Relating edge-coverings to the classification of \mathbb{Z}_2^k-magic graphs

Jeong Ok Choi a,*, John P. Georges b, David Mauro b

a Gwangju Institute of Science and Technology, Gwangju, South Korea
b Trinity College, Hartford, CT 06106, USA

A R T I C L E I N F O

Article history:
Received 20 December 2010
Received in revised form 28 March 2012
Accepted 31 May 2012
Available online 28 June 2012

Keywords:
A-magic labeling
Edge-covering
Odd factor
Nowhere-zero 4-flow

A B S T R A C T

Let $G = (V, E)$ be a finite graph and let $(A, +)$ be an abelian group with identity 0. Then G is A-magic if and only if there exists a function ϕ from E into $A - \{0\}$ such that for some $c \in A$, $\sum_{e \in E} \phi(e) = c$ for every $v \in V$, where $E(v)$ is the set of edges incident to v. Additionally, G is zero-sum A-magic if and only if ϕ exists such that $c = 0$. In this paper, we explore \mathbb{Z}_2^k-magic graphs in terms of even edge-coverings, graph parity, factorability, and nowhere-zero 4-flows. We prove that the minimum k such that bridgeless G is zero-sum \mathbb{Z}_2^k-magic is equal to the minimum number of even subgraphs that cover the edges of G, known to be at most 3. We also show that bridgeless G is zero-sum \mathbb{Z}_2^k-magic for all $k \geq 2$ if and only if G has a nowhere-zero 4-flow, and that G is zero-sum \mathbb{Z}_2^k-magic for all $k \geq 2$ if G is Hamiltonian, bridgeless planar, or isomorphic to a bridgeless complete multipartite graph. Finally, we establish equivalent conditions for graphs of even order with bridges to be \mathbb{Z}_2^k-magic for all $k \geq 4$.

1. Introduction

Throughout this paper, graphs shall be finite and loopless with at least one edge, and not necessarily simple. Abelian groups shall have identity element 0 and binary operator $+$.

Let $G = (V, E)$ be a graph and let $(A, +)$ be an abelian group. Then an A-labeling of G is a function ϕ from E into $A - \{0\}$. For edge $e \in E$, the label of e under ϕ shall refer to $\phi(e)$, and for vertex $v \in V$, the weight of v under ϕ, denoted $w_{\phi}(v)$, shall refer to the sum of the labels (under ϕ) of the edges incident to v. It is clear that w_{ϕ} is a function induced by ϕ from V to A. We call ϕ an A-magic labeling of G with weight c if and only if all vertices have the same weight c under ϕ, and we call ϕ a zero-sum A-magic labeling of G if and only if all vertices have weight 0 under ϕ. Accordingly, we will say that G is A-magic (respectively zero-sum A-magic) if and only if there exists an A-magic (respectively zero-sum A-magic) labeling of G. For illustration, we give a zero-sum \mathbb{Z}_2^k-magic labeling of the wheel W_5 in Fig. 1.1.

We observe that if $(A', +)$ is a subgroup of $(A, +)$ and G is A'-magic (resp. zero-sum A'-magic), then G is A-magic (resp. zero-sum A-magic). Thus, if G is $\mathbb{Z}_{2^{k_0}}$-magic or zero-sum $\mathbb{Z}_{2^{k_0}}$-magic, then G is \mathbb{Z}_{2^k}-magic or zero-sum \mathbb{Z}_{2^k}-magic for all $k \geq k_0$.

The study of group-magic labelings of graphs was motivated in the 1960s by the work of Sedláček [12] and Stewart [15] on integer-magic labelings. Surveys of the field have been written by Gallian [3] and Wallis [16].

