\mathscr{A}(x)$ for the fraction of clauses satisfied by the assignment produced by \mathscr{A} for x.

An approximation algorithm \mathscr{A} has *performance ratio* α on x if $\mathscr{A}(x) \ge \alpha \cdot MAX3SAT$ (x). If \mathscr{A} has performance ratio α on all instances, then \mathscr{A} is an α -approximation algorithm.

Håstad proved the following in order to show that satisfiable instances of 3SAT cannot be distinguished from instances x with MAX3SAT(x) $< \frac{7}{8} + \varepsilon$ in polynomial-time unless P = NP.

Theorem 2.1 (Håstad [4]). For each $\varepsilon > 0$, there exists a polynomial-time computable function f_{ε} such that for all $x \in \{0, 1\}^*$,

 $x \in SAT \Rightarrow MAX3SAT(f_{\varepsilon}(x)) = 1$

$$x \notin \text{SAT} \Rightarrow \text{MAX3SAT}(f_{\varepsilon}(x)) < \frac{1}{8} + \varepsilon.$$

We will use the functions f_{ε} from Theorem 2.1 later in the paper.

3. Resource-bounded measure and dimension

In this section we review enough resource-bounded measure and dimension to present our result. Full details of these theories are available in Lutz's introductory papers [6, 7]. **Definition 3.1.** Let $s \in [0, \infty)$. (1) A function $d: \{0, 1\}^* \to [0, \infty)$ is an *s*-gale if for all $w \in \{0, 1\}^*$,

$$d(w) = \frac{d(w0) + d(w1)}{2^s}.$$

(2) A martingale is a 1-gale.

Intuitively, a gale is viewed as a function betting on an unknown binary sequence. If w is a prefix of the sequence, then the capital of the gale after placing its first |w| bets is given by d(w). Assuming that w is a prefix of the sequence, the gale places bets on w0 and w1 also being prefixes. The parameter s determines the fairness of the betting; as s decreases the betting is less fair. The goal of a gale is to bet successfully on languages.

Definition 3.2. Let $s \in [0, \infty)$ and let d be an s-gale. (1) We say d succeeds on a language A if

$$\limsup_{n\to\infty} d(A[0..n-1]) = \infty.$$

(2) The success set of d is

 $S^{\infty}[d] = \{A \subseteq \{0,1\}^* | d \text{ succeeds on } A\}.$

Measure and dimension are defined in terms of succeeding martingales and gales, respectively.

Definition 3.3. Let \mathscr{C} be a class of languages.

- (1) *C* has p-measure 0, written μ_p(*C*) = 0, if there exists a polynomial-time martingale d with *C* ⊆ S[∞][d].
- (2) The p-dimension of \mathscr{C} is

$$\dim_{p}(\mathscr{C}) = \inf \left\{ s \middle| \begin{array}{c} \text{there exists a polynomial-time} \\ s\text{-gale } d \text{ for which } \mathscr{C} \subseteq S^{\infty}[d] \end{array} \right\}.$$

For any class \mathscr{C} , dim_p(\mathscr{C}) \in [0, 1]. We are interested in hypotheses on the p-dimension and p-measure of NP. The following implications are easy to verify.

$$\mu_{p}(NP) \neq 0 \Rightarrow \dim_{p}(NP) = 1$$
$$\Rightarrow \dim_{p}(NP) > 0$$
$$\Rightarrow P \neq NP.$$

The following simple lemma will be useful in proving our main result.

864

Lemma 3.4. Let \mathscr{C} be a class of languages and $c \in \mathbb{N}$. (1) If $\mu_p(\mathscr{C}) = 0$, then $\mu_p(\mathscr{C} \uplus \text{DTIME}(2^{cn})) = 0$. (2) $\dim_p(\mathscr{C} \uplus \text{DTIME}(2^{cn})) = \dim_p(\mathscr{C})$.

Proof. Let $s \in [0, 1]$ be rational and assume that there is a polynomial-time *s*-gale *d* succeeding on \mathscr{C} . It suffices to give a polynomial-time *s*-gale succeeding on $\mathscr{C} \sqcup$ DTIME(2^{*cn*}). By the Exact Computing Lemma of [7], we may assume that *d* is exactly computable in polynomial-time. Let M_0, M_1, \ldots be a standard enumeration of all Turing machines running in time 2^{*cn*}. Define for each $i \in \mathbb{N}$ and $w \in \{0, 1\}^*$,

$$d_i(w1) = \begin{cases} 2^s d_i(w) & \text{if } M_i \text{ accepts } s_{|w|}, \\ \frac{d(w1)}{d(w)} d_i(w) & \text{if } d(w) \neq 0, \\ 0 & \text{otherwise,} \end{cases}$$

$$d_i(w0) = 2^s d_i(w) - d_i(w1).$$

Let $d' = \sum_{i=0}^{\infty} 2^{-i} d_i$. Then d' is a polynomial-time computable *s*-gale. Let $A \in \mathscr{C}$ and $B = L(M_i) \in \text{DTIME}(2^{cn})$. Then for all $n \in \mathbb{N}$, $d_i((A \cup B)[0..n-1]) \ge 2^{-i} d(A[0..n-1])$. Because $A \in S^{\infty}[d]$, $A \cup B \in S^{\infty}[d_i] \subseteq S^{\infty}[d']$. \Box

