The Secant Method for Nondifferentiable Operators

M. A. HERNÁNDEZ AND M. J. RUBIO
Department of Mathematics and Computation
University of La Rioja
C/ Luis de Ulloa s/n. 26004 Logroño, Spain
<mahernan><mjesus.rubio}@dmc.unirioja.es

(Received January 2001; accepted June 2001)

Abstract—In this paper, we use the Secant method to find a solution of a nonlinear operator equation in Banach spaces. A semilocal convergence result is obtained. For that, we consider a condition for divided differences which generalizes the usual once, i.e., Lipschitz continuous or Hölder continuous conditions. Besides, we apply our results to approximate the solution of a nonlinear equation. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords—The Secant method, Recurrence relations, Nondifferentiable operator.

1. INTRODUCTION

The Secant method for solving a nonlinear equation in Banach spaces is a well-known iterative process [1]. An important feature of this method is that it does not use derivatives when it is applied. Let X, Y be two Banach spaces and $F : \Omega \subseteq X \rightarrow Y$ a nonlinear operator and we consider the equation

$$F(x) = 0.$$

(1)

Let us denote by $\mathcal{L}(X,Y)$ the space of bounded linear operators from X to Y. An operator $[x,y;F] \in \mathcal{L}(X,Y)$ is called a divided difference of first order for the operator F on the points x and $y \ (x \neq y)$ if the following equality holds:

$$[x,y;F](x - y) = F(x) - F(y).$$

(2)

Using this definition, the Secant method is described by the following algorithm:

$$x_{n+1} = x_n - [x_{n-1},x_n;F]^{-1}F(x_n), \quad x_0, x_1 \text{ given.}$$

(3)

The convergence of (3) to a solution of (1) has been studied by other authors [1–6]. The basic assumption is that the divided difference of first order for the operator F is Lipschitz or Hölder

Supported in part by a grant from DGES (Ref. PB-98-0198) and a grant from the University of La Rioja (Ref. API-00/B-16).
continuous in some ball around the initial iterate. But these assumptions force to operator \(F \) is differentiable \([1,4]\). In this work, we relax this requirement and just assume the following condition:

\[
\| [x, y; F] - [v, w; F] \| \leq \omega(\|x - v\|, \|y - w\|); \quad x, y, v, w \in \Omega,
\]

where \(\omega : \mathbb{R}^+ \times \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) is a continuous nondecreasing function in its two arguments. It is evident that this condition generalizes the conditions previously indicated, by only considering \(\omega(u_1, u_2) = k(u_1 + u_2) \) for the Lipschitz continuous case and \(\omega(u_1, u_2) = k(u_1^p + u_2^p) \) for the \((k, p)\)-Hölder continuous one. Moreover, in general, this condition does not involve \(F \) is differentiable. Then we provide a semilocal convergence result for nondifferentiable operators in general. Finally, we give an example where the last is applied.

2. CONVERGENCE STUDY

Theorem 2.1. Assume that, for every pair of distinct points \(x, y \in \Omega \), there exists a first-order divided difference \([x, y; F] \in \mathcal{L}(X, Y)\). Let \(x_0, x_{-1} \in \Omega \) and assume

(a) the linear operator \(L_0 = [x_{-1}, x_0; F] \) is invertible and

\[
\| [x_{-1}, x_0; F]^{-1} \| \leq \beta, \quad \| x_0 - x_{-1} \| = \alpha, \quad \| L_0^{-1}F(x_0) \| \leq \eta;
\]

(b) \(\| [x, y; F] - [v, w; F] \| \leq \omega(\|x - v\|, \|y - w\|); x, y, v, w \in \Omega, \) where \(\omega : \mathbb{R}^+ \times \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) is a continuous nondecreasing function in its two arguments;

(c) we denote by \(m = \max(\beta \omega(\alpha, \eta), \beta \omega(\eta, \eta)) \) and assume that the equation

\[
u \left(1 - \frac{m}{1 - \beta \omega(u + \alpha, u)}\right) - \eta = 0
\]

has at least one positive zero, let \(R \) be the minimum positive one.

If \(\beta \omega(R + \alpha, R) < 1, M = m/(1 - \beta \omega(R + \alpha, R)) < 1, \) and \(B(x_0, R) \subseteq \Omega \), then the sequence \(\{x_n\} \) given by (3) is well defined, remains in \(B(x_0, R) \) and converges to a unique solution \(x^* \) of equation (1) in \(B(x_0, R) \).

To simplify the notation, we denote \([x_{n-1}, x_n; F] = L_n\). First, we prove, by mathematical induction, that the sequence given in (3) is well defined, namely iterative procedure (3) makes sense if, at each step, the operator \([x_{n-1}, x_n; F]\) is invertible and the point \(x_{n+1} \) lies in \(\Omega \). From the initial hypotheses, it follows that \(x_1 \) is well defined and \(\| x_1 - x_0 \| \leq \eta < R \). Therefore, \(x_1 \in B(x_0, R) \subseteq \Omega \).