In recent years, particular attention has been given to the A-magic labelings of graphs in various classes where A is some cyclic group (see [1,9–11,13] for examples), leading to the notion of the integer-magic spectrum of a graph G (the set of all k such that G is \mathbb{Z}_k-magic). Additionally, some attention has been paid to the V_4-magic labelings of graphs, where V_4 denotes the Klein group \mathbb{Z}_2^2 [5,8]. The particular comparisons of V_4-magic graphs and \mathbb{Z}_4-magic graphs led to the question: Are V_4-magic graphs necessarily \mathbb{Z}_4-magic? This question was settled in the negative in [5] via the investigation of zero-sum...
In this paper, we consider the application of even edge-coverings, graph parity, odd factors, cubic extensions, and 4-flows to the study of A-magic labels of graphs for A in the set \mathbb{Z}_2^k, $1 \leq k < \infty$. Notation and preliminary results are given in Section 2. In Section 3, we consider the zero-sum \mathbb{Z}_2^k-magicness of bridgeless graphs, showing that the smallest k for which G is zero-sum \mathbb{Z}_2^k-magic is equal to the minimum cardinality of an even edge-covering of G, a number known to be at most 3. We conclude the equivalence between the existence of a nowhere-zero 4-flow in G and the existence of a zero-sum \mathbb{Z}_4-magic labeling of G. We also develop a simple cubic derivative of G, called the cubic extension of G, that is zero-sum \mathbb{Z}_4-magic if and only if G is zero-sum \mathbb{Z}_4-magic. The section closes with a consideration of complete multipartite graphs, continuing the work of Low and Shiu in [14]. In Section 4, we determine conditions under which graphs with at least one bridge (necessarily not zero-sum \mathbb{Z}_2^k-magic for each k) are \mathbb{Z}_2^k-magic for $k \geq 4$. Finally, Section 5 summarizes the results of the preceding sections.

2. Definitions and preliminary results

The vertex set and edge set of a graph G will be denoted $V(G)$ and $E(G)$, respectively. A graph G is odd (resp. even) if and only if the degree of each vertex in $V(G)$ is odd (resp. even). If F is a spanning subgraph of G, then F is an odd factor of G if and only if F is odd. We note that each even graph is zero-sum \mathbb{Z}_2-magic, and that each odd graph is \mathbb{Z}_2-magic but not zero-sum \mathbb{Z}_2-magic. It is clear that no other graph is \mathbb{Z}_2-magic.

Let G be a graph and let C be a non-empty set of subgraphs of G. Then C is an edge-covering of G if and only if $E(G)$ equals $\bigcup_{H \in C} E(H)$. Moreover, C is an even edge-covering of G if and only if C is an edge-covering of G such that every subgraph in C is even. The following theorem from [2] shall be applied in Section 3.

Theorem 2.1. Every bridgeless graph G has an even edge-covering of cardinality at most 3. □

Let G be a bridgeless graph. Then $s(G)$ shall denote the minimum cardinality over the set of even edge-coverings of G. By Theorem 2.1, $s(G)$ exists and is at most 3. Moreover, $s(G) = 1$ if and only if G is an even graph.

In Section 3, we will make use of the following definitions and theorems, all of which can be found in [17].

Definition 2.2. Let G be a graph and let k be a positive integer. Then a nowhere-zero k-flow is a pair (D, f) such that D is an orientation of G, and f is a function from $E(G)$ into the set of non-zero integers strictly between $-k$ and k, and for each $v \in V(G)$, $\sum_{e \in E^+_D(v)} f(e) = -\sum_{e \in E^-_D(v)} f(e)$, where $E^+_D(v)$ (resp. $E^-_D(v)$) is the set of edges that are incident to v and pointed away from (resp. toward) v. □

Theorem 2.3. A planar bridgeless graph G is k-face-colorable if and only if G has a nowhere-zero k-flow. □

Theorem 2.4. A graph G has a nowhere-zero 4-flow if and only if G has an even edge-covering of cardinality at most two. □

Theorem 2.5. If G is Hamiltonian, then G has a nowhere-zero 4-flow. □

Let G be a graph, let F be a spanning subgraph of G, and let g be a function from $V(G)$ into $\{1, 3, 5, \ldots\}$. Then F is a $(1, g)$-odd factor of G if and only if for each $v \in V(G)$, the degree of v in F is in $\{1, 3, 5, \ldots, g(v)\}$. The next two results, the first of which appears in [7], will be applied in Section 5.

Theorem 2.6. Let T be a tree of even order and let g be a function from $V(T)$ into $\{1, 3, 5, \ldots\}$. Then T has a $(1, g)$-odd factor if and only if for every $v \in V(T)$, $o(T - v) \leq g(v)$, where $o(T - v)$ is the number of components of odd order of $T - v$. □

Theorem 2.7. Let T be a tree of even order and let g be a function on $V(T)$ such that for each $v \in V(T)$, $g(v)$ is the largest odd integer less than or equal to $d(v)$ (the degree of v). Then T has a $(1, g)$-odd factor. Consequently, if G is a connected graph with even order, then G has an odd factor, since G has a spanning tree T of even order.