4. Dimension of P_m(DENSE^c)

Lutz and Mayordomo [9] proved that a superclass of $P_m(DENSE^c)$ has p-measure 0, so $\mu_p(P_m(DENSE^c)) = 0$. In this section we prove the stronger result that $\dim_p(P_m(DENSE^c)) = 0$.

We use the binary entropy function $\mathscr{H}:[0,1] \rightarrow [0,1]$ defined by

$$\mathscr{H}(x) = \begin{cases} -x \log x - (1-x) \log(1-x) & \text{if } x \in (0,1), \\ 0 & \text{if } x \in \{0,1\}. \end{cases}$$

Lemma 4.1. For all $n \in \mathbb{N}$ and $0 \leq k \leq n$,

$$\binom{n}{k} \leqslant \frac{n^n}{k^k (n-k)^{(n-k)}} = 2^{\mathscr{H}(k/n)n}.$$

Lemma 4.1 appears as an exercise in [1]. The following lemma is also easy to verify.

Lemma 4.2. For all $\varepsilon \in (0, 1)$,

$$\mathscr{H}(2^{n^{c}-n})2^{n} = \mathrm{o}(2^{\varepsilon n}).$$

We now show that only a p-dimension 0 set of languages are \leq_m^p -reducible to non-dense languages.

Theorem 4.3.

 $\dim_{p}(P_{m}(DENSE^{c})) = 0.$

Proof. Let s > 0 be rational. It suffices to show that $\dim_p(P_m(DENSE^c)) \leq s$.

Let $\{(f_m, \varepsilon_m)\}_{m \in \mathbb{N}}$ be a standard enumeration of all pairs of polynomial-time computable functions $f_m : \{0, 1\}^* \to \{0, 1\}^*$ and rationals $\varepsilon_m \in (0, 1)$. Define

$$A_{m,n} = \left\{ u \in \{0,1\}^{2^{n+1}-1} \middle| \begin{array}{l} (\forall i,j \ge 2^{n/2})(f_m(s_i) = f_m(s_j) \Rightarrow u[i] = u[j]) \\ \text{and } |\{f_m(s_i) \mid i \ge 2^{n/2} \text{ and } u[i] = 1\}| \le 2^{n^{\varepsilon_m}} \end{array} \right\}.$$

For each string u with $2^{n/2} \leq |u| \leq 2^{n+1} - 1$, define the integers

collision_{*m,n*}(*u*) =
$$|\{(i,j)|2^{n/2} \le i < j < |u|, f_m(s_i) = f_m(s_j), \text{ and } u[i] \neq u[j]\}|,$$

committed_{*m,n*}(*u*) = $\{f_m(s_i)|2^{n/2} \le i < |u| \text{ and } u[i] = 1\}|$

and

free_{*m,n*}(*u*) = {
$$f_m(s_i)$$
| $|u| \le i < 2^{n+1} - 1$ } - { $f_m(s_i)$ | $2^{n/2} \le i < |u|$ }.

Then for each u with $|u| \ge 2^{n/2}$ there are

$$\operatorname{count}_{m,n}(u) = \begin{cases} 2^{n^{\circ m}} \operatorname{-committed}_{m,n}(u) \\ \sum_{i=0}^{n^{\circ m}} \binom{\operatorname{free}_{m,n}(u)}{i} & \text{if } \operatorname{collision}_{m,n}(u) = 0, \\ 0 & \text{otherwise,} \end{cases}$$

strings v for which $uv \in A_{m,n}$.