Using (b) and assuming that \(\omega \) is nondecreasing, we obtain

\[
\| I - L_0^{-1}L_1 \| \leq \| L_0^{-1} \| \| L_0 - L_1 \| \leq \| L_0^{-1} \| \omega(\| x_{-1} - x_0 \|, \| x_0 - x_1 \|) \\
\leq \beta \omega(\alpha, \eta) \leq \beta \omega(R + \alpha, R) < 1,
\]

and, by the Banach lemma, \(L_1^{-1} \exists \) exists and

\[
\| L_1^{-1} \| \leq \frac{\beta}{1 - \beta \omega(R + \alpha, R)},
\]

and consequently, the iterate \(x_2 \) is well defined. Moreover, by (2) and (3), we get

\[
F(x_1) = F(x_0) - [x_0, x_1; F](x_0 - x_1) = (L_0 - L_1)(x_0 - x_1).
\]

Then, by (b), we have

\[
\| F(x_1) \| \leq \| L_1 - L_0 \| \| x_1 - x_0 \| \leq \omega(\| x_0 - x_{-1} \|, \| x_1 - x_0 \|) \| x_1 - x_0 \| \leq \omega(\alpha, \eta) \| x_1 - x_0 \|.
\]
So, we obtain
\[\|x_2 - x_1\| \leq \|L_1^{-1}\| \|F(x_1)\| \leq \frac{m}{1 - \beta \omega(R + \alpha, R)} \|x_1 - x_0\| = M\|x_1 - x_0\| < \eta. \]

On the other hand, if we take into account that \(R \) is a solution of (4), then
\[\|x_2 - x_0\| \leq \|x_2 - x_1\| + \|x_1 - x_0\| \leq (M + 1)\|x_1 - x_0\| \leq (M + 1)\eta < R, \]
and \(x_2 \in B(x_0, R) \subseteq \Omega. \)

Then, by induction, the following items are shown for \(j \geq 1: \)

(I\(_j\)) \(\exists L_j^{-1} = [x_{j-1}, x_j; F]^{-1} \) such that \(\|L_j^{-1}\| \leq \frac{\beta}{1 - \beta \omega(R + \alpha, R)}; \)

(II\(_j\)) \(\|x_{j+1} - x_j\| \leq M\|x_j - x_{j-1}\| \leq M^j\|x_1 - x_0\| < \eta. \)

Assuming that the linear operators \(L_j \) are invertible and \(x_{j+1} \in B(x_0, R) \subseteq \Omega \) for all \(j = 1, \ldots, n - 1, \) we obtain
\[\|I - L_0^{-1}L_n\| \leq \|L_0^{-1}\| \|L_0 - L_n\| \leq \beta \omega(\|x_n - x_1\|, \|x_n - x_0\|) \]
\[\leq \beta \omega(\|x_n - x_0\| + \|x_0 - x_{n-1}\|, \|x_n - x_{n-1}\|) \leq \beta \omega(R + \alpha, R) < 1, \]
and therefore,
\[\|L_n^{-1}\| \leq \frac{\beta}{1 - \beta \omega(R + \alpha, R)}. \]

From the definition of the first divided difference and the Secant method, we can obtain
\[F(x_n) = F(x_{n-1}) - [x_{n-1}, x_n; F](x_{n-1} - x_n) = (L_{n-1} - L_n)(x_{n-1} - x_n). \]

Taking norms in the above equality and (b), we obtain
\[\|F(x_n)\| \leq \|L_n - L_{n-1}\| \|x_n - x_{n-1}\| \leq \omega(\|x_{n-1} - x_{n-2}\|, \|x_n - x_{n-1}\|)\|x_n - x_{n-1}\| \]
\[\leq \omega(\eta, \eta)\|x_n - x_{n-1}\|. \]

Thus,
\[\|x_{n+1} - x_n\| \leq \|L_n^{-1}\| \|F(x_n)\| \leq \frac{m}{1 - \beta \omega(R + \alpha, R)} \|x_n - x_{n-1}\| \]
\[= M\|x_n - x_{n-1}\| \leq M^n\|x_1 - x_0\| < \eta. \]

Consequently, from (4) and (II\(_j\)), it follows:
\[\|x_{n+1} - x_0\| \leq \|x_{n+1} - x_n\| + \|x_n - x_{n-1}\| + \cdots + \|x_2 - x_1\| + \|x_1 - x_0\| \]
\[\leq \left[M^n + M^{n-1} + \cdots + 1 \right] \|x_1 - x_0\| \leq \left[\frac{1 - M^{n+1}}{1 - M} \right] \|x_1 - x_0\| < \frac{1}{1 - M} \eta = R. \]

So, \(x_{n+1} \in B(x_0, R) \subseteq \Omega \) and the induction is complete.