Proof. Select $v \in V(T)$. If $d(v)$ is odd, then $g(v) = d(v)$, implying $o(T - v) \leq g(v)$. If $d(v)$ is even, then $g(v) = d(v) - 1$. Since the order of T is even, then $o(T - v)$ cannot be $d(v)$. Thus, $o(T - v) \leq g(v)$. The result now follows from Theorem 2.6. □
3. On zero-sum \mathbb{Z}_2^k-magic graphs

In [5], it was proved that if G is a graph with a bridge, then for each positive integer k, G is not zero-sum \mathbb{Z}_2^k-magic. Thus, in this section, we focus on bridgeless graphs.

Theorem 3.1. Let G be a bridgeless graph. Then G is zero-sum $\mathbb{Z}_2^{s(G)}$-magic.

Proof. By Theorem 2.1, let $C = \{H_i | 1 \leq i \leq s(G) \leq 3\}$ be an even edge-covering of minimum cardinality. We produce a zero-sum $\mathbb{Z}_2^{s(G)}$-magic labeling $\phi(G)$ as follows: for each $e \in E(G)$ and each j, $1 \leq j \leq s(G)$, let the jth coordinate of $\phi(e)$ be the scaler 1 if e is in $E(H_j)$, and the scaler 0 otherwise. Noting that each assigned label has at least one coordinate equal to the scalar 1, we have that no assigned label is equal to 0. To show that $w_\phi(v) = 0$ for each vertex v of G, fix $v_0 \in V(G)$ and fix j_0, $1 \leq j_0 \leq s(G)$. Then there is an even number of edges in $E(H_{j_0})$ that are incident to v_0, implying that the j_0th coordinate of the weight of v_0 is the scaler 0. \hfill \square

Let G be a bridgeless graph. Then (t) shall denote the minimum positive integer k such that G is zero-sum \mathbb{Z}_2^k-magic. By Theorem 3.1, $t(G)$ is well-defined and $1 \leq t(G) \leq s(G)$.

Theorem 3.2. For bridgeless graph G, $s(G) = t(G)$.

Proof. It suffices to show that $s(G) \leq t(G)$. Let ϕ denote a zero-sum $\mathbb{Z}_2^{t(G)}$-magic labeling of G. By the minimality of $t(G)$, for each j, $1 \leq j \leq t(G)$, there exists an edge e such that $\phi(e)$ is the scaler 1 in the jth component. We may thus produce an edge-covering C of G with cardinality $t(G)$ as follows: $C = \{H_1, H_2, \ldots, H_{t(G)}\}$ where, for $1 \leq j \leq t(G)$, $e \in E(H_j)$ if and only if the jth coordinate of $\phi(e)$ is scaler 1. Since the weight of each vertex under ϕ is 0, it is now easily seen that every element of C is even. Thus $s(G) \leq t(G)$. \hfill \square

From Theorem 3.2 and the previous note that $s(G) \leq 3$, we have.

Corollary 3.3. Let G be a bridgeless graph. Then $t(G) \leq 3$. Moreover, $t(G) = 1$ if and only if G is even. \hfill \square

The above results imply that each non-even bridgeless graph G can be classified into one of two categories: $t(G) = 2$ (so G is zero-sum \mathbb{V}_4-magic) or $t(G) = 3$ (and thus G is not zero-sum \mathbb{V}_4-magic). Our investigation of this classification problem begins with the consideration of cubic bridgeless graphs. The following is a result from [5].

Theorem 3.4. Let G be a cubic graph. Then G is zero-sum \mathbb{V}_4-magic if and only if the chromatic index of G is 3. \hfill \square

It thus follows that every bridgeless cubic graph G has $t(G) = 2$ if $\chi'(G) = 3$, and $t(G) = 3$ if $\chi'(G) = 4$. Hence the Petersen graph P has $t(P) = 3$, as do all snarks. Such graphs are necessarily non-Hamiltonian; however, we point out the existence of non-Hamiltonian cubic bridgeless graphs with chromatic index 3. (See [4]). Moreover, since the determination of the chromatic index of an arbitrary cubic graph is known to be NP-complete (see [6]), it follows that the determination of whether or not a cubic graph is zero-sum \mathbb{V}_4-magic is also NP-complete.

We point out that the classification problem over bridgeless graphs in general is not clearly linked to chromatic index. For example, $t(K_5 - e) = 2$ and $\chi'(K_5 - e) = 5$. On the other hand, we may link the classification of a bridgeless graph G to the chromatic index of a certain cubic graph generated from G, as described below.

