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Abstract

Under the hypothesis that NP has positive p-dimension, we prove that any approximation
algorithm A for MAX3SAT must satisfy at least one of the following:
1. For some �¿ 0, A uses at least 2n

�
time.

2. For all �¿ 0, A has performance ratio less than 7
8 + � on an exponentially dense set of

satis;able instances.
As a corollary, this solves one of Lutz and Mayordomo’s “Twelve problems on resource-bounded
measure” (Bull. European Assoc. Theoret. Comput. Sci. 68 (1999) 64–80). c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

MAX3SAT is a well-studied optimization problem. Tight bounds on its polynomial-
time approximability are known:
(1) There exists a polynomial-time 78 -approximation algorithm [5, 3].

1

(2) If P �=NP, then for all �¿0, there does not exist a polynomial-time ( 78 + �)-
approximation algorithm [4].

Recently, there has been some investigation of approximating MAX3SAT in exponen-
tial time. For example, for any �∈ (0; 18 ], Dantsin et al. [2] give a ( 78 +�)-approximation

� This research was supported in part by National Science Foundation Grant 9988483.
E-mail address: jhitchco@cs.iastate.edu (John M. Hitchcock).
1 An algorithm with conjectured performance ratio 78 was given in Ref. [5], and this conjecture has since

been proved according to Ref. [3].
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algorithm for MAX3SAT running in time 28�k where k is the number of clauses in a
formula.
Given these results, it is natural to ask for stronger lower bounds on computation

time for MAX3SAT approximation algorithms that have performance ratio greater than
7
8 . Such lower bounds are not known to follow from the hypothesis P �=NP. In this
note we address this question using a stronger hypothesis involving resource-bounded
dimension.
About a decade ago, Lutz [6] presented resource-bounded measure as an analogue

for classical Lebesgue measure in complexity theory. Resource-bounded measure pro-
vides strong, reasonable hypotheses which seem to have more explanatory power than
weaker, traditional complexity-theoretic hypotheses. The hypothesis that NP does not
have p-measure 0, �p(NP) �=0, implies P �=NP and is known to have many plausible
consequences that are not known to follow from P �=NP.
Resource-bounded dimension was recently introduced by Lutz [7] as an analogue

of classical HausdorN dimension for complexity theory. Resource-bounded dimension
re;nes resource-bounded measure by providing a spectrum of weaker, but still strong,
hypotheses. We will use the hypothesis that NP has positive p-dimension, dimp(NP)¿0.
This hypothesis is implied by �p(NP) �=0 and implies P �=NP.
Under the hypothesis dimp(NP)¿0, we give an exponential-time lower bound for

approximating MAX3SAT beyond the known polynomial-time achievable ratio of 78 on
all but a subexponentially-dense set of satis;able instances. Put another way, we prove:
If dimp(NP)¿0, then any approximation algorithm A for MAX3SAT must satisfy
at least one of the following:
(1) For some �¿0, A uses at least 2n

�
time.

(2) For all �¿0, A has performance ratio less than 7
8 + � on an exponentially dense

set of satis;able instances.
Lutz and Mayordomo asked whether the hypothesis �p(NP) �=0 implies an exponen-

tial-time lower bound on approximation schemes for MAXSAT [8]. Our main theorem
gives a strong aQrmative answer to this question: we obtain a stronger conclusion from
the weaker dimp(NP)¿0 hypothesis. In fact, after we present the theorem, we give
an easy proposition that achieves an exponential-time lower bound from a hypothesis
even weaker than dimp(NP)¿0.
In Section 2 we give our notation and basic de;nitions. Resource-bounded measure

and dimension are brieRy reviewed in Section 3. Section 4 contains a dimension result
used in proving our main theorem. The main theorem is proved in Section 5. Section 6
concludes by summarizing the inapproximability results for MAX3SAT under strong
hypotheses.

