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Abstract In this paper it is intended to analyse entropy generation by applying second law of ther-

modynamics to magnetohydrodynamic flow, heat and mass transfer of an electrically conducting

viscoelastic liquid (Walters B0) past on a stretching surface, taking into account the effects of Joule

dissipation, viscous dissipation and Darcy dissipation, and internal heat generation. The boundary

layer equations are solved analytically by using Kummer’s function. The entropy generation has

been computed considering Darcy dissipation besides viscous and Joule dissipation. Results for

some special cases of the present analysis are in good agreement with the existing literature. Increase

in viscoelastic and magnetic parameter reduces the velocity. Increase in elastic parameter causes a

greater retardation in the velocity. Presence of porous matrix enhances temperature whereas

increase in Prandtl number decreases the temperature. One striking result of the present study is

that Darcy dissipation favours higher level entropy generation in all the cases except the flow of liq-

uid with low thermal diffusivity assuming the process to be irreversible.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The fluid flow over a stretching sheet is important in many

practical applications such as extrusion of plastic sheets, paper
production, glass blowing, metal spinning, polymers in metal
spring processes, the continuous casting of metals, drawing
plastic films and spinning of fibres, all involve some aspects

of flow over a stretching sheet or cylindrical fibre
(Paullet and Weidman [1]). The quality of the final
product depends on the rate of heat transfer at the stretching

surface.
Literature survey indicates that interest in the flows over a

stretched surface has grown during the past decades. The prob-

lem of stretching surface with constant surface temperature
was analysed by Crane [2]. Later, the stretching sheet flow
has been studied by several researchers for the sole effects of

rotation, velocity and thermal slip conditions, heat and mass
m, Ain
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Nomenclature

A constant

B0 uniform magnetic field strength
Cp specific heat of the solid
Da Darcy number
f dimensionless function

K0 permeability of the medium
K thermal conductivity of the fluid
Mn magnetic parameter

Q heat source/sink parameter
qw wall heat flux
R radiation parameter

T non-dimensional temperature
t non-dimensional time
T0 temperature of the field
q density of the fluid

k1 absorption coefficient
r electrical conductivity
k0 dimensionless elastic parameter

q heat generation coefficient
s plate concentration parameter

B constant

Br Brinkman number
D molecular diffusivity
d characteristic length
Ha Hartmann number

KP porosity parameter
M Kummer’s function
Pr Prandtl number

qr radiative heat flux
Rc elastic parameter
Sc Schmidt number

t0 time
T1 temperature far from sheet
Tw wall temperature
t kinematic coefficient of viscosity

r� Stefan–Boltzmann constant
sw wall shear stress
mw rate of mass flux

r plate temperature parameter
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transfer, chemical reaction, MHD, suction/injection, different
non-Newtonian fluids or possible combinations of these effects

([3–8]).
Chamkha [9] studied the MHD flow of uniformly stretched

vertical permeable surface in the presence of heat generation/

absorption and a chemical reaction. Ishak et al. [10] investi-
gated theoretically the unsteady mixed convection boundary-
layer flow and heat transfer due to a stretching vertical surface

in a quiescent viscous and incompressible fluid. Sammer [11]
investigated the heat and mass transfer over an accelerating
surface with heat source in the presence of magnetic field.
Wang [12] studied the stagnation flow towards a shrinking

sheet. Akbar et al. [13] investigated the dual solutions in
MHD stagnation-point flow of a Prandtl fluid impinging on
a shrinking sheet. Akbar et al. [14] have also studied MHD

stagnation point flow of Carreau fluid towards a permeable
shrinking sheet. Partial slip effect on non-aligned stagnation
point nanofluid over a stretching convective surface has been

investigated by Nadeem et al. [15].
Naseem and Khan [16] investigated boundary-layer flow

past a stretching plate with suction, heat and mass transfer
and with variable conductivity. Cortell [17] also reported the

flow and heat transfer of a fluid through porous medium over
a stretching surface with internal heat generation. Combined
effects of magnetic field and partial slip on obliquely striking

rheological fluid over a stretching surface have been investi-
gated by Nadeem et al. [18]. Akbar et al. [19] have studied
the numerical analysis of magnetic field effects on Eyring–

Powell fluid flow towards a stretching sheet. Free convective
heat and mass transfer for MHD fluid flow over a permeable
vertical stretching sheet in the presence of the radiation and

buoyancy effects has been investigated by Rashidi et al.
[20,21].