Let G be a graph (not necessarily bridgeless) with $\delta(G) \geq 2$. From G, we form a cubic graph of order $2|E(G)|$ by executing the following pseudo-code:

Let the vertices of G be $v_1, v_2, v_3, \ldots, v_n$.

1. Set $G := G_0$.
2. Set $i := 1$.
3. While $i \leq n$, do.
 - Form graph G_i^1 by subdividing each edge of G_{i-1} that is incident to v_i;
 - Form graph G_i^2 by inserting $d(v_i)$ edges in G_i^1 so that the subgraph induced by the set of subdividing vertices is a cycle of length $d(v_i)$ (there may be more than one way to select the incidence structure of the subdividing vertices);
 - Form graph G_i^3 by deleting from G_i^2 the vertex v_i and its incident edges;
 - Set $G_i := G_i^3$.
 - Set $i := i + 1$.
4. The output graph G_n is a simple cubic graph.

Any graph G_n that is output by this code will be called a cubic extension of G, and will be denoted $ce(G)$. The cycle that is created by the code when $i = n$ shall be called the cycle in $ce(G)$ induced by v_n and denoted C_{v_n}. Since there is more than one way to form the cycle C_e for $d(v)$ sufficiently large, it follows that a graph G may have non-isomorphic cubic extensions. Each edge in $ce(G)$ that is incident to some C_e but does not lie along C_e shall be called a spoke. There is a natural bijection f from $E(G)$ to the set of spokes of $ce(G)$; in particular, if an edge $e \in E(G)$ is incident to distinct $x, y \in V(G)$, then the corresponding spoke in $ce(G)$ shall be an edge that connects C_x and C_y. The spoke will be unique if G is simple. On the other
hand, if there are precisely \(k \) distinct edges incident to \(x \) and \(y \) in \(V(G) \), then there will be precisely \(k \) distinct spokes incident to \(C_x \) and \(C_y \) in \(ce(G) \). We illustrate a graph \(G \) and two non-isomorphic cubic extensions of \(G \) in Fig. 3.1, alluding to the bijection \(f \).

We observe that for every cubic extension \(ce(G) \), \(e \) is a bridge of \(G \) if and only if \(f(e) \) is a bridge of \(ce(G) \).

We now turn to the relationship between \(G \) and at least one of its cubic extensions, preceded by a supporting lemma.

Lemma 3.5. For fixed integer \(k \), let \(\phi \) be a zero-sum \(\mathbb{Z}_2^k \)-magic labeling of a graph \(G \) (so \(G \) is necessarily bridgeless) and let \(S \) be a subset of \(V(G) \). Let \(P_S \) be the set of edges of \(G \) that are incident to precisely one vertex in \(S \), and let \(Q_S \) be the set of edges of \(G \) that are incident to precisely two vertices in \(S \). Then \(\sum_{e \in P_S} \phi(e) = 0 \).

Proof. We have \(0 = \sum_{v \in S} \mu_\phi(v) = \sum_{e \in P_S} \phi(e) + 2 \sum_{e \in Q_S} \phi(e) \). Since \(2 \sum_{e \in Q_S} \phi(e) = 0 \), the result follows. \(\square \)

Theorem 3.6. Let \(G \) be a bridgeless graph. Then \(G \) is zero-sum \(V_4 \)-magic if and only if there exists a cubic extension \(ce(G) \) that is zero-sum \(V_4 \)-magic.

Proof. Since this theorem deals only with \(V_4 \), we will denote its zero element by \((0,0)\) throughout the proof.

Let \(\phi^* \) be a zero-sum \(V_4 \)-magic labeling of \(ce(G) \) and let \(v_0 \) be an element of \(V(G) \). Then by Lemma 3.5, the sum of the labels assigned by \(\phi^* \) to the spokes incident to \(C_{v_0} \) is \((0,0)\). We now form a zero-sum \(V_4 \)-magic labeling \(\phi \) of \(G \) as follows: \(\phi(e) = \phi^*(f(e)) \), where \(f \) is the natural bijection from the edges of \(G \) to the spokes of \(ce(G) \).

Now let \(\phi \) be a zero-sum \(V_4 \)-magic labeling of \(G \). For each \(v \in V(G) \) and \(i \in V_4 \), let \(X_i(v) \) denote the set of edges incident to \(v \) with label \(i \) under \(\phi \). We shall construct a cubic extension \(ce(G) \) of \(G \) and a zero-sum \(V_4 \)-magic labeling \(\phi^* \) of \(ce(G) \).

