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Let A be a finite dimensional, connected, associative algebra withunit
over an algebraically closed field k. All modules we consider are finitely
generated, and mod A will denote the category of (finitely generated)
A-left-modules.

The topic of this work is the investigation of the set of tilting modules
over A.

A tilting module T is defined by the following three properties:

(i) the projective dimension pd T of T is finite,

(ii) Ext i
A(T, T )=0 for all i>0, and

(iii) there is an exact sequence

0 � AA � T 1 � T 2 � } } } � T t&1 � T t � 0

with T i in the additive closure add T of T for all 1�i�t.

Tilting modules play an important role in the representation theory of
finite dimensional algebras. Traditionally, one considers tilting modules of
projective dimension at most one together with their endomorphism rings.
In this case, the category of modules over the endomorphism algebra of a
tilting module T over A shares a lot of properties with mod A [BrB, HR].
Moreover, more recent results of Auslander and Reiten [AR] prove that
tilting modules are in one�one correspondence to important subcategories
of mod A.

Tilting modules are characterized by a singular, i.e., an exceptional
behaviour. They occur with a quite small density in the module category
of a finite dimensional algebra, and as in other fields of mathematics, one
expects that the study of these exceptional objects gives information about
the global structure of the object under investigation, here the category
mod A. Moreover, it is due to their discrete appearance that the set of
tilting modules over A has the tendency to be open to a combinatorial
treatment.
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It was observed by C. M. Ringel that the set of tilting modules over
A forms a simplicial complex 7, and in a problems session during
a ring theory conference in Antwerp 1987, he proposed to study this
complex.

The vertices, i.e., the zero-simplices of 7, are the isomorphism classes of
indecomposable direct sumands of tilting modules, and [T0 , ..., Tr] is an
r-simplex if �r

i=0 Ti�Z is a tilting module for some Z in mod A.
We will also be interested in the simplicial subcomplex 7�1 of 7. Its

vertices are the indecomposable direct summands of tilting modules with
projective dimension at most one. Note that the chambers of 7�1

correspond to those tilting modules which were traditionally considered in
representation theory.

A tilting module has, up to isomorphism, n+1 indecomposable direct
summands, where n+1 is the number of isomorphism classes of simple
A-modules [CHU]. Hence, 7 and 7�1 are n-dimensional simplicial
complexes. Note that a simplicial complex is said to be n-dimensional if it
contains an n-simplex but no (n+1)-simplex. Moreover, by definition 7
and 7�1 are of pure dimension n, i.e., every r-simplex is the face of an
n-simplex.

In general, 7 and 7�1 are rather complicated. Usually, they are not
finite, not even locally finite, and they are sometimes not connected.
Examples may be found in [U2], U3].

In [RiS2] Riedtmann and Schofield proved that the geometric realisation
&7�1& of 7�1 is an n-ball provided 7�1 is finite. Implicitly they used in
their proof that 7�1 is shellable. A simplicial complex 7 of pure dimension
n is called shellable, it its n-simplices may be given a linear order
_1 , _2 , _3 , ..., called a shelling, such that for all l>1, the simplicial subcom-
plex (� l&1

i=1 _i) & _l is of pure dimension n&1. It was proved in [H, RiS1]
that 7�1 is a pseudomanifold, i.e., all (n&1)-simplices are the face of at
most two n-simplices, and it is easy to see that 7�1 has a boundary. Recall
that the boundary of a purely n-dimensional simplicial complex consists of
those (n&1)-simplices which are the face of precisely one n-simplex. Under
the hypothesis that 7�1 is finite, shellability together with the fact that 7�1

is a pseudomanifold with boundary implies that &7�1& is an n-ball if it is
finite [DK].

In [U1] we proved that also 7 is shellable provided it is finite.
It is one of the aims of this article to give a uniform approach to these

results and to prove moreover that, under certain finiteness conditions, also
the boundary complexes $7�1 and $7 of 7�1 respectively 7 are shellable.

In Section 1 we give a purely combinatorial criterion, based on the
combinatorics in [RiS2] which implies shellability of a simplicial complex.

The second section is preliminary. We provide some of the representa-
tion theoretic background which is needed frequently later.
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In the third section we apply the combinatorial criterion to 7 and $7 in
case 7 is finite.

An important invariant of a shellable simplicial complex is its charac-
teristic. For the definition, which is rather technical, we refer to Section 3
below. A result of Bjo� rner [Bj] states that the geometric realisation of a
shellable simplicial complex of characteristic h has the homotopy type of
the wedge of h n-spheres. In Section 3 we also prove that if 7 is finite, then
the characteristic of 7 is zero, whereas the characteristic of $7 may be
arbitrarily large.

In order to prove shellability of $7�1 for $7�1 finite (note that this does
not imply that 7�1 is finite) and to determine its characteristic we have to
analyze carefully the structure of tilting modules of projective dimension at
most one. This will be done in Section 4. These investigations are closely
related to homological questions of subcategories of mod A. Our main
result in Section 4 will imply a necessary and sufficient criterion when the
subcategory of modules of projective dimension at most one is functorially
finite. This answeres a question raised by Auslander and Reiten in [AR].

In Section 5 we prove that $7�1 is a shellable pseudomanifold if it is
finite. Then its geometric realization is a ball or a sphere, and we give
examples that both cases occur. In particular, if $7�1 is finite, then it is
shellable of characteristic zero or one.

We saw above that shellability of a simplicial complex has nice topologi-
cal consequences. The same holds for algebraic combinatorics. Namely, the
face ring (for the definition see Section 6) of a shellable simplicial complex
is a Cohen�Macaulay ring [Re], sometimes a Gorenstein ring. We briefly
recall these concepts in Section 6 and mention some consequences of
shellability for the face rings of the simplicial complex of tilting modules
respectively the corresponding boundary complexes.

1. A COMBINATORIAL CRITERION IMPLYING SHELLABILITY

In this section we assume that 7 is a countable simplicial complex of
pure dimension n.

Let { be a simplex in 7, possibly {=<. We denote by C({) the set of
chambers in 7 containing {.

Assume that for all { in 7 we have a partial order {� satisfying the
following conditions:

(PO1) The chambers which are neighbors in the Hasse diagram of {�

have a common (n&1)-simplex.