The main concern in the present study is to account for the
entropy generation/minimization on the heat transfer process.
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One of the most important characteristics of the medium in
thermodynamics is the entropy. In an adiabatic process, the

entropy either increases or remains unchanged (second law
of thermodynamics). Entropy generation is closely associated
with the thermodynamic irreversibility. Irreversibility analysis

in a couple stress film flow along an inclined heated plate with
adiabatic free surface has been studied by Adesanya and
Makinde [22]. Recently, inherent irreversibility in Sakiadis

flow of nanofluids has been investigated by Makinde et al.
[23]. Mahamud and Fraser [24–26] applied the second law of
thermodynamics to convective heat transfer in non-
Newtonian fluid flow through a channel. Akbar [27] has

studied entropy generation analysis for a CNT Suspension
Nanofluid in Plumb Ducts with Peristalsis. He has also inves-
tigated Peristaltic flow with thermal conductivity of H2O +

Cu nanofluid and entropy generation [28]. Entropy generation
and energy conversion rate for the peristaltic flow in a tube
with magnetic field has also been investigated by Akbar [29].

Makinde [30] has investigated entropy analysis for MHD
boundary layer flow and heat transfer over a flat plate with
a convective surface boundary condition. Entropy analysis
for an unsteady MHD flow past a stretching permeable surface

in nano-fluid has been studied by Abolbashari et al. [31].
Chemical reaction effect on MHD free convective surface over
a moving vertical plane through porous medium has been

studied by Tripathy et al. [32].
Moreover, Aiboud et al. [33] studied the second law analy-

sis of laminar fluid flow in a heated channel with hydromag-

netic and viscous dissipation effect. They made an entropy
analysis for viscoelastic MHD flow over a stretching surface
[34].

The growing need for chemical reaction and hydrometallur-
gical industries requires the study of heat and mass transfer
with chemical reaction. There are many transport processes
that are governed by the combined action of buoyancy forces
oelastic MHD flow over a stretching sheet embedded in a porous medium, Ain
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due to both thermal and mass diffusion in the presence of
chemical reaction effect. These processes are observed in the
nuclear reactor safety and combustion systems, solar collec-

tors, as well as metallurgical and chemical engineering.
All the studies referred above do not include the effect of

mass diffusion in the presence of diffusing species though it

is a common phenomenon, and occur simultaneously with heat
transfer. Further, the novelty of the present study is to account
for the effect of Joulian dissipation in addition to viscous dis-

sipation on the entropy generation. Another important aspect
of the present study is the flow of viscoelastic fluid on a stretch-
ing surface embedded in a uniformly porous saturated med-
ium. We have applied Darcy’s linear model to account for

the permeability of the porous medium. One more significance
of the present study is the entropy generation analysis which is
one of the most important characteristics of the medium

depending upon the quantities of heat added. We have consid-
ered here additional heat due to (i) magnetic field (Joulian dis-
sipation) and (ii) porous medium (Darcy dissipation). Thus,

the present study brings to its fold many previous studies as
particular cases. In particular, the case of Aiboud and Saouli
[34] has been discussed by ignoring the effects of (i) Joule’s dis-

sipation parameter and (ii) permeability parameter. Therefore,
the generalization aims at developing a mathematical model to
account for (i) the loss of energy while dealing with MHD
flows, (ii) the resistance offered by the porous matrix embed-

ding the stretching surface, and (iii) the effect of diffusing
species.