If \(e \) is a spoke of our constructed cubic extension, we will let \(\phi^*(e) \) equal \(\phi(f^{-1}(e)) \). If \(e \) is not a spoke, then \(\phi^*(e) \) will depend on the length \(d(v) \) of \(C_v \) and the labels of the two spokes incident to \(e \). We observe that it suffices to form \(C_v \) and the labeling of the edges of \(C_v \) for arbitrary fixed vertex \(v \in V(G) \) in each of two cases.

Case 1. \(d(v) \) is odd. Noting that the weight of \(v \) under \(\phi \) is \((0,0)\), it follows that the cardinalities of \(X_{(1,1)}(v) \), \(X_{(0,1)}(v) \), and \(X_{(1,0)}(v) \) are each odd with respective cardinalities \(2j_1 + 1 \), \(2j_2 - 1 \), and \(2j_3 + 1 \), summing to \(d(v) \). Let \(C_v = (v_0, v_1, v_2, \ldots, v_{d(v)-1}) \) denote a cycle induced by \(v \) such that:
- for \(0 \leq i < 2j_1 \), vertex \(v_i \) is incident to a spoke with label \((1,1)\) under \(\phi^* \);
- for \(2j_1 + 1 \leq i < 2j_1 + 2j_2 + 1 \), vertex \(v_i \) is incident to a spoke with label \((0,1)\) under \(\phi^* \);
- for \(2j_1 + 2j_2 + 2 \leq i < d(v) - 1 \), vertex \(v_i \) is incident to a spoke with label \((1,0)\) under \(\phi^* \).

For \(0 \leq i \leq 2j_1 \), we define
\[
\phi^*(v_i, v_{i+1}) = \begin{cases} (1,0) & \text{if } i = 0 \text{ mod } 2 \\ (0,1) & \text{if } i = 1 \text{ mod } 2. \end{cases}
\]

For \(2j_1 + 1 \leq i \leq 2j_1 + 2j_2 + 1 \), we define
\[
\phi^*(v_i, v_{i+1}) = \begin{cases} (1,1) & \text{if } i = 1 \text{ mod } 2 \\ (0,0) & \text{if } i = 0 \text{ mod } 2. \end{cases}
\]

For \(2j_1 + 2j_2 + 2 \leq i < d(v) - 2 \), we define
\[
\phi^*(v_i, v_{i+1}) = \begin{cases} (1,1) & \text{if } i = 1 \text{ mod } 2 \\ (0,1) & \text{if } i = 0 \text{ mod } 2. \end{cases}
\]

Finally, we let \(\phi^*(v_{d(v)-1}, v_0) = (0,1) \).

It can be verified that every vertex along \(C_v \) has weight \((0,0)\)
Case 2. $d(v)$ is even. Let a, b, c be the distinct elements of $\{(1, 1), (0, 1), (1, 0)\}$. Noting that the weight of v under ϕ is $(0, 0)$, it follows that the cardinalities of $X_a(v)$, $X_b(v)$, and $X_c(v)$ are each even with respective cardinalities $2j_1$, $2j_2$, and $2j_3$, summing to $d(v)$. Without loss of generality, suppose v is a vertex such that $j_3 \leq j_2 \leq j_1$. We form $C_v = \{v_0, v_1, v_2, \ldots, v_{d(v) - 1}\}$ as follows (with the understanding that any reference to v_i for $i \geq d(v)$ is vacuous):

: for $0 \leq i \leq 6j_3 - 1$, vertex v_i is incident to a spoke with respective label a, b, c under ϕ^* if $i = 0 \mod 3$, $i = 1 \mod 3$, $i = 2 \mod 3$.

: vertex $v_{6j_3 + 1}$ is incident to a spoke with label a under ϕ^*;

: for $6j_3 + 1 \leq i \leq 4j_3 + 2j_2$, vertex v_i is incident to a spoke with label b under ϕ^*;

: for $4j_3 + 2j_2 + 1 \leq i \leq d(v) - 1$, vertex v_i is incident to a spoke with label a under ϕ^*.

For $0 \leq i \leq 6j_3 - 1$, we define

$$\phi^*(v_i, v_{i+1}) = \begin{cases} c & \text{if } i = 0 \mod 3 \\ a & \text{if } i = 1 \mod 3 \\ b & \text{if } i = 2 \mod 3. \end{cases}$$

We define $\phi^*(v_{6j_3}, v_{6j_3 + 1}) = c$.