(PO2) Two minimal elements have a common (n&1)-simplex.

(PO3) Every _ # C({) has a minimal element + # C({) with + {� _.
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Assume moreover that the partial orders are compatible with respect to
<
�

, that is,

(PO4) _ {� _$ implies that _ <
�

_$.

Proposition. Assume that for all simplices { # 7 the sets C({) are par-
tially ordered such that (PO1) up to (PO4) hold. Then 7 is shellable.

Proof. We take a linear extension of <
�

, i.e., we order the chambers
_1 , _2 , _3 , ... such that _ i <

�
_j implies that i�j.

Let l>1 and consider 7l&1 & _ l , where 7l&1=� l&1
i=1 _ i .

We claim that this intersection is not empty. If _l is not minimal with
respect to <

�
then this follows from (PO1). If _ l is minimal, then, since _1

is also minimal with respect to <
�

we get from (PO2) that _1 & _l{<.
Let <{{ be a simplex in 7l&1 & _ l . We have to prove that { is con-

tained in an (n&1)-simplex in 7l&1 & _l . Let {/_s for some s<l.
If _l is minimal with respect to {� then _ l and _s are not comparable.

Otherwise it would follow from (PO4) that _l <
�

_s , and the choice of the
linear order gives l�s, a contradiction. According to (PO3) there is a
chamber + # C({) with + {� _s . Again using (PO4) we get that + <

�
_s and

conclude that + # 7l&1 . Now (PO2) states that + & _l is (n&1) dimen-
sional and it contains {.

If _l is not minimal with respect to {� then (PO3) yields a non-trivial
path

+& } } } &_m&_l

in the Hasse diagram of {�, and _m <
<

_l , which again implies that _m lies
in 7l&1 . Then _m & _l is (n&1)-dimensional and it contains {.

2. BASIC RESULTS FROM REPRESENTATION THEORY

We keep the notions of the Introduction and refer for unexplained
terminology to [R]. From now on, 7 will always denote the simplicial
complex of tilting modules.

2.1. An A-module M is called multiplicity free if in a decomposition
M=�r

i=1 Mi of M into indecomposable direct sumands we have that M i

and Mj are not isomorphic for i{j. Obviously, the r-simplices of 7
correspond bijectively to the isomorphism classes of multiplicity free direct
summands of tilting modules with r+1 indecomposable direct summands.
This allows us to identify simplices with modules.
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Let M=�r
i=1 Mi be a multiplicity free module. We denote the module

�j{i M j by M[i].
A module M in 7 is said to be a partial module. Note that this is a

deviation of the common use of this terminology. We also call the module
0 a partial tilting module and identify it with the empty simplex. By defini-
tion, the dimension of the empty simplex is &1. Partial tilting modules
with n pairwise distinct indecomposable direct summands are called almost
complete tilting modules. Let M be a partial tilting module. A multiplicity
free module C with the properties that M�C is a tilting module and
add M & add C=0 is said to be a complement to M.

2.2. In [HU2] the notion of a Bongartz complement to a partial tilting
module was introduced. Since such a complement will play an essential role
in the following sections we recall its definition and basic properties from
[HU2].

Following [AR] we denote for an A-module M the full subcategory of
A-modules X with Ext i

A(M, X )=0 for i>0 by M =.
Let M be a partial tilting module and C a complement to M. We call C

a Bongartz complement to M provided (M�C )==M =. Obviously, AA is
a Bongartz complement to 0. It is easy to see that if M admits a Bongartz
complement C, then C is uniquely determined up to isomorphism.

2.3. A subcategory X of mod A is called contravariantly finite [AS], if
every C # mod A has a right X-approximation, i.e., a morphism FC � C
with FC # X such that the induced morphism HomA(X, FC ) � HomA(X, C)
is surjective for all X # X. There is an obvious dual notion of left
X-approximations, and X is called covariantly finite if every C in mod A
has a left X-approximation. If X is both contravariantly and covariantly
finite, then X is said to be functorially finite.

It follows from the results in [AR] that a partial tilting module admits
a Bongartz complement if and only if M = is covariantly finite.

In [HU2] we gave an example of an algebra A and a partial tilting
module M such that M = is not covariantly finite, hence Bongartz com-
plements do not always exist.

Let M be a tilting module of projective dimension at most one. Auslander
and Reiten proved in [AR] that then M = is always covariantly finite.
Hence a partial tilting module of projective dimension at most one admits
a Bongartz complement.

2.4. Proposition [HU2]. The following are equivalent for a partial
tilting module M with complement C.

(i) C=�r
i=1 Ci is the Bongartz complement to M.

(ii) None of the modules Ci is generated by M�C[i].
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Corollary [HU2]. If M is an almost complete tilting module, then M
admits a Bongartz complement.

The proposition above is the motivation for the notion ``Bongartz com-
plement.'' There is a well known construction due to Bongartz [Bo] to
produce a complement C with pd C�1 to a partial tilting module M of
projective dimension at most one: consider an exact sequence

0 � A � E � M t � 0

such that the connecting homomorphism HomA(M, M t) � Ext1
A(M, A) is

surjective. Then it is easy to check that E�M is a tilting module and
pd E�1. Note that this construction does not produce complements to
partial tilting modules of higher projective dimension. When investigating
tilting modules of projective dimension at most one in [RiS2], Riedtmann
and Schofield called a multiplicity free direct summand C of E such that
M�C is a tilting module and add M & add C=0 a Bongartz completion
to M. They proved an analogous statement to Proposition 2.3 above. In
particular we see, that the Bongartz complement to a partial tilting module
of projective dimension at most one (compare Subsection 2.2) has always
projective dimension at most one. Of course one may also verify our defi-
nition of a Bongartz complement directly. In fact, let X # M = and apply
HomA(&, X ) to

0 � A � E � M t � 0.

This shows that Ext1
A(E, X )=0, hence X # (M�C )=.

3. SHELLABILITY OF 7 AND $7

Let 7 be a shellable simplicial complex. For a given sheling and for l�1
we denote the union � l

i=1 _i by 7 l . For l>1 one further defines the restric-
tion R(_l ) of a chamber _ l as the set of vertices v of _l such that _l"[v]
lies in 7l&1 .