The method of solution of the coupled nonlinear equation

is quite interesting. The solution is based upon a choice of a
function satisfying the boundary conditions but is valid to a
class of viscoelastic fluid for which elastic parameter Rc – 1.

Upon introducing the stream function the order of the equa-
tion is increased from third to fourth order. The solution can
be obtained by applying Von Mises transformation Anes [35]

which reduces the order to third order i.e. the order of the orig-
inal governing equation. However, we have solved governing
equations analytically by using hypergeometric function
(Kummer’s function).

2. Formulation of the problem

A steady laminar, incompressible electrically conducting, vis-

coelastic fluid flow caused by a stretching surface embedded
in a porous medium in the presence of a uniform transverse
magnetic field in cartesian coordinate (x; y) where x-axis is

taken in the direction of main flow along the plate and y-
axis is normal to the plate, is considered (see Fig. 1).

The boundary-layer equations for a steady two-

dimensional Darcian flow of viscoelastic liquid of Walters B0

model with short relaxation time following Schlichting [36]
are given by
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The boundary conditions are

u ¼ up ¼ kx; v ¼ 0; T ¼ TpðxÞ ¼ A x
l

� �r þ T1;

C ¼ CpðxÞ ¼ B x
l

� �s þ C1; at y ¼ 0;

u ¼ 0; @u
@y
¼ 0; T ! T1; C ! C1; as y ! 1:

9>=
>; ð5Þ
3. Solution of the flow field

Eq. (1) is satisfied if we choose a dimensionless stream function

u ¼ @w
@y

; v ¼ � @w
@x

: ð6Þ

Introducing the similarity transformations

g ¼ y

ffiffiffi
k
t

r
; wðx; yÞ ¼ x

ffiffiffiffiffi
tk

p
fðgÞ; ð7Þ

and substituting in (2), we get

f 000 þ ff 00 � f 02 � Rcf2f 0f 000 � f 002 � ff ivg � Mnþ 1

KP

� �
f 0 ¼ 0;

ð8Þ
where f is the dimensionless stream function and g is the sim-
ilarity variable, Rc ¼ k0k=l, the viscoelastic parameter,

Mn ¼ rB2
0=qk, the magnetic parameter and Kp ¼ K�

p=qk, the

permeability parameter.
The corresponding boundary conditions are as follows:

fð0Þ ¼ 0; f 0ð0Þ ¼ 1; f 0ð1Þ ¼ 0; f 00ð1Þ ¼ 0: ð9Þ
Following Rajgopal [37], the solution of (8) with boundary

conditions (9) can be written as

f ðgÞ ¼ 1� e�ag

a
; a > 0 ð10Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þMnþ1=Kp

1�Rc

q
; Rc – 1 and Rc < 1 provided

(i) Rc – 1

(ii) Rc < 1

Violation of condition (i) leads to non-existence of fðgÞ
which restricts our discussion to the choice of viscoelastic liq-
uid for which k0k – l i.e. the dynamic viscosity must not be

equal to the product of elasticity and stretching rate. The vio-
lation of condition (ii) is restricted by the choice of fluid model

i.e. Walters B0 which is valid for slightly elastic liquid.
The local skin friction coefficient or the frictional drag coef-

ficient is given by

Cf ¼ sw

lkx
ffiffi
k
t

q ¼ a

where sw is the wall shearing stress on the sheet.

4. Heat transfer analysis

Introducing non-dimensional quantities hðgÞ ¼ T�T1
Tp�T1

,

Pr ¼ lCp=K, b ¼ qt
qCp

and using (7), Eq. (3) becomes
oelastic MHD flow over a stretching sheet embedded in a porous medium, Ain
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h 00 þ Prfh
0 þ Prðb� rf 0Þh ¼ 0; ð11Þ