2. Preliminaries

The set of all ;nite binary strings is {0; 1}∗. We use the standard enumeration of
binary strings s0 = 	, s1 = 0, s2 = 1, s3 = 00; : : : : The length of a string x∈{0; 1}∗ is
denoted by |x|.
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All languages (decision problems) in this paper are encoded as subsets of {0; 1}∗.
For a language A⊆{0; 1}∗, we de;ne A6n= {x∈A | |x|6n}. We write A[0::n− 1] for
the n-bit pre;x of the characteristic sequence of A according to the standard enumera-
tion of strings.
We say that a language A is (exponentially) dense if there is an ¿0 such that

|A6n|¿2n holds for all but ;nitely many n. We write DENSE for the class of all
dense languages.
For any classes C and D of languages we de;ne the classes

C �D = {A ∪ B |A ∈ C; B ∈ D}
and

Pm(C) = {A ⊆ {0; 1}∗ | (∃B ∈ C)A6p
m B}:

A real-valued function f : {0; 1}∗ → [0;∞) is polynomial-time computable if there ex-
ists a polynomial-time computable function g :N×{0; 1}∗ → [0;∞)∩Q such that

|f(x)− g(n; x)|6 2−n

for all x∈{0; 1}∗ and n∈N where n is represented in unary.
For an instance x of 3SAT we write MAX3SAT(x) for the maximum fraction of

clauses of x that can be satis;ed by a single assignment.
An approximation algorithm A for MAX3SAT outputs an assignment of the vari-

ables for each instance of 3SAT. For each instance x we write A(x) for the fraction
of clauses satis;ed by the assignment produced by A for x.
An approximation algorithmA has performance ratio  on x ifA(x)¿·MAX3SAT

(x). If A has performance ratio  on all instances, then A is an -approximation
algorithm.
HSastad proved the following in order to show that satis;able instances of 3SAT

cannot be distinguished from instances x with MAX3SAT(x)¡ 7
8 + � in polynomial-

time unless P=NP.

Theorem 2.1 (HSastad [4]). For each �¿0, there exists a polynomial-time computable
function f� such that for all x∈{0; 1}∗,

x ∈ SAT⇒ MAX3SAT(f�(x)) = 1

x =∈ SAT⇒ MAX3SAT(f�(x))¡ 7
8 + �:

We will use the functions f� from Theorem 2.1 later in the paper.

3. Resource-bounded measure and dimension

In this section we review enough resource-bounded measure and dimension to present
our result. Full details of these theories are available in Lutz’s introductory papers [6, 7].
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De�nition 3.1. Let s∈ [0;∞).
(1) A function d : {0; 1}∗ → [0;∞) is an s-gale if for all w∈{0; 1}∗,

d(w) =
d(w0) + d(w1)

2s
:

(2) A martingale is a 1-gale.

Intuitively, a gale is viewed as a function betting on an unknown binary sequence.
If w is a pre;x of the sequence, then the capital of the gale after placing its ;rst |w|
bets is given by d(w). Assuming that w is a pre;x of the sequence, the gale places
bets on w0 and w1 also being pre;xes. The parameter s determines the fairness of the
betting; as s decreases the betting is less fair. The goal of a gale is to bet successfully
on languages.

De�nition 3.2. Let s∈ [0;∞) and let d be an s-gale.
(1) We say d succeeds on a language A if

lim sup
n→∞

d(A[0::n− 1]) =∞:

(2) The success set of d is

S∞[d] = {A ⊆ {0; 1}∗ |d succeeds on A}:

Measure and dimension are de;ned in terms of succeeding martingales and gales,
respectively.

De�nition 3.3. Let C be a class of languages.
(1) C has p-measure 0, written �p(C)= 0, if there exists a polynomial-time martingale

d with C⊆ S∞[d].
(2) The p-dimension of C is

dimp(C) = inf
{
s
∣∣∣∣ there exists a polynomial-times-gale d for which C ⊆ S∞[d]

}
:

For any class C, dimp(C)∈ [0; 1]. We are interested in hypotheses on the p-dimension
and p-measure of NP. The following implications are easy to verify.

�p(NP) �= 0⇒ dimp(NP) = 1
⇒ dimp(NP)¿ 0

⇒ P �= NP:

The following simple lemma will be useful in proving our main result.
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Lemma 3.4. Let C be a class of languages and c∈N.
(1) If �p(C)= 0, then �p(C�DTIME(2cn))= 0.
(2) dimp(C�DTIME(2cn))= dimp(C).