For $6j_3 + 1 \leq i \leq 4j_3 + 2j_2$, we define

$$\phi^*(v_i, v_{i+1}) = \begin{cases} c & \text{if } i = 0 \mod 2 \\ a & \text{if } i = 1 \mod 2. \end{cases}$$

For $4j_3 + 2j_2 + 1 \leq i \leq d(v) - 2$, we define

$$\phi^*(v_i, v_{i+1}) = \begin{cases} c & \text{if } i = 0 \mod 2 \\ b & \text{if } i = 1 \mod 2. \end{cases}$$

Finally, we let $\phi^*(v_{d(v) - 1}, v_0) = b$.

It can be verified that every vertex along C_v has weight $(0, 0)$. □

We observe that if G is bridgeless planar, then G has a cubic extension $ce(G)$ that is also bridgeless planar. By the Four-Color Theorem and Tait’s Theorem [see 17], $ce(G)$ thus has chromatic index 3, from which it follows by Theorem 3.4 that $ce(G)$ is zero-sum V_4-magic. So, by Theorem 3.6, G is zero-sum V_4-magic as well. We also observe that if G is Hamiltonian (and thus bridgeless), it is easy to construct a Hamiltonian cubic extension $ce(G)$ as well. Thus $ce(G)$ has chromatic index 3, again implying that G is zero-sum V_4-magic. We therefore have.

Theorem 3.7. If G is bridgeless planar or Hamiltonian, then G is zero-sum \mathbb{Z}_2^k-magic for $k \geq 2$. □

Turning to the relationship between zero-sum magicness and nowhere-zero 4-flows, we observe by Theorem 2.4 that if G is a bridgeless graph, then $s(G) \leq 2$ if and only if G has a nowhere-zero 4-flow. We therefore have.

Theorem 3.8. Let G be a bridgeless graph. Then the following are equivalent.

1. some cubic extension $ce(G)$ has chromatic index 3
2. some cubic extension $ce(G)$ is zero-sum \mathbb{Z}_2^k-magic for $k \geq 2$
3. G is zero-sum \mathbb{Z}_2^k-magic for $k \geq 2$
4. $t(G) \leq 2$
5. $s(G) \leq 2$
6. G has a nowhere-zero 4-flow. □

We observe that Theorem 3.7 can also be shown in the context of nowhere-zero 4-flows. Particularly, if G is bridgeless planar or Hamiltonian, then by Theorems 2.3 and 2.5, $s(G) \leq 2$. Hence, by Theorem 3.1, G is zero-sum \mathbb{Z}_2^k-magic for $k \geq 2$.

Although the hypotheses of Theorem 3.7 include bridgeless planarity or Hamiltonicity, we note that zero-sum V_4-magic graphs exist which satisfy neither condition. If G is a graph and \mathcal{P} is a partition $\{E_1, E_2, \ldots, E_k\}$ of $E(G)$ such that the subgraph of G induced by E_1 has a zero-sum A-magic labeling ϕ_1, then it is clear that G is zero-sum A-magic. (Particularly, let ϕ be an A-labeling of G such that $\phi(e) = \phi_1(e)$ if and only if $e \in E_1$. Then the weight of each vertex $v \in V(G)$ is 0.) It therefore follows that if each E_i induces a subgraph that is either bridgeless planar or Hamiltonian, then G is zero-sum V_4-magic. For example, since the complete multipartite graph $K_{n_1, n_2, \ldots, n_m}$, $n_i \geq 2$, admits a partitioning \mathcal{P} of its edge set such that each element of \mathcal{P} induces the bridgeless planar or Hamiltonian subgraph $K_2, 2$, $K_2, 3$, or $K_3, 3$, then $K_{n_1, n_2, \ldots, n_m}$ is zero-sum \mathbb{Z}_2^k-magic for $k \geq 2$, a result shown in [14].

We also observe that if G has a 2-factor $F = \{C_1, C_2, \ldots, C_{m/2}\}$ such that each cycle in F is incident to vertices with degrees in G that sum to an even number, then G is zero-sum V_4-magic. To see this, note that G has a cubic extension $ce(G)$ with a 2-factor $F' = \{C_{i_1}, C_{i_2}, \ldots, C_{i_{m/2}}\}$ such that each cycle in F' has even length. (Each C_{i_1} will be incident to precisely the vertices of the cycles in $ce(G)$ induced by the vertices along C_{i_1}, from which the evenness of the length of C_{i_1} follows.)

We then form a zero-sum V_4-magic labeling of $ce(G)$ by alternating the labels $(0, 1)$ and $(1, 0)$ about each cycle in F', and assigning $(1, 1)$ to each of the other edges of $ce(G)$. The result follows by Theorem 3.6.