with the boundary conditions

hð0Þ ¼ 1; hð1Þ ¼ 0: ð12Þ
Introducing the variable n ¼ Pre

�ag

a2 Eq. (11) is transformed

to

n
d2h

dn2
þ 1� Pr

a2
þ n

� �
dh
dn

� r� b
a2

� �
h ¼ 0; ð13Þ

with the boundary conditions

hðn ¼ Pr

a2
Þ ¼ 1; hðn ¼ 0Þ ¼ 0: ð14Þ

Using confluent hypergeometric function we get,

hðnÞ ¼ a2n
Pr

� �aþb
Mðaþ b� r; 1þ 2b;�nÞ

Mðaþ b� 2; 1þ 2b;�Pr=a2Þ ; ð15Þ

where a ¼ Pr=2a2; b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPrÞ2 � 4a2b

q
=2a2 and Mða1; a2; xÞ

denotes the Kummer’s function

Mða1; a2; xÞ ¼
X1
n¼0

ða1Þn
ða2Þn

xn

n!
; a2 – 0;�1;�2 . . . ð16Þ

where ðaÞn denotes the Pochhammer symbol defined in terms

of the gamma function.
The temperature profile in terms of g is obtained as

hðgÞ ¼ e�aðaþbÞg M aþ b� 2; 1þ 2b; �Pr

a2 e�ag
� �
M aþ b� 2; 1þ 2b; �Pr

a2

� � : ð17Þ

The wall temperature gradient or the local Nusselt number
is given by

�h0ð0Þ ¼ aðaþ bÞ � Pr

a

M aþ b� 1; 2bþ 2; �Pr

a2

� �
M aþ b� 2; 1þ 2b; �Pr

a2

� � :
5. Mass transfer analysis

Introducing the similarity variable uðgÞ ¼ C�C1
Cp�C1

; and using

(6), in Eq. (4) we get,

u 00 þ Scfu
0 � Scf

0u ¼ 0; ð18Þ
with the boundary conditions

u0 ¼ �1 at g ¼ 0;

u ! 0 at g ! 1:
ð19Þ

Again introducing a new variable f ¼ � Sc

a2 e
�ag; Eq. (18)

becomes

f
d2u

d2f
þ 1� Sc

a2
a2 �M2 � 1

Kp

� �� �
� f

� �
du
df

þ su ¼ 0; ð20Þ

The corresponding boundary conditions are

uðf ¼ 0Þ ¼ 0; u0 f ¼ �Sc

a2

� �
¼ � a

Sc

: ð21Þ

The exact solution of Eq. (20) subject to the boundary con-
dition (21) is given by
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uðgÞ ¼ e�ag
1F1ðc� 2; 1þ c;� Sce

�ag

a2 Þ
ac1F1ðc� 2; 1þ c;� Sc

a2Þ � Sc
a

c�2
ð1þcÞ 1F1 c� 1; 2þ c;� Sc

a2

� � ;
ð22Þ

c ¼ Sc

a2
a2 �M� 1

Kp

� �
:

The wall concentration gradient or the local Sherwood
number is given by

�u0ð0Þ¼ a1F1 c�2;1þ c;�Sc
a2

� �þ Sc
a 1F1 c�1;cþ2;�Sc

a2

� �
ac1F1 c�2;1þ c;�Sc

a2

� �� Sc
a

c�2
ð1þcÞ 1F1 c�1;2þ c;�Sc

a2

� � :
6. Entropy generation analysis

The local volumetric rate of entropy generation in the presence
of magnetic field is given by

EG ¼ k

T2
1

@T

@x

� �2

þ @T

@y

� �2
 !

þ D

C1

@C

@x

� �2

þ @C

@y

� �2
 !