Proof. Let s∈ [0; 1] be rational and assume that there is a polynomial-time s-gale
d succeeding on C. It suQces to give a polynomial-time s-gale succeeding on C�
DTIME(2cn). By the Exact Computing Lemma of [7], we may assume that d is exactly
computable in polynomial-time. Let M0; M1; : : : be a standard enumeration of all Turing
machines running in time 2cn. De;ne for each i∈N and w∈{0; 1}∗,

di(w1) =



2sdi(w) if Mi accepts s|w|;
d(w1)
d(w) di(w) if d(w) �= 0;
0 otherwise;

di(w0) = 2sdi(w)− di(w1):

Let d′=
∑∞

i=0 2
−idi. Then d′ is a polynomial-time computable s-gale. Let A∈C and

B=L(Mi)∈DTIME(2cn). Then for all n∈N, di((A∪B)[0::n− 1])¿2−id(A[0::n− 1]).
Because A∈ S∞[d], A∪B∈ S∞[di]⊆ S∞[d′].

4. Dimension of Pm(DENSE
c)

Lutz and Mayordomo [9] proved that a superclass of Pm(DENSEc) has p-measure
0, so �p(Pm(DENSEc))= 0. In this section we prove the stronger result that
dimp(Pm(DENSEc))= 0.
We use the binary entropy function H : [0; 1]→ [0; 1] de;ned by

H(x) =

{
−x log x − (1− x) log(1− x) if x ∈ (0; 1);
0 if x ∈ {0; 1}:

Lemma 4.1. For all n∈N and 06k6n,(
n
k

)
6

nn

kk(n− k)(n−k) = 2
H(k=n)n:

Lemma 4.1 appears as an exercise in [1]. The following lemma is also easy to verify.

Lemma 4.2. For all �∈ (0; 1),
H(2n

�−n)2n = o(2�n):

We now show that only a p-dimension 0 set of languages are 6p
m-reducible to non-

dense languages.

Theorem 4.3.

dimp(Pm(DENSEc)) = 0:
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Proof. Let s¿0 be rational. It suQces to show that dimp(Pm(DENSEc))6s.
Let {(fm; �m)}m∈N be a standard enumeration of all pairs of polynomial-time com-

putable functions fm : {0; 1}∗ →{0; 1}∗ and rationals �m ∈ (0; 1). De;ne

Am;n =

{
u ∈ {0; 1}2n+1−1

∣∣∣∣∣ (∀i; j ¿ 2
n=2)(fm(si) = fm(sj)⇒ u[i] = u[j])

and |{fm(si) | i ¿ 2n=2 and u[i] = 1}|6 2n�m
}
:

For each string u with 2n=2 6 |u|6 2n+1 − 1, de;ne the integers
collisionm;n(u) = |{(i; j)|2n=26 i¡j¡ |u|; fm(si) = fm(sj); and u[i] �= u[j]}|;
committedm;n(u) = {fm(si)|2n=2 6 i ¡ |u| and u[i] = 1}|

and

freem;n(u) = {fm(si)| |u|6 i ¡ 2n+1 − 1} − {fm(si)|2n=2 6 i ¡ |u|}|:
Then for each u with |u|¿ 2n=2 there are

countm;n(u) =



2n
�m -committedm;n(u)∑

i=0

(
freem;n(u)

i

)
if collisionm;n(u) = 0;

0 otherwise;

strings v for which uv∈Am;n.
De;ne for each m; n∈N a function dm;n : {0; 1}∗ → [0;∞) by

dm;n(u) =



2(2−1)|u| if |u|¡ 2n=2

countm;n(u)
countm;n(u[0::2n=2−1]) 2

s|u|−2n=2 if 2n=2 6 |u|6 2n+1 − 1
2(s−1)(|u|−2

n+1+1)d(u[0::2n+1 − 2]) otherwise:

Then each dm;n is a well-de;ned s-gale because countm;n(u)= countm;n(u0) +
countm;n(u1) for all u. De;ne a polynomial-time computable s-gale

d =
∞∑
m=0
2−m

∞∑
n=0
2−ndm;n:

Let A6P
m D∈DENSEc by a reduction f running in time nl. Let � be a positive rational

such that for in;nitely many n, |D6nl |¡2n
�
. Let m∈N be such that fm=f and �m= �.