Define for each $m, n \in \mathbb{N}$ a function $d_{m,n}: \{0,1\}^* \to [0,\infty)$ by

$$d_{m,n}(u) = \begin{cases} 2^{(2-1)|u|} & \text{if } |u| < 2^{n/2} \\ \frac{\operatorname{count}_{m,n}(u]}{\operatorname{count}_{m,n}(u[0.2^{n/2}-1])} 2^{s|u|-2^{n/2}} & \text{if } 2^{n/2} \leqslant |u| \leqslant 2^{n+1} - 1 \\ 2^{(s-1)(|u|-2^{n+1}+1)} d(u[0.2^{n+1}-2]) & \text{otherwise.} \end{cases}$$

Then each $d_{m,n}$ is a well-defined *s*-gale because $\operatorname{count}_{m,n}(u) = \operatorname{count}_{m,n}(u0) + \operatorname{count}_{m,n}(u1)$ for all *u*. Define a polynomial-time computable *s*-gale

$$d = \sum_{m=0}^{\infty} 2^{-m} \sum_{n=0}^{\infty} 2^{-n} d_{m,n}.$$

Let $A \leq_m^P D \in \text{DENSE}^c$ by a reduction f running in time n^l . Let ε be a positive rational such that for infinitely many n, $|D_{\leq n^l}| < 2^{n^{\varepsilon}}$. Let $m \in \mathbb{N}$ be such that $f_m = f$ and $\varepsilon_m = \varepsilon$. Using Lemmas 4.1 and 4.2, for each $u \in \{0, 1\}^{2^{n/2}}$, we have

$$\operatorname{count}_{m,n}(u) \leq \sum_{i=0}^{2^{n^{\varepsilon}}} \binom{|f(\{0,1\}^{\leq n})|}{i}$$
$$\leq (2^{n^{\varepsilon}}+1) \binom{2^{n+1}-1}{2^{n^{\varepsilon}}}$$
$$\leq (2^{n^{\varepsilon}}+1)2^{\mathscr{H}(2^{n^{\varepsilon}-n})2^{n}}$$

866

$$\leq 2^{2^{\epsilon n}}$$
$$\leq 2^{s2^n - 2^{n/2} - 2n}$$

for all sufficiently large *n*. Whenever $|D_{\leq n^l}| < 2^{n^e}$, we have $A[0..2^{n+1}-2] \in A_{m,n}$. Therefore for infinitely many *n*,

$$d(A[0..2^{n+1} - 2]) \ge 2^{-(m+n)} d_{m,n}(A[0..2^{n+1} - 2])$$

= $2^{-(m+n)} \frac{\operatorname{count}_{m,n}(A[0..2^{n+1} - 2])}{\operatorname{count}_{m,n}(A[0..2^{n/2} - 1])} 2^{s(2^{n+1} - 1)} - 2^{n/2}$
$$\ge 2^{-(m+n)} \frac{2^{s(2^{n+1} - 1) - 2^{n/2}}}{2^{s2^n - 2^{n/2} - 2n}}$$

$$\ge 2^{n-m}.$$

Therefore $A \in S^{\infty}[d]$. This shows that $P_m(DENSE^c) \subseteq S^{\infty}[d]$, from which it follows that $\dim_p(P_m(DENSE^c)) = 0$. \Box

5. Main theorem

Theorem 5.1. If dim_p(NP)>0, then for all ε >0 there exists a δ >0 such that any $2^{n^{\delta}}$ -time approximation algorithm for MAX3SAT has performance ratio less than $\frac{7}{8} + \varepsilon$ on a dense set of satisfiable instances.

Proof. We prove the contrapositive. Let $\varepsilon > 0$ be rational. For any MAX3SAT approximation algorithm \mathscr{A} , define the set

$$F_{\mathscr{A}} = \{ x \in 3SAT \, | \, \mathscr{A}(x) < \frac{7}{8} + \varepsilon \}.$$

Assume that for each $\delta > 0$, there exists a $2^{n^{\delta}}$ -time approximation algorithm \mathscr{A}_{δ} for MAX3SAT with $F_{\mathscr{A}_{\delta}} \in \text{DENSE}^{c}$. By Theorem 4.3 and Lemma 3.4, it is sufficient to show that NP \subseteq P_m(DENSE^c) \uplus DTIME(2^{n}).

Let $B \in NP$ and let r be a \leq_{m}^{p} -reduction of B to SAT. Let n^{k} be an almosteverywhere time bound for computing $f_{\varepsilon} \circ r$ where f_{ε} is as in Theorem 2.1. Then

$$\begin{aligned} x \in B \Leftrightarrow r(x) \in \text{SAT} \\ \Leftrightarrow \text{MAX3SAT}((f_{\varepsilon} \circ r)(x)) = 1 \\ \Leftrightarrow \mathscr{A}_{1/k}((f_{\varepsilon} \circ r)(x)) \geqslant \frac{7}{8} + \varepsilon \text{ or } (f_{\varepsilon} \circ r)(x) \in F_{\mathscr{A}_{1/k}}. \end{aligned}$$

Define the languages

$$C = \{x \mid (f_{\varepsilon} \circ r)(x) \in F_{\mathscr{A}_{1/k}}\} \text{ and } D = \{x \mid \mathscr{A}_{1/k}((f_{\varepsilon} \circ r)(x)) \geqslant \frac{7}{8} + \varepsilon\}.$$

Then $B = C \cup D$, $C \leq_{\mathrm{m}}^{\mathrm{p}} F_{\mathscr{A}_{1/k}} \in \mathrm{DENSE}^{c}$, and D can be decided in time $2^{(n^{k})^{1/k}} = 2^{n}$ for all sufficiently large n, so $B \in \mathrm{P}_{\mathrm{m}}(\mathrm{DENSE}^{c}) \uplus \mathrm{DTIME}(2^{n})$. \Box

Theorem 5.1 provides a strong positive answer to Problem 8 of Lutz and Mayordomo [8]:

Does $\mu_p(NP) \neq 0$ imply an exponential lower bound on approximation schemes for MAXSAT?