þ D

T1

@T

@x

@C

@x
þ @T

@y

@C

@y

� �
þ l
T1

@u

@y

� �2

þ rB2
0

T1
u2

þ l
T1K0

p

u2 ð23Þ

The contribution of all the parameters to the entropy gen-
eration is shown in Eq. (23). The first term on the right hand
side of Eq. (23) is the entropy generation due to the heat trans-

fer across a finite temperature difference, the second term is the
local entropy due to viscous dissipation, the third term is due
to the Lorentz force, and the final term is the local entropy

generation due to porous matrix. The entropy generation num-
ber is

Ns ¼ EG

EG0

; ð24Þ

where EG0 is the characteristic entropy generation rate. i.e. Ns

is defined as dividing the local volumetric entropy generation
rate EG to a characteristic entropy generation rate EG0: From
the given boundary condition the characteristic entropy gener-

ation rate is

EG0 ¼ kðDTÞ2
d2T2

1
: ð25Þ

Using Eqs. (7), (17) and (23), the entropy generation num-
ber is given by

Ns ¼ r2

X2
h2ðgÞ þRedh

02ðgÞ þRed
Br

X
f 002ðgÞ þ BrðH2

a þ 1=DaÞ
X

f 02

þ s2

X2
k1/

2ðgÞ þRedk2/
02ðgÞ

þ k3
rs

X2
hðgÞ/ðgÞ þRedh

0ðgÞ/0ðgÞ
� �

; ð26Þ

where Red and Br are the Reynolds number and the Brinkman

number respectively. X and Ha are respectively the dimension-
less temperature and Hartman number. These are defined as
oelastic MHD flow over a stretching sheet embedded in a porous medium, Ain
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Red ¼ udd

v
; Br ¼

lu2p
kDT

; X ¼ DT
T1

; Ha ¼ B0d

ffiffiffi
r
l

r
;

1
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¼ d2

K�
p

;

X ¼ x

d
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� �2
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1

kC1
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� �2

;
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k

DC
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� �
:

Figure 3 Effect of Mn and Kp on transverse velocity for

Rc ¼ 0:2.
7. Results and discussion

The following discussion centres round to bring out the effect
of controlling parameters on volumetric rate of entropy gener-

ation besides citing the result of the previous author [34] as a
particular case. The striking feature of the velocity profiles,
for both longitudinal and transverse components is of two

layer character.
Figs. 2 and 3 show the longitudinal velocity profiles for vis-

cous ðRc ¼ 0Þ and viscoelastic ðRc – 0Þ liquid in the presence

of porous medium ðKp ¼ 0:5Þ and in the absence ðKp ¼ 100Þ;
([34]).
Stretching sheet

B0
x

y

Porous Medium

Figure 1 Flow geometry.

Figure 2 Effect of Rc and Kp on longitudinal velocity for

Mn ¼ 2.
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It is to note that increase in viscoelastic and magnetic
parameter reduces the velocity uniformly. This observation
agrees well with [34] and it is also remarked that the presence

of porous matrix reduces the velocity further. The increase in
Mn imposes greater Lorentz force, a resistive force of electro-
magnetic origin, causes a reduction in the velocity. Moreover,

in case of elastic liquid we cannot neglect strain; however,
small it may be, besides strain rate for viscous liquid, as it is
responsible for the recovery to the original state and for the
reverse flow that follows the removal of stress. Hence, in vis-

coelastic liquid there is a degree of recovery from the strain
when the stress is removed. The increase in elastic parameter
leads to greater degree of recovery which causes a greater

retardation in the velocity [34]. Moreover, two-layer character
is being exhibited by the velocity profiles due to magnetic field,
permeability and elastic parameters.

Figs. 4 and 5 show the retardation of transverse velocity
due to increase in the magnetic parameter and elastic
Figure 4 Effect of Rc and Kp on transverse velocity for Mn ¼ 2.

oelastic MHD flow over a stretching sheet embedded in a porous medium, Ain
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Figure 5 Effect of Mn and Kp on longitudinal velocity for

Rc ¼ 0:2.
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Figure 7 Effect of Mn and Kp on temperature profile for

Pr ¼ 2;Rc ¼ 0:2; b ¼ 0:1; r ¼ 1.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rc = 0.1, 0.2, 0.3

Kp = 100

Kp = 0.5

η

θ 
(η

)

6 S. Baag et al.
parameter and it is further reduced by the presence of porous

medium. It is remarked that the effect of all the parameters on
both the components remains the same. On careful observa-
tion it is further revealed that in the presence of porous mate-

rial, the compression of profiles is well marked in both the
cases but it is significant in the presence of magnetic field.