Second, we prove that \(\{x_n\} \) is a Cauchy sequence. For \(k \geq 1, \) we obtain
\[\|x_{n+k} - x_n\| \leq \|x_{n+k} - x_{n+k-1}\| + \|x_{n+k-1} - x_{n+k-2}\| + \cdots + \|x_{n+1} - x_n\| \]
\[\leq \left[M^{k-1} + M^{k-2} + \cdots + 1 \right] \|x_{n+1} - x_n\| \]
\[\leq \frac{1 - M^k}{1 - M} \|x_{n+1} - x_n\| < \frac{1}{1 - M} M^n\|x_1 - x_0\|. \]

Therefore, \(\{x_n\} \) is a Cauchy sequence and converges to \(x^* \in B(x_0, R). \)
Finally, we see that x^* is a zero of F. Since

$$
\|F(x_n)\| \leq \omega(\eta, \eta)\|x_n - x_{n-1}\|
$$

and $\|x_n - x_{n-1}\| \to 0$ as $n \to \infty$, we obtain $F(x^*) = 0$.

To show the uniqueness, we assume that there exists a second solution $y^* \in B(x_0, R)$ and consider the operator $A = [y^*, x^*; F]$. Since $A(y^* - x^*) = F(y^*) - F(x^*)$, if the operator A is invertible then $x^* = y^*$. Indeed,

$$
\|L_0^{-1}A - I\| \leq \|L_0^{-1}\| \|A - L_0\| \leq \|L_0^{-1}\| \|y^*, x^*; F\| - \|y^*, x^*; F\| - [x_{-1}, x_0; F]\|
$$

$$
\leq \beta \omega (\|y^* - x_{-1}\|, \|x^* - x_0\|) \leq \beta \omega (\|y^* - x_0\| + \|x_0 - x_{-1}\|, \|x^* - x_0\|)
$$

$$
\leq \beta \omega (R + \alpha, R) < 1
$$

and the operator A^{-1} exists.

3. NUMERICAL EXAMPLE

Now we apply the semilocal convergence result given above to the following system:

$$
x^2 - y + 1 + \frac{1}{9} |x - 1| = 0,
$$

$$
y^2 + x - 7 + \frac{1}{9} |y| = 0.
$$

(5)

We, therefore, have an operator $F : \mathbb{R}^2 \to \mathbb{R}^2$ such that $F = (F_1, F_2)$. For $x = (x_1, x_2) \in \mathbb{R}^2$, we take $F_1(x_1, x_2) = x_1^2 - x_2 + 1 + (1/9) |x_1 - 1|$, $F_2(x_1, x_2) = x_2^2 + x_1 - 7 + (1/9) |x_2|$.

Let $x = (x_1, x_2) \in \mathbb{R}^2$ and $\|x\| = \|x\|_{\infty} = \max_{1 \leq i \leq 2} |x_i|$. The corresponding norm on $A \in \mathbb{R}^2 \times \mathbb{R}^2$ is

$$
\|A\| = \max_{1 \leq i \leq 2} \sum_{j=1}^{2} |a_{ij}|.
$$

For $v, w \in \mathbb{R}^2$, we take $[v, w; F] \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ as

$$
[v, w; F]_{i1} = \frac{F_1(v_1, w_2) - F_1(w_1, w_2)}{v_1 - w_1}, \quad [v, w; F]_{i2} = \frac{F_1(v_1, v_2) - F_1(v_1, w_2)}{v_2 - w_2}, \quad i = 1, 2.
$$

Therefore,

$$
[v, w; F] = \begin{pmatrix}
\frac{v_2^2 - w_2^2}{v_1 - w_1} -1 & \frac{v_1 - 1 - |w_1 - 1|}{v_1 - w_1} & 0 \\
v_1 - w_1 & \frac{|v_1 - 1| - |w_1 - 1|}{v_1 - w_1} & 0 \\
1 & 0 & \frac{|v_2 - |w_2|}{v_2 - w_2}
\end{pmatrix}
$$

and

$$
\|x, y; F\| - [v, w; F]\| \leq \|x - v\| + \|y - w\| + \frac{2}{9}.
$$

From (b), we consider

$$
\omega(u_1, u_2) = u_1 + u_2 + \frac{2}{9}.
$$

Now, we apply the Secant method to approximate the solution of $F(x) = 0$.

We choose $x_{-1} = (0.9, 1.1)$ and $x_0 = (1, 1)$. Using iteration (3), after three iterations we obtain

$$
x_2 = (1.06867, 2.18207) \quad \text{and} \quad x_3 = (1.14038, 2.34476).
$$

Then, we take $x_{-1} = x_2$ and $x_0 = x_3$. With the notation of Theorem 2.1, we can easily obtain the following:

$$
\alpha = 0.162691, \quad \beta = 0.479385, \quad \eta = 0.0199155, \quad m = 0.194069.
$$

In this case, the solution of equation (4) is $R = 0.0263993$. Besides, $\beta \omega (R + \alpha, R) = 0.209832 < 1$ and $M = 0.0245605 < 1$. Therefore, the hypotheses of Theorem 2.1 are fulfilled, what ensures that a unique solution of equation $F(x) = 0$ exists in $\overline{B(x_0, R)}$.

We obtain the vector x^* as the solution of system (5), after nine iterations

$$
x^* = (1.15936, 2.36182).
$$
REFERENCES