We observe that a weaker positive answer can be more easily obtained by using a simplified version of our argument to prove the following result.

Proposition 5.2. If

$$NP \not\subseteq \bigcap_{\alpha>0} DTIME(2^{n^{\alpha}}),$$

then for all $\varepsilon > 0$ there exists a $\delta > 0$ such that there does not exist a $2^{n^{\delta}}$ -time $(\frac{7}{8} + \varepsilon)$ -approximation algorithm for MAX3SAT.

6. Conclusion

We close by summarizing the inapproximability results for MAX3SAT derivable from various strong hypotheses in the following figure:

$$\begin{array}{c} \mu_{p}(\mathrm{NP}) \neq 0 \\ \downarrow \\ \hline \\ dim_{p}(\mathrm{NP}) > 0 \end{array} \Rightarrow \begin{array}{c} There exists a \ \delta > 0 \ such that any \ 2^{n^{\delta}} \text{-time} \\ approximation \ algorithm \ for \ MAX3SAT \\ has \ performance \ ratio \ less \ than \ \frac{7}{8} + \varepsilon \ on \\ a \ dense \ set \ of \ satisfiable \ instances. \end{array} \\ \downarrow \\ \hline \\ \mathbb{NP} \not\equiv \bigcap_{\alpha > 0} \mathrm{DTIME}(2^{n^{\alpha}}) \end{array} \Rightarrow \begin{array}{c} \mathbb{T} here \ exists \ a \ \delta > 0 \ such \ that \ no \ 2^{n^{\delta}} \text{-} time \\ \lim_{\alpha < n^{\delta} \to 0} \frac{1}{n^{\delta}} \mathbb{E} \left\{ \sum_{\alpha > 0} \frac{1}{n^{\delta}} \mathbb{E} \left\{ \sum_{\alpha > 0} \frac{1}{n^{\delta}} \mathbb{E} \left\{ \sum_{\alpha < n^{\delta} \to 0} \mathbb{E} \left\{ \sum_{\alpha < n^{\delta} \to 0} \frac{1}{n^{\delta}} \mathbb{E} \left\{ \sum_{\alpha < n^{\delta} \to 0} \frac{1}{n^{\delta}} \mathbb{E} \left\{ \sum_{\alpha < n^{\delta} \to 0} \frac{1}{n^{\delta}} \mathbb{E} \left\{ \sum_{\alpha < n^{\delta} \to 0} \mathbb$$

Acknowledgements

I thank Jack Lutz for some helpful suggestions.

References

- T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press, McGraw-Hill, Cambridge, MA, New York, 1990.
- [2] E. Dantsin, M. Gavrilovich, E.A. Hirsch, B. Konev, MAX SAT approximation beyond the limits of polynomial-time approximation, Ann. Pure Appl. Logic, to appear.
- [3] E. Halperin, U. Zwick, Approximation algorithms for MAX 4-SAT and rounding procedures for semidefinite programs, IPCO: 7th Integer Programming and Combinatorial Optimization Conference, Graz, Austria, 1999.
- [4] J. Håstad, Some optimal inapproximability results, Proc. 29th Ann. ACM Symp. on Theory of Computing, 1997, pp. 1–10.
- [5] H. Karloff, U. Zwick, A 7/8-approximation algorithm for MAX 3SAT? Proc. 38th Ann. Symp. on Foundations of Computer Science, 1997, pp. 406–415.
- [6] J.H. Lutz, Almost everywhere high nonuniform complexity, J. Comput. System Sci. 44 (1992) 220-258.
- [7] J.H. Lutz, Dimension in complexity classes, in: Proc. 15th Ann. IEEE Conf. Computational Complexity, IEEE Computer Society Press, Los Alamitos, CA, 2000, pp. 158–169.
- [8] J.H. Lutz, E. Mayordomo, Twelve problems in resource-bounded measure, Bull. European Assoc. Theoret. Comput. Sci. 68 (1999) 64–80.
- [9] J.H. Lutz, E. Mayordomo, Measure, stochasticity, and the density of hard languages, SIAM J. Comput. 23 (4) (1994) 762–779.