From Figs. 6–8 it is observed that presence of porous

matrix enhances the temperature at all points which contribute
to spreading of thermal boundary-layer to a larger domain
whereas, increase in Prandtl number decreases the tempera-

ture. The Prandtl number is a relative measure of the mecha-
nism of heat conduction and viscous stresses. For gases Pr is
of the order of unity which implies that heat conduction and
viscosity of the gas enjoy same priority. In the present case

we have considered the value of Pr > 1 i.e. for liquid. From
the profiles it is clear that temperature decreases with an
increase in Pr implies flow of liquids with low thermal diffusiv-

ity and high viscous stresses which causes a fall of temperature
0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ 
(η

)

Pr = 2.0, 4.0, 6.0

Kp = 100

Kp = 0.5

Figure 6 Effect of Pr and Kp on temperature Profile for

Mn ¼ 2;Rc ¼ 0:2;b ¼ 0:1; r ¼ 1.

Figure 8 Effect of Rc and Kp on temperature profile for

Pr ¼ 2;Mn ¼ 2;b ¼ 0:1; r ¼ 1.
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in the thermal boundary-layer, generates thinner boundary-
layer. It is further to note that magnetic parameter and elastic

parameter accelerate the temperature at all points. This seems
quite justified because of the resistive force due to interaction
of magnetic field and release of strain energy for the recovery
and reverse flow on removal of stress, causing retardation in

the velocity which has been discussed in Figs. 2 and 3. Hence,
both the resistive forces cause a retardation of velocity thereby
enhancing the temperature at all points. The same observation

made by Chen [38] is ‘‘Viscoelasticity will produce a rise in the

temperature profiles for Walters’ liquid B0 ” and the rise of
temperature with Mn is also indicated. This is also in good
agreement with [34].

Figs. 9 and 10 show the effects of heat source/sink param-
eter. It is seen that temperature increases with the increase in
source strength and the reverse effect is observed with an
increase in r the power index characterizing the temperature
oelastic MHD flow over a stretching sheet embedded in a porous medium, Ain
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Figure 12 Effect of Pr and Kp on the entropy generation number

for s ¼ k1 ¼ k2 ¼ k3 ¼ 0.
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variation. This is in good agreement with [34]. It is further
noticed that sink decreases the temperature and presence of

porous medium ðKp ¼ 0:5Þ increases the temperature in the

presence of source/sink.

Fig. 11 depicts the concentration distribution for various
values of parameters. From curves I and II it is seen that heav-
ier species decreases the concentration without magnetic field

and porous medium. Curves I and III show that magnetic
parameter increases the concentration distribution significantly
at all points. Curves III and IV show that the presence of por-

ous medium increases the concentration level at all points also.
Curves (IV, VIII) and (III, VII) claim that for higher index, s,
the concentration decreases irrespective of presence or absence

of porous medium. The same observation was made earlier in
respect of temperature also.

Thus, it is concluded that heavier species and higher
power index of plate concentration distribution cause a fall
Please cite this article in press as: Baag S et al., Entropy generation analysis for viscoelastic MHD flow over a stretching sheet embedded in a porous medium, Ain
Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2015.10.017
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in concentration whereas, under the influence of Lorentz force
and permeability of the medium the concentration level

increases. The rise in concentration level may be attributed
to the resistance offered by Lorentz force and presence of por-
ous medium creating an impasse to the flow.

Now, one of the most important characteristics of the med-
ium i.e. volumetric entropy generation in the presence of mag-
netic field and porous medium is to be discussed. While

discussing the effect of entropy generation following Woods
[39] we have disregarded the contribution due to heat at con-
stant pressure since the present discussion is confined to
incompressible liquid only. Besides the contribution of viscous

dissipation and Joulian dissipation considered by [34] we have
considered the Darcy dissipation term. Figs. 12–14 show the
effects of Pr;Mn and Rc on the entropy generation. The higher

Prandtl number fluid and magnetic parameter generate higher
entropy and the presence of Darcy dissipation reduces it. This
Please cite this article in press as: Baag S et al., Entropy generation analysis for visc
Shams Eng J (2016), http://dx.doi.org/10.1016/j.asej.2015.10.017
shows that presence of porous medium acts adversely for
higher Prandtl fluid flow in generating higher entropy.