We state these results below.
Theorem 3.9. If G is a graph and \mathcal{P} is a partition $\{E_1, E_2, \ldots, E_k\}$ of $E(G)$ such that the subgraph of G induced by E_i has a zero-sum V_4-magic labeling ϕ_i, then G is zero-sum Z_2^k-magic for $k \geq 2$. □

Theorem 3.10. If G has a 2-factor F such that each cycle in F is incident to vertices with degrees in G that sum to an even number, then G is zero-sum Z_2^k-magic for $k \geq 2$. □

Corollary 3.11. If G and H are zero-sum V_4-magic, then by Theorem 3.9, the Cartesian product $G \square H$ is zero-sum Z_2^k-magic for $k \geq 2$. □

Corollary 3.12. Let G be a $2m + 1$-regular graph with chromatic index $2m + 1$. Then G is zero-sum Z_2^k-magic for $k \geq 2$. Hence G is bridgeless with a nowhere-zero 4-flow.

Proof. Let C denote a $2m + 1$-coloring of G. Then for distinct colors c_1 and c_2 in the range of C, the set of edges with colors c_1 and c_2 induce a 2-factor of G in which each cycle is even. By Theorems 3.9 and 3.10, the results follow. □

The Petersen graph P and the Hoffman-Singleton graph HS are the only known odd-regular Moore graphs with diameter 2. We have already observed that P is not zero-sum V_4-magic. However, since HS is 7-regular with chromatic index 7, it follows from Corollary 3.12 that HS is zero-sum V_4-magic and has a nowhere-zero 4-flow.

Corollary 3.13. Let G be an odd graph. If G has a 2-factor in which each cycle is of even order, then by Theorem 3.10, G is zero-sum Z_2^k-magic for $k \geq 2$. Hence G is bridgeless with a nowhere-zero 4-flow. □

We close this section with a characterization of complete multipartite graphs $K_{n_1, n_2, \ldots, n_m}$, $n_1 \leq n_2 \leq \cdots \leq n_m$, that are zero-sum V_4-magic, and hence zero-sum Z_2^k-magic for $k \geq 2$. For convenience, we will use the term magical to describe any partition \mathcal{P} of an edge set such that each cycle is even. By Theorems 3.6 and 3.8, we observe that if G is triangle-free with an even number of edges, then G is Z_2^k-magic if and only if G is Z_2^k-magic.

Case 1. $m < 3$. If $m = 3$, then K_{n_1, n_2, n_3} has a magic partition $\{E_1, E_2, E_3\}$ such that E_i induces the complete graph K_{n_i} and E_1 induces K_{n_1, n_2, n_3}. If $m < n_i$, then G is not zero-sum V_4-magic by Theorem 3.7.

Case 2. $m \geq 3$. If $n_1 = 1$, then G is Z_2^k-magic by Theorem 3.7. If $n_1 = 2$, then G is Z_2^k-magic by Theorem 3.8.

Case 3. $m > 3$. If $m > 3$, then G is Z_2^k-magic by Theorem 3.8. Therefore, G is Z_2^k-magic if and only if G has no bridge. □

4. On Z_2^k-magic graphs

In this section we consider the conditions under which a connected graph is Z_2^k-magic (not necessarily zero-sum) for some k. We note that since G is Z_2-magic if and only if G is Z_2^k-magic for all $k \geq 1$, then G is Z_2^k-magic if and only if G is odd or G is even.

Theorem 4.1. Let G be a graph of odd order (connected or not) and for some k let ϕ be a Z_2^k-magic labeling of G with weight a. Then $a = 0$.

Proof. Since $|V(G)|$ is odd, $a = \sum_{v \in V(G)} w_\phi(v) = 2 \sum_{e \in E(G)} \phi(e) = 0$. □

Let G be a graph (connected or not) and let $\tau(G)$ denote the smallest k such that G is Z_2^k-magic if such a k exists. By Corollary 3.3 and Theorem 4.1, if G has no bridges, then $\tau(G) \leq t(G) \leq 3$, with $\tau(G) = t(G)$ if G has odd order. Furthermore, by Theorem 4.1 and the opening remark of Section 3, we observe that if G (connected or not) has odd order and a bridge, then for all k, G is not Z_2^k-magic. Thus, Z_2^k-magic graphs with a bridge have even order, and we will show that for such graphs, $\tau(G) \leq 4$.
Lemma 4.2. Let G be a connected graph with non-empty bridge set. Let ϕ be a \mathbb{Z}_2^k-magic labeling with weight a. Then:

(i) G has even order and $a \neq 0$, and
(ii) for any bridge e^*, each component of $G - e^*$ has odd order and $\phi(e^*) = a$.