7 is said to be shellable of characteristic h if h is the cardinality of the
chambers _ in 7 satisfying that R(_)=_. Note that it follows from [Bj]
that the characteristic does not depend on the choice of a shelling.

3.1. Following [RiS2] we associate with 7 an oriented graph K9 0 as
follows: The vertices are the elements of C(<), i.e., the chambers of 7, and
there is an arrow T � T $ in K9 0 if T and T $ have a common (n&1)-simplex
and if (T $)= is properly contained in T =.
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The definition immediately implies that K9 0 has no oriented cycle. Hence,
as in [RiS2] we obtain a partial order <

�
on C(<) given by the rule that

_ <
�

_$ if there is a path from _ to _$ in K9 0 .
Let M be a partial tilting module which we identify with the simplex {.

By K9 M we denote the full subgraph of K9 0 whose vertices are the chambers
of 7 containing {. As a subgraph of K9 0 , the quiver K9 M has no oriented
cycles, and as above, we obtain a partial order {� on C({). Obviously,
_ {� _$ implies _ <

�
_$, hence condition (PO4) holds. Clearly, two neighbors

_ and _$ in the Hasse diagram of {� have a common (n&1)-simplex, thus
also (PO1) is satisfied for all { # 7.

In order to verify the remaining conditions of the partial order we need
the following result from [U1]:

Lemma. M�C is a source in K9 M if and only if C is the Bongartz com-
plement to M. In particular, K9 M has at most one source.

This lemma implies that the condition (PO2) is empty for the n-simplices
of 7.

By setting M=0 in the lemma above we see that AA is the unique source
in K9 0 . Assume now that 7 is finite. Then K9 M is connected for all partial
tilting modules M (including M=0) by the previous lemma. Hence also
the Hasse diagrams of {� are connected for all { # 7. This implies the condi-
tion (PO3). Applying the criterion of the first section we obtain:

Corollary [U3]. If 7 is finite, then it is shellable.

3.2. In order to determine the characteristic h of a shelling of 7 we need
the following

Lemma. Let T be a multiplicity free tilting module. We decompose T into
T 1 �T 2, where T 1=� r

i=0 Ti and T 2=�n
i=r+1 Ti such that every

indecomposable direct summand Ti of T 1 is generated by T[i]=� j{i Tj .
Then Ti is generated by T 2.

Proof. The proof is an induction on r.
If r=0 there is nothing to show.
Let r>0. Since Tr is generated by T[r] we have a non-split surjection

T :0
0 � } } } T :r&1

r&1
�E � Tr ,

where the :i are non-negative integers and E # add T 2. By indunction
hypothesis, all Ti for 0�i�r&1 are generated by T 2�Tr . Thus there is
a non-split surjection T :r

r �E$ � Tr with E$ # add T 2. It follows from [AS]
that Tr is generated by T 2, the assertion.
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Proposition. Let 7 be finite. The characteristic of a shelling of 7 is zero.

Proof. As in Section 1 we take as a shelling a linear extension of <
�

.
Assume that for l>1 there is an n-simplex _ l , such that the restriction

R(_l )=[v # _l | _l"[v]/7l&1]

is _l . Let T=�n
i=0 T i be the tilting module associated with _ l .

Assume that for some 0�i�n the module Ti is the Bongartz comple-
ment to T[i]. Since by assumption, T[i]={ is contained in a chamber _t ,
for some t<l, and since K9 T[i] is finite and connected there is a non-trivial
path from _l to _t in K9 T[i] . This is a contradiction to the choice of the
linear order of the chambers of 7.

Hence none of the Ti is Bongartz complement to the T[i], and it follows
from [HU2] that all Ti are generated by T[i]. In the terminology of the
lemma above, we have T 2=0, thus Ti is generated by 0, a contradiction.

3.3. It is the aim of this subsection to investigate the boundary of 7.

Lemma. The Bongartz complement to a faithful almost complete tilting
module M is cogenerated by M.

Proof. Let X be the Bongartz complement to M, hence M ==
(M�X )=. Since M is faithful, the injective cogenerator D(AA) of mod A
is generated by M. Here D denotes the standard duality Homk(&, k).
Choose an exact sequence

' : 0 � K � E � D(AA) � 0

with E # add M such that the induced morphism HomA(M, E) �
HomA(M, D(AA)) is surjective. Then K # M =, hence Ext i

A(X, K )=0 for all
i>0. For some natural number r there is an injective map f : X � D(AA)r.
Forming the direct sum of r copies of ' and applying HomA(X, &) to

0 w�K r w�E r w�? D(AA)r w�0

we see that there exists a morphism h : X � E r with f=h?. Obviously, h is
injective, hence X is cogenerated by M, the assertion.

Corollary. A faithful almost complete tilting module M has at least
two non-isomorphic complements.
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Proof. According to [HU2], the module M admits a Bongartz com-
plement X. The lemma above states that X is cogenerated by M, and it
follows from [CHU] that there is a non-split short exact sequence
0 � X � E � Y � 0 with E # add M and Y a second complement to M.

Proposition. $7 is the set of those partial tilting modules which are
direct summands of non-faithful almost complete tilting modules.

Proof. The inclusion � is immediate from the corollary above. For the
other inclusion assume that M is an almost complete tilting module with
non-isomorphic complements X and Y. Since the Bongarz complement to
M is unique, we may assume that Y is not the Bongartz complement to M.
Thus Y is generated by M according to [HU2]. Since M�Y is a tilting
module, it is faithful. Let g : AA � F be injective with F # add M�Y. Since
Y is generated by M, there is a surjective map h : E � F with E # add M.
Then there is an injective map f : AA � E with fh=g, in particular,
M is faithful. Hence, a non-faithful almost complete tilting module lies
in $7.

This proposition has been known in several special cases. It was proved
for hereditary algebras in [HU1] (partially in [RiS1]), for tilting modules
of projective dimension at most one in [H], and for tilting modules of
higher (but finite) projective dimension under the additional assumption
that the set [X # mod A | Ext i

A(M, X )=0 for all i>0 and pd M<�] is
contravariantly finite in [CHU].