The role of elastic parameter is interesting. It exhibits two
layer characters with higher entropy generation in the presence
of porous medium and the role of elastic parameter is same as

that of Prandtl number and magnetic parameter.
Figs. 15–17 exhibit the effects of plate temperature param-

eter r, the Hartmann number Ha and Reynolds number Red.

On careful observation it is revealed that:

(i) The roles of r and Ha are same as Mn only with lower
start-up at the plate.

(ii) The role of Reynolds number is also to generate the
higher entropy with one distinction contributing sub-
stantially in comparison with other parameters.
oelastic MHD flow over a stretching sheet embedded in a porous medium, Ain
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Table 1 Values of skin friction coefficient (f00ð0Þ), Nusselt number (�h0ð0Þ) and Sherwood number (�/0ð0Þ) for r ¼ s ¼ 1.

Mn Rc Pr b Sc Kp f 00ð0Þ �h0ð0Þ �/0ð0Þ
1 0.1 0.7 0.1 0.7 100 �1.49443 �0.134778 0.045939

2 0.1 0.7 0.1 0.7 100 �1.82878 �0.131969 0.02873

2 0.2 0.7 0.1 0.7 100 �1.93972 �0.129429 0.024877

2 0.2 7 0.1 0.7 100 �1.93972 1.00566 0.024877

2 0.2 0.7 0.2 0.7 100 �1.93972 �0.134037 0.024877

2 0.2 0.7 0.1 0.22 100 �1.93972 �0.129429 0.002993

2 0.2 0.7 0.1 0.7 0.5 �2.5 �0.113953 0.012976

2 0.2 7 0.1 0.7 0.5 �2.5 0.72805 0.012976
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To sum up, inclusion of Darcy dissipation in the process of
entropy generation in the present study favours higher entropy

level in all the curves baring liquid with higher Prandtl number
(liquid with low thermal diffusivity). Another striking feature
is that the entropy generation is positive in all the cases assur-

ing the process is irreversible. The process is irreversible in case
of viscous liquid (Pai [40]). The present study assures the irre-
versibility in case of viscoelastic liquid with higher level

entropy generation on the bounding surface in the presence
of porous medium contributing Darcy dissipation.

Finally, typical variables, the local skin friction coefficient

in terms of f 00ð0Þ, local Nusselt number i.e. wall temperature

gradient �h0ð0Þ and local Sherwood number i.e. the wall con-

centration gradient �/0ð0Þ for various parameters are shown
in Table 1. An increase in Mn and Rc decreases the skin fric-
tion as well as Sherwood number whereas Pr is to increase

the Nusselt number in the absence of porous matrix. Further,
in the presence of porous matrix increase in Pr decreases the
Nusselt number.

Rate of mass transfer at the surface is measured evaluating

�/0ð0Þ. The species considered are hydrogen ðSc ¼ 0:22Þ and
water vapour ðSc ¼ 0:7Þ in air medium for both destructive

and constructive reaction rates. Following facts are evident
from the tabulated values (Table 1). Heavier species in both
the presence/absence of porous matrix increases the rate of

mass transfer.

8. Conclusion

The reduction of velocity due to viscoelasticity of the liquid in
the presence of magnetic field is favoured in the presence of
porous medium resulting in a thinner boundary-layer, whereas

opposite effect is observed in case of thermal and concentra-
tion boundary-layers. Heavier species and higher concentra-
tion index contribute to thinner boundary-layer. The present

study assures the irreversibility in case of viscoelastic liquid
with higher entropy generation. Also heavier species is favour-
able to increase the concentration gradient.
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