Using Lemmas 4.1 and 4.2, for each u∈{0; 1}2n=2 , we have

countm;n(u)6
2n
�∑

i=0

( |f({0; 1}6n)|
i

)

6 (2n
�
+ 1)

(
2n+1 − 1
2n

�

)

6 (2n
�
+ 1)2H(2

n�−n)2n
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6 22
�n

6 2s2
n−2n=2−2n

for all suQciently large n. Whenever |D6nl |¡2n
�
, we have A[0::2n+1−2]∈Am;n. There-

fore for in;nitely many n,

d(A[0::2n+1 − 2])¿ 2−(m+n)dm;n(A[0::2n+1 − 2])

= 2−(m+n)
countm;n(A[0::2n+1 − 2])
countm;n(A[0::2n=2 − 1]) 2

s(2n+1−1) − 2n=2

¿ 2−(m+n)
2s(2

n+1−1)−2n=2

2s2n−2n=2−2n

¿ 2n−m:

Therefore A∈ S∞[d]. This shows that Pm(DENSEc)⊆ S∞[d], from which it follows
that dimp(Pm(DENSEc))= 0.

5. Main theorem

Theorem 5.1. If dimp(NP)¿0, then for all �¿0 there exists a �¿0 such that any
2n

�
-time approximation algorithm for MAX3SAT has performance ratio less than

7
8 + � on a dense set of satis7able instances.

Proof. We prove the contrapositive. Let �¿0 be rational. For any MAX3SAT approx-
imation algorithm A, de;ne the set

FA = {x ∈ 3SAT |A(x)¡ 7
8 + �}:

Assume that for each �¿0, there exists a 2n
�
-time approximation algorithm A� for

MAX3SAT with FA� ∈DENSEc. By Theorem 4.3 and Lemma 3.4, it is suQcient to
show that NP⊆Pm(DENSEc)�DTIME(2n).
Let B∈NP and let r be a 6p

m-reduction of B to SAT. Let nk be an almost-
everywhere time bound for computing f� ◦ r where f� is as in Theorem 2.1. Then

x ∈ B⇔ r(x) ∈ SAT
⇔MAX3SAT((f� ◦ r)(x)) = 1
⇔A1=k((f� ◦ r)(x))¿ 7

8 + � or (f� ◦ r)(x) ∈ FA1=k :

De;ne the languages

C = {x | (f� ◦ r)(x) ∈ FA1=k} and D = {x |A1=k((f� ◦ r)(x))¿ 7
8 + �}:
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Then B=C ∪D, C6p
m FA1=k ∈DENSEc, and D can be decided in time 2(n

k )1=k =2n for
all suQciently large n, so B∈Pm(DENSEc)�DTIME(2n).

Theorem 5.1 provides a strong positive answer to Problem 8 of Lutz and
Mayordomo [8]:
Does �p(NP) �=0 imply an exponential lower bound on approximation schemes
for MAXSAT?

We observe that a weaker positive answer can be more easily obtained by using a
simpli;ed version of our argument to prove the following result.

Proposition 5.2. If

NP*
⋂
¿0
DTIME(2n


);

then for all �¿0 there exists a �¿0 such that there does not exist a 2n
�
-time ( 78 +�)-

approximation algorithm for MAX3SAT.

6. Conclusion

We close by summarizing the inapproximability results for MAX3SAT derivable
from various strong hypotheses in the following ;gure:

�p(NP) �=0
⇓

dimp(NP)¿0 ⇒
There exists a �¿0 such that any 2n

�
-time

approximation algorithm for MAX3SAT
has performance ratio less than 7

8 + � on
a dense set of satis;able instances.

⇓ ⇓

NP*
⋂
¿0 DTIME(2

n) ⇒
There exists a �¿0 such that no 2n

�
-

time ( 78 + �)-approximation algorithm for
MAX3SAT exists.

⇓ ⇓

P �=NP ⇒ No polynomial-time ( 78 + �)-approximation
algorithm for MAX3SAT exists.
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