Let A=k29 �I, where 29 is a finite quiver with vertex set [0, ..., n] and I
an admissable ideal. We denote the (isomorphism classes) of simple
A-modules by S0 , ..., Sn , the indecomposable projective A-modules with top
Si by Pi and the indecomposable injective A-modules I with I�soc I=Si by
Ii . Here soc I denotes the socle of I. Let Pi be an indecomposable projective
A-module corresponding to the starting vertex of a path of maximal length
in A. It is easy to see that the module P[i]=� j{i P j is a non-faithful
almost complete tilting module. In particular, 7 is a simplicial complex
with boundary. Since P[i] has projective dimension zero, also $7�1 is not
empty.

3.4. Throughout this section we assume that A has at least two simple
modules. We will prove that $7 is shellable provided 7 is finite.

To prove shellability we need to extend the methods used above. We
associate with $7 an oriented graph K9 ($)0 with vertices the chambers of
$7. There is an arrow M � M$ in K9 ($)0 if M and M$ have a common
(n&2)-simplex and if (M$)= is propertly contained in M =. As before, this
induces a partial order <

�
on C(<), the set of chambers in $7. Let { be

a simplex in $7 which we identify with the partial tilting module M.
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Analogously to Subsection 3.1 we denote by K9 ($)M the full subquiver of
K9 ($)0 with vertices the chambers of $7 containing {. As above, this induces
a partial order {� on C({). By definition, these partial orders satisfy (PO1)
and obviously, also (PO4) holds.

Contrary to K9 0 , the quiver K9 ($)0 may decompose if it is finite. Consider
the following example. Let An+1 be the path algebra of the quiver

m
0

�w
:1 m

1

�w
:2 m

2

} } } m
n&1

�w
:n m

n

bound by the relations :i+1 :i=0 for all 1�i<n. The simplicial complexes
7 and $7 are finite. The Auslander�Reiten quiver of An+1 has the form

P2

S0 ����� S1 ����� S2 } } } Sn&1 ����� Sn

P1 Pn

The unique faithful almost complete tilting module is P=�n
i=1 Pi , and K9 0

is

with arrows from P�Sj to P�Sl for 0�j�n&1 and j<l�n.
It is easy to see that K9 ($)0 decomposes into n connected components

C9 ($) i , 1�i�n, with n+1 vertices. A component C9 ($) i has the form
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with arrows from P[i]�Sj to P[i]�Sl for 0�j�n&1 and j<l�n.

Lemma 1. Let M be an (n&2)-simplex in $7 and let U�V be the
Bongartz complement to M. Then M�U or M�V lie in $7.

Proof. Assume that M�U and M�V are faithful. According to
Lemma 3.3, the modules U and V are cogenerated by M�V, respectively
M�U. Thus we obtain two non-split short exact sequences

'1 : 0 w�U w�
+1 E1�Vr w�U$ w�0

and

'2 : 0 w�V w�
+2 E2�Us w�V$ w�0

with E1 , E2 # add M.
If r=0 or s=0, then it is easy to see that M is faithful, a contradiction

to the assumption that M # $7. Hence r{0{s. Consider

( 1
0

0
+r

2
)

0 w�U w�
+1 E1�Vr www� E1� (E2�Us)r=E3�Ut

with E3 # add M.
Set

+$2=\1
0

0
+r

2+
and +=+1 +$2 . Obviously, + is a monomorphism. If + does not split, then
+ is cogenerated by M, which implies that M is faithful. Hence + splits and
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we get ? : E3�U t � U such that +?=1U=+1(+$2?). This implies that +1 is
a section. Hence '1 splits, a contradiction.

Lemma 2. Assume that all partial tilting modules over A admit a
Bongartz complement. Let M�C be a chamber in $7. Then M�C is a
source in K9 ($)M if and only if C is a direct summand of the Bongartz comple-
ment to M.

Proof. Let C be a direct summand of the Bongartz complement C� of M.
Since (M�C� )==(M�C )==M =

$(M�Z)= for all partial tilting modules
Z such that M�Z # $7, there is no arrow pointing to M�C.

For the converse assume that C is not a direct summand of the Bongartz
complement to M. Let M�C�X be a tilting module. Since M�C is not
faithful, X is the unique complement to M�C by Proposition 3.3, hence
the Bongartz complement to M�C. In particular, X is not generated by
M�C. By assumption, X�C is not the Bongartz complement to M,
hence we may assume without loss of generality that the indecomposable
direct summand C1 of C is generated by M�X�C[1].

Let U�V be the Bongartz complement to M�C[1]. This exists by
assumption. According to the previous lemma we may assume that M�
C[1]�U is not faithful. Obviously, (M�C[1]�U )==(M�C[1])=

$

(M�C )=. We claim that the inclusion is proper. If it is not, then U�V #
(M�C )=, implying that Ext i

A(M�C, U�V )=0=Ext i
A(U�V, M�C ).

Thus M�C�U�V is a tilting module, hence C1=U or C1=V. If
C1=U then X=V for X is the unique complement to M�C. Then U is
generated by M�C[1]�V, contradicting the assumption that U�V is
the Bongartz complement to M�C[1]. Analogously, C1=V leads to a
contradiction. Hence there is an arrow from M�U�C[1] to M�C in
K9 ($)M .

Note that the assumption that all partial tilting modules admit a
Bongartz complement is essential in the lemma. Consider the example in
[HU2], where A is the path algebra of the quiver

m
1

�ww�ww
:

m
2

�ww; m
3

bound by the relations ;:=0. The simple injective module I3 lies in $7 and
K9 ($)I3

is simply the vertex I2�I3 . In particular, I2 �I3 is a source
in K9 ($)I3

, but we proved in [HU2] that I3 does not admit a Bongartz
complement.

Note moreover that the hypothesis of the lemma is satisfied provided 7
is finite. Namely then all partial tilting modules have Bongartz com-
plements as was shown in [HU2]. It is actually due to the fact that we do
not know whether $7 finite implies that all partial tilting modules have a
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Bongartz complement that we cannot prove shellability of $7 in case it is
finite. We need the stronger assumption that 7 is finite.

We assume until the end of this section that 7 is finite.
As in Subsection 3.1, the lemma above implies that a non-faithful almost

complete tilting module M=�n
i=1 Mi is a source in K9 ($)0 if and only if

all Mi are projective. Hence K9 ($)0 has at most n+1 sources. This gives an
upper bound for the number of connected components of K9 ($)0 , namely:

Corollary. If 7 is finite, then K9 ($)0 has at most n+1 connected com-
ponents.

The following example shows that the number of sources in K9 ($)0 is not
necessarily an optimal upper bound for the number of connected com-
ponents of K9 ($)0 .

For the path algebra of the quiver

m�w m w�m�w m,

direct calculation shows that K9 ($)0 equals

We now finish our proof that $7 is shellable provided 7 is finite. Let
M={ be a simplex in $7. Since the minimal elements in C({) with respect
to the partial order {� in $7 are the sources in K9 ($)M , Lemma 2 above
implies that {� satisfies (PO2).

Also, as in Subsection 3.1 it follows that for every chamber M�Z in $7
there is a path from M�C to M�Z in K9 ($)M , for C a direct summand
of the Bongartz complement to M. In particular, all partial order {� with
{ # $7 satisfy (PO3). With the criterion in Section 1 we conclude:
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Corollary. If 7 is finite, then $7 is shellable.

3.5. We finish this section with a series of examples showing that the
characteristics of shellings of $7 may be arbitrarily large.

For n�2, let An+1 be the algebras defined in Subsection 3.4.

Proposition. A shelling of the boundary of the simplicial complex of
tilting modules over An+1 has characteristic n.

Proof. We keep the terminology introduced in Subsection 3.4.
According to the criterion in Section 1 we may choose as a shelling a

linear extension of <
�

. In particular, we may order the chambers of $7 such
that P[i]�Sj , the ( j+1)st vertex of the string C9 ($) i , equals
_(i&1)(n+1)+j+1 for 1�i�n and 0�j�n.

Let i<n. The partial tilting module �n&1
l=1, l{i Pl �S j which is contained

in P[i]�Sj is neither contained in a proper predecessor of P[i]�Sj in
C9 ($) i nor in a chamber of C9 ($)r for some r<i. Thus R(_(i&1)(n+1)+j+1) is
properly contained in _(i&1)(n+1)+j+1 for all i<n. Also the restriction of
P[n]�S0=_(n&1)(n+1)+1 is properly contained in _ (n&1)(n+1)+1 , namely
P[n] is not contained in any chamber in C9 ($) i for all i<n. This implies
that the characteristic of the shelling is at most n.

Now consider for 1�j�n the chamber P[n]�Sj=_(n&1)(n+1)+j+1 .
The partial tilting module P[n] is contained in a proper predecessor of
P[n]�S j in C9 ($)n , and �n&1

l=1, l{i Pl�S j is contained in the chamber
_(i&1)(n+1)+j+1 in C9 ($) i . Hence R(_(n&1)(n+1)+j+1)=_ (n&1)(n+1)+j+1 for
1�j�n, implying the assertion.

4. TILTING MODULES OF PROJECTIVE DIMENSION
AT MOST ONE

Let P1(A) be the full subcategory of mod A of modules of projective
dimension at most one.

Tilting modules of projective dimension at most one have been studied
in detail in [HR], [Bo], [H], and in connection with 7�1 in [RiS2].

We recall some result from [H, RiS2].
Let M be an almost complete tilting module of projective dimension at

most one. It is proved in [H] that M admits at most two non-isomorphic
complements X and Y in P1(A), and that M has a unique complement of
projective dimension at most one if and only if M is not faithful. Note that
this characterizes the boundary of 7�1. If M is faithful, then there is a
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short exact sequence ' connecting the non-isomorphic complements X and
Y, say

' : 0 � X � E � Y � 0,

where E # add M and Ext1
A(X, Y )=0. Such a sequence is unique up to

isomorphism of exact sequences, and it will be referred to as the sequence
connecting the complements to M.

In this section we first introduce the notion of a Bongartz cocomplement
to a partial tilting module of projective dimension at most one, which in
some sense is dual to the Bongartz complement. The question of existence
of such cocomplements leads to questions whether certain subcategories of
mod A are contravariantly finite. This will be discussed in Subsection 4.2
below.

4.1. For an A-module M we denote by =M the full subcategory of
A-modules Z satisfying Ext i

A(Z, M)=0 for all i>0.
Let M # P1(A) be a partial tilting module. We call C with pd C�1 a

Bongartz cocomplement to M if C is a complement to M and if
=M & P1(A)= =(M�C) & P1(A).

Dualizing the example in [HU2], i.e., considering the path algebra of
the quiver

m
1

�ww: m
2

�ww�ww
;

m
3

bound by the relations ;:=0, we see that the simple projective A-module
P1 does not admit a Bongartz cocomplement.

Again it is easy to see that if M has a Bongartz cocomplement, then it
is uniquely determined up to isomorphism.

Lemma. Let T # P1(A) be a tilting module. Then every Z # =T & P1(A)
is cogenerated by T.

Proof. Let

0 w�P1 w�+ P0 w�? Z w�0

be a minimal projective resolution of Z. Since T is a tilting module, P0 is
cogenerated by T, and there is a short exact sequence

0 w�P0 w�: T 0 w�; T 1 w�0
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with T 0, T 1 # add T. This gives the following commutative diagram

0 0

0 w�P1 w�+ P0 w�? Z w�0

:

0 w�P1 w�+: T 0 w� Q w�0

;

T 1 ==T 1

0 0

with Q the cokernel coker +: of +:.
An easy calculation shows that T�Q is a tilting module of projective

dimension at most one. This implies the assertion.

Proposition. The following are equivalent for a multiplicity free tilting
module M�C # P1(A).

(i) C=�r
i=1 Ci is the Bongartz cocomplement to M.

(ii) All Ci satisfy that either M�Ci is not faithful or else Ci is
generated by M�C[i].

Proof. Assume that there is an indecomposable direct summand Ci of
C such that M�C[i] is faithful and Ci is not generated by M�C[i].
Since M�C[i] is faithful, there are two non-isomorphic complements Ci

and Ci$ of projective dimension at most one to M�C[i]. Further, since C i

is not generated by M�C[i], the sequence connecting the complements
[H] has the form

0 � Ci � Ei � Ci$ � 0,

where Ei # add M�C[i]. Obviously, =(M�C) & P1(A)� =(M�C[i]�
Ci$) & P1(A)�=M & P1(A), and since Ci$ does not lie in =(M�C ) & P1(A),
the first inclusion is proper. Hence, C is not the Bongartz cocomplement to
M.

For the converse implication assume that C is not the Bongartz com-
plement to M. For X # P1(A) we denote by t(X ) the cardinality of the
set [i | Ext1

A(X, Ci){0]. If =(M�C ) & P1(A) is properly contained in
=M & P1(A) there exists X # =M & P1(A) with t(X ){0. Choose such an X
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with t(X ) minimal. Without loss of generality we may assume that
Ext1

A(X, Ci){0 for 1�i�s and Ext1
A(X, Cj)=0 for s<j�r. Let C=

C� ��s
i=1 Ci . For all 1�i�s we consider exact sequences

'i : 0 � C ti
i � Ei � X � 0

such that the connecting homomorphisms HomA(C ti
i , Ci) � Ext1

A(X, Ci)
are surjective. Obviously, pd Ei�1 and Ei # =M, further the minimality of
t(X ) allows us to deduce that Ei # =(M�C ) & P1(A). The previous lemma
implies that Ei is cogenerated by M�C, and it follows from [CHU] that
Ci is cogenerated by M�C[i] for all 1�i�s. In particular, M�C[i] is
faithful for all 1�i�s, for all of them have at least two non-isomorphic
complements.

If one of the Ci's is not generated by M�C[i], then the assertion of the
proposition holds.

Hence we may assume that all Ci , for 1�i�s, are generated by
M�C[i]. In the terminology of the lemma in Subsection 3.2, we decom-
pose T=M�C into T 1=�s

i=1 Ci and T 2=C� �M and conclude that the
Ci for 1�i�s are generated by C� �M. Consider an exact sequence

0 � Ki � Fi � Ci � 0

with Fi # add M�C� . Applying HomA(X, &) to this sequence, we obtain
that Ext2

A(X, Ki){0, a contradiction to the assumption that pd X�1.

Note that a direct summand of the Bongartz cocomplement to a partial
tilting module M in P1(A) may be cogenerated by M. This can be seen
in the following example. Let A be the path algebra of the quiver

m
0

�w: m
1

�w; m
2

bound by the relations ;:=0, and M=P1�P2 . The
Bongartz cocomplement to M is the simple module S1 which is
cogenerated by P2 .

Restricting to faithful partial tilting modules M in the proposition we
obtain:

Corollary 1. The following are equivalent for a faithful partial tilting
module M # P1(A) with complement C # P1(A).

(i) C=�r
i=1 Ci is the Bongartz cocomplement to M.

(ii) All Ci are generated by M.

Proof. Let C=�r
i=1 Ci be the Bongartz cocomplement to M. Since

M�C[i] is faithful for all 1�i�r, the proposition implies that all Ci are
generated by M�C[i]. We set T 1=C and T 2=M and conclude from
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the Lemma in Subsection 3.2 that all Ci are generated by M. Conversely, if
all Ci are generated by M, then they are obviously generated by M�C[i].
The proposition now implies the assertion.

Combining the proposition above with the characterization of the
Bongartz complement and the description of the boundary of 7�1 (respec-
tively $7) we get:

Corollary 2. Let M # P1(A) be a partial tilting module with comple-
ment C=�r

i=1 Ci and pd C�1. Then C is the Bongartz complement and
the Bongartz cocomplement to M if and only if M�C[i] is not faithful for
all 1�i�r.

The phenomenon that the Bongartz complement and the Bongartz
cocomplement to M do coincide happens evidently if M is an almost
complete tilting module in P1(A) which is not faithful. But it can also
happen in other cases: take for example the path algebra of the quiver

m
1

w�m
0

�w m
2

and M the simple projective module P0 .

4.2. Let D be a full subcategory of mod A which is closed under direct
sums, direct summands, and isomorphisms. An object D # D is called a
cocover of D if for all X # D there is an injective map X � D$ with
D$ # add D. A cocover D of D is said to be a minimal cocover if no proper
direct summand of D is a cocover of D.

With this notation, the lemma above states that a tilting module T with
pd T�1 is a cocover of =T & P1(A).

The next theorem gives a description for the existence of a Bongartz
cocomplement in terms of contravariantly finite subcategories and the
existence of cocovers. This will be applied later to derive a criterion for
P1(A) to be contravariantly finite.

Theorem. The following are equivalent for a partial tilting module M in
P1(A).

(i) =M & P1(A) is contravariantly finite.

(ii) =M & P1(A) has a cocover.

(iii) M admits a Bongartz cocomplement.

Proof. The implication (i) O (ii) is just Lemma 3.11(a) in [AS].
We now show that (ii) implies (iii). It is proved in [AS, Proposition 3.6]

that for a minimal cocover F of =M & P1(A) there is a minimal right
=M & P1(A) approximation of the injective cogenerator D( AA) of mod A
of the form F $ w�? D(AA) with F $ # add F. The morphism ? is surjective
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since =M & P1(A) contains the projective A-modules. Consider the short
exact sequence

0 w�K w�F $ w�? D( AA) w�0.

According to Wakamatsu's lemma [W] we have Ext1
A(Z, K )=0 for

all modules Z in =M & P1(A). In particular, Ext1
A(M�F, K )=0=

Ext1
A(M�F, F ). Thus M�F is a partial tilting module, and obviously,

M�F is faithful. Consider an exact sequence

0 w� AA w�+ (M�F )r w�Q w�0

such that the induced homomorphism HomA(+, M�F ) is surjective.
Clearly, pd Q�1, Ext1

A(Q, M�F )=0 and Ext1
A(M�F, Q)=0. Then

Ext1
A(Q, Q)=0 and M�F�Q is a tilting module of projective dimension

at most one.
Let X # =M & P1(A). According to Wakamatsu's lemma, Ext1

A(X, F )=0.
This implies that Ext1

A(X, Q)=0, hence =M & P1(A)==(M�F�Q) &
P1(A). Thus F�Q has a direct summand C which is a Bongartz cocom-
plement to M.

To prove the remaining implication (iii) O (i) we want to apply Proposi-
tion 1.9 of [AR]. Therefore let C be the Bongartz cocomplement to M,
further X==M & P1(A) and Y=(M�C )=. Since M�C is a tilting
module, Y is covariantly finite by Theorem 5.4 of [AR]. In order to
establish that X is contravariantly finite we have to prove that

(a) X # X if and only if Ext1
A(X, Y )=0 for all Y # Y and

(b) Y # Y if and only if Ext1
A(X, Y )=0 for all X # X.

To show (a), let X # X and Y # Y. Since M�C is a tilting module, Y is
generated by M�C. Consider an exact sequence 0 � K(Y ) � E � Y � 0
with E # add M�C. Applying HomA(X, &) to this sequence, we obtain
that Ext1

A(X, Y )=0.
For the converse implication assume that X # mod A satisfies Ext1

A(X, Y)=0
for all Y # Y. We claim that this implies that Ext i

A(X, Y )=0 for all i>0
and Y # Y. The proof is an induction on i, the case i=1 is just the assumption.
Let Ext i

A(X, Y )=0 for i>0 and all Y # Y. We denote by I(Y ) the injective
hull of Y. Applying HomA(M�C, &) to the exact sequence

0 � Y � I(Y ) � Q(Y ) � 0,

we deduce from pd M�C�1 that Q(Y ) # Y. Now applying HomA(X, &)
we see that Ext i+1

A (X, Y )=Ext i
A(X, Q(Y ))=0. This proves the claim.

In particular, since M�C # Y we get that X # =(M�C ).
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Let R be some A-module. Since Y is covariantly finite, R admits a mini-
mal left Y-approximation R � YR which is injective. Consider the exact
sequence

0 � R � YR � QR � 0.

Applying HomA(M�C, &) we get that QR belongs to Y. Now applying
HomA(X, &) and using the claim above, we obtain that Ext i

A(X, R)=0 for
all i>1. Hence, X # X, and (a) is established.

The fact that Y # Y implies that Ext1
A(X, Y )=0 for all X # X has already

been proved before. For the converse let Y # mod A be such that
Ext1

A(X, Y )=0 for all X # X. In particular, Ext1
A(M�C, Y )=0, and since

pd M�C�1, also Exti(M�C, Y )=0 for all i>0. Hence Y # Y and (b)
holds.

Now Proposition 1.9 in [AR] states that =M & P1(A) is contravariantly
finite.

We mention some consequences of the theorem.
Specializing to M=0 we obtain:

Corollary 1. P1(A) is contravariantly finite if and only if P1(A) has
a cocover.

This result was, with a different proof, recently obtained in [HU3].
Auslander and Reiten proved in [AR] that P1(A) is always covariantly

finite. Combining this result with the theorem above we get:

Corollary 2. P1(A) is functorially finite if and only if it admits a
cocover.

Assume that the injective envelope I(A) of the module AA has projective
dimension at most one. As in the proof of the theorem, I(A) may be
extended to a tilting module which is a Bongartz cocomplement to M=0.
Then the theorem implies:

Corollary 3 [IST]. If the projective dimension of the injective
envelope of AA is at most one, then P1(A) is contravariantly finite.

In [RiS2], Riedtmann and Schofield associated with 7�1 an oriented
graph K9 �1

0 with vertices the chambers of 7�1 and an arrow T � T $ if T
and T $ have a common (n&1)-simplex and if (T $)= is properly contained
in T =. The latter condition is equivalent to the fact that =T & P1(A) is
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properly contained in =T $ & P1(A). Using the proposition in Subsec-
tion 4.1 it is easy to see that T is a sink in K9 �1

0 if and only if T is the
Bongartz cocomplement to 0. In particular, such a sink is unique.

Since K9 �1
0 has no oriented cycles, it has a sink provided it is finite. Hence

we obtain:

Corollary 4. If A has only finitely many tilting modules of projective
dimension at most one the P1(A) is contravariantly (even functorially) finite.

If A is hereditary, then every partial tilting module admits a Bongartz
cocomplement. This can be proved by a construction dual to the one in
[Bo]. Then it follows:

Corollary 5. A partial tilting module M over a hereditary algebra
satisfies that =M is contravariantly finite.

5. THE BOUNDARY OF 7�1

In this section we prove that $7�1 is a pseudomanifold in case it is finite,
and we determine the geometric realization &$7�1& of $7�1.

5.1. As in Subsection 3.4 we associate with $7�1 an oriented graph
K9 ($)�1

0 and consider its corresponding subgraphs K9 ($)�1
M . Since the

Bongartz complement to a partial tilting module in P1(A) has projective
dimension at most one, Lemma 1 of Subsection 3.4 holds for $7�1, and
since a partial tilting module in P1(A) always admits a Bongartz comple-
ment, Lemma 2 of Subsection 3.4 states that M�C is a source in K9 ($)�1

M

if and only if C is a direct summand of the Bongartz complement to M. As
before, these facts imply that the partial order induced by paths in K9 ($)�1

M

satisfies (PO1), (PO2), and (PO4). Moreover, if $7�1 is finite, then also
(PO3) holds. Hence we obtain:

Corollary. $7�1 is shellable provided it is finite.

5.2. Lemma. Let M be an (n&2)-simplex in $7�1, and let M�U be a
chamber in $7�1. Then U is a direct summand of the Bongartz complement
to M or a direct summand of the Bongartz cocomplement to M.

Proof. Let CU be the unique complement to M�U. If M�CU is not
faithful, then U�CU is the Bongartz complement and the Bongartz
cocomplement to M by Corollary 2 in Subsection 4.2, implying the assertion.
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If M�CU is faithful, then M�CU admits a second complement V with
pd V�1, and the sequence connecting the complements to M�CU has the
form

0 � U � E1 � V � 0

with E1 in add M�CU or

0 � V � E2 � U � 0

with E2 # add M�CU .
In the first case, U is a direct summand of the Bongartz complement to

M�CU . Since CU is not generated by M�U (otherwise M�U would be
faithful), CU�U is the Bongartz complement to M.

In the second case, U is a direct summand of the Bongartz cocomple-
ment to M�CU , and since M�U is not faithful, CU�U is the Bongartz
cocomplement to M.

Proposition. Let M be an (n&2)-simplex in $7�1. Then M is contained
in at most two chambers in $7�1.

Proof. Assume that M�X, M�Y, and M�Z are pairwise distinct
chambers in $7�1. Since the Bongartz complement (respectively the
Bongartz cocomplement) to M has two indecomposable direct summands,
the above lemma implies that we may assume without loss of generality
that M�X�Y is a tilting module. Then Corollary 2 in Subsection 4.2
implies that X�Y is the Bongartz complement and the Bongartz cocom-
plement to M. Using again the lemma above we conclude that X and Z or
Y and Z are isomorphic, a contradiction to our assumption.

Now assume that $7�1 is finite. We saw in Subsection 5.1 that $7�1 is
shellable, and with the proposition above be conclude:

Corollary 1. If $7�1 is finite, then it is a pseudomanifold.

Using [DK] this implies:

Corollary 2. If $7�1 is finite, then &$7�& is an (n&1)-ball or an
(n&1)-sphere.

The fact that &7�1& is an n-ball provided 7�1 is finite [RiS2]
immediately implies that in this situation &$7�1& is an (n&1)-sphere. Note
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that it is possible that 7�1 is infinite and $7�1 is finite. The tame
hereditary algebras furnish a class of examples with this phenomenon.

5.3. Proposition. Let $7�1 be finite. The following are equivalent.

(i) &$7�1& is an (n&1)-sphere.

(ii) Every (n&2)-simplex M # $7�1 admits a Bongartz cocomplement.

Proof. &$7�1& is an (n&1)-sphere if and only if every (n&2)-simplex
M in $7�1 is contained in precisely two chambers M�X and M�Y in
$7�1.

Let M�X and M�Y be two chambers in $7�1. If M�X�Y is a
tilting module, then Corollary 2 in Subsection 4.2 states that X�Y is the
Bongartz cocomplement to M. Otherwise, Lemma 1 in Subsection 3.4
implies that we may assume that Y is a direct summand of the Bongartz
cocomplement to M, in particular, M admits one.

Conversely assume that C1�C2 is the Bongartz cocomplement to M.
A proof dual to the one of Lemma 1 in Subsection 3.4 shows that we may
assume without loss of generality that C1�M # $7�1. If also C2�M
# $7�1, then M is contained in two chambers in $7�1, the assertion.
Hence assume that C2�M is faithful. Then C1 is generated by M�C2 . In
particular, C1 is not a direct summand of the Bongartz complement to M.
Since M has a Bongartz complement, Lemma 1 in Subsection 3.4 states
that there is a direct summand U of the Bongartz complement to M such
that M�U # $7�1. Then M is contained in the chambers M�U and
M�C1 in $7�1, implying the assertion.

Corollary 1. If A is hereditary and $7�1 is finite, the &$7�1& is an
(n&1)-sphere.

Consider the example of Igusa et al. [IST], where A is the path algebra
of the quiver

�w#

1m�w; m2
w�:

bound by the relations 0=:;=:#=;:. Obviously, the partial tilting
module 0 is an n&1=&1 simplex in $7�1. Since P1(A)= =0 & P1(A) is
not contravariantly finite [IST], the module 0 does not admit a Bongartz
cocomplement by Theorem 4.2. Moreover, $7�1 is finite. Now the proposi-
tion above implies that &$7�1& is a zero-ball. Indeed, it is easy to see that
$7�1 is the simple projective module P1 .
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Summarizing the results of this section, we obtain:

Corollary 2. If $7�1 is finite, then it is shellable of characteristic zero
or one, and both cases occur.

6. COHEN�MACAULAY COMPLEXES, GORENSTEIN
COMPLEXES, AND THE FACE RING OF

A SIMPLICIAL COMPLEX

Assume that 7 is a finite simplicial complex of pure dimension n. Let
{ # 7 be a simplex. The link lk { of { is the simplicial subcomplex
[_ # 7 | { _ _ # 7 and { & _=<].

Let R be the ring of integers or a field. By H
*

(7, R) we denote the
reduced simplicial homology of 7 with coefficients in R. For the definition
and further details we refer to [Sp].

7 is said to be Cohen�Macaulay over R if H� i (lk {, R)=0 for all { in 7,
including {=<, and all i<dim lk {.

The motivation for this terminology comes from another object studied
in algebraic combinatorics, the so-called face ring or Stanley�Reisner ring
of 7.

Let V=[x0 , ..., xr] be the vertex set of 7. Consider the polynomial ring
R[x0 , ..., xr] and the ideal I7 generated by all square free monomials
xi1

...xis such that [x i1 , ..., x is] � 7. The quotient R[7]=R[x0 , ..., xr]�I7 is
called the face ring of 7.

A theorem of Reisner [Re] states that 7 is Cohen�Macaulay over R if
and only if R[7] is a Cohen�Macaulay ring. For a definition we refer to
[Ma].

As a consequence of the result above, Reisner proves [Re] that if &7&
is a closed manifold, then R[7] is a Cohen�Macaulay ring if and only if
Hi (7, R)=0 for all 0�i<dim 7.

It was first observed by Hochster [Ho1], that a shellable simplicial com-
plex 7 is Cohen�Macaulay over the integers. For a direct algebraic proof
we refer to [St1].

A simplicial complex 7 is called Gorenstein over R if its face ring is a
Gorenstein ring over R. Again we refer to [Ma] for a definition. In [Ho2],
Hochster gave a very nice combinatorial criterion for a simplicial complex
to be Gorenstein, namely

Theorem [Ho2]. Let 7 be a simplicial complex of dimension at least
one. The following conditions are equivalent :
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(i) 7 is Gorenstein over Z

(ii) 7 is Cohen�Macaulay over Z and all one-dimensional links in 7
are cycles or lines with at most three vertices.

From this result he deduces that 7 is Gorenstein over the integers proved
the geometric realization of 7 is a sphere.

For further details about Cohen�Macaulay and Gorenstein complexes
we refer to the survey articles of Hochster [Ho2] and Stanley [St2].

Applying these concepts and results to the simplicial complex of tilting
modules we obtain:

Corollary 1. If the simplicial complex of tilting modules is finite, then
the face rings of 7 and $7 are Cohen�Macaulay rings over the integers.

Using the theorem of Hochster, it is easy to construct examples showing
that the face rings of 7 and $7 are in general not Gorenstein.

Corollary 2. Assume that $7�1 is finite. If every (n&2) simplex in
$7�1 admits a Bongartz cocomplement, then the face ring of $7�1 is
Gorenstein over the integers.

Corollary 3. Let A be hereditary. If A is representation finite or tame,
then the face ring of $7�1 is Gorenstein over Z.
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