Proof. Part (i) follows from the remark at the beginning of Section 3 and the immediately preceding remark.

To show (ii), let ϕ be a \mathbb{Z}_2^k-magic labeling of G and let e^* be a bridge. Let G_1 and G_2 denote the components of $G - e^*$. If G_i has even order, then

$$0 = \sum_{v \in V(G_i)} w_{\phi}(v) = \phi(e^*) + 2 \sum_{e \in E(G_i)} \phi(e),$$

implying the contradiction $\phi(e^*) = 0$. Since G_i thus has odd order, then

$$a = \sum_{v \in V(G_i)} w_{\phi}(v) = \phi(e^*) + 2 \sum_{e \in E(G_i)} \phi(e) = \phi(e^*).$$

\[\square\]

Theorem 4.3. Let ϕ denote a \mathbb{Z}_2^k-magic labeling of connected G with weight $a \neq 0$. Then G has an odd factor. Moreover, if G has a non-empty bridge set, then G has an odd factor containing every bridge.

Proof. Since $a \neq 0$, some coordinate of a (with no loss of generality, the first coordinate) is equal to scaler 1. Consider the set E_ϕ of edges with labels under ϕ that have 1 in the first coordinate. Then for each vertex v, the number of such edges incident to v is necessarily odd. Thus E_ϕ is an odd factor.

If e^* is a bridge of G, then by Lemma 4.2, $\phi(e^*) = a$, and hence $e^* \in E_\phi$. \[\square\]

Theorem 4.4. Let G be a connected graph with non-empty bridge set B. Then G is \mathbb{Z}_2^k-magic for some $k \leq 4$ if and only if G has an odd factor containing every bridge.

Proof. Let ϕ be a \mathbb{Z}_2^k-magic labeling of G. Then by Lemma 4.2, ϕ has non-zero weight a, and the result follows from Theorem 4.3.

Let H be an odd factor of G that contains every bridge. By Theorem 2.1, $G - B$ has an even edge-covering $\{G_1, G_2, \ldots, G_m\}$ for some m, $m \leq 3$. We construct a \mathbb{Z}_2^{m+1}-labeling ϕ of G. For $1 \leq i \leq m$, let the ith coordinate of $\phi(e)$ be the scaler 1 if $e \in E(G_i)$; the scaler 0 otherwise. Similarly, let the $(m + 1)$st coordinate of $\phi(e)$ be scaler 1 if $e \in E(H)$; scaler 0 otherwise. It is easily checked that ϕ is a \mathbb{Z}_2^{m+1}-labeling with weight a, where the first m coordinates of a are scaler 0 and the last coordinate of a is scaler 1. \[\square\]

Theorem 4.5. Let G be a connected graph with non-empty bridge set. Then G is \mathbb{Z}_2^k-magic for some $k \leq 4$ if and only if for every bridge e^*, $G - e^*$ has two components each of odd order.

Proof. If G is \mathbb{Z}_2^k-magic for some $k \leq 4$, the result follows from Lemma 4.2.

Assume that for every bridge e^*, $G - e^*$ has two components, each of odd order. We show that G has an odd factor that contains every bridge of G, from which the result will follow by Theorem 4.4.

Since G is necessarily of even order, then G has an odd factor F by Theorem 2.7. To see that F contains every bridge of G, suppose to the contrary that e' is a bridge of G not in $E(F)$. Noting that F is therefore an odd factor of $G - e'$ and that $G - e'$ has two components G_1 and G_2 each of odd order, we have the contradiction that the restriction of F to G_i is an odd factor on a graph of odd order. \[\square\]

Now suppose that for some k, G is a connected \mathbb{Z}_2^k-magic graph with non-empty bridge set. By Lemma 4.2, the weight of the labeling is not 0. Hence, by Theorem 4.3. and 4.4, G is \mathbb{Z}_2^k-magic for some $k \leq 4$. Thus by Corollary 3.3 we have.

Corollary 4.6. If G is a connected (and either bridgeless or not) \mathbb{Z}_2^k-magic graph for some k, then $\tau(G) \leq 4$. \[\square\]

5. Closing remarks

The collection of connected graphs that are \mathbb{Z}_2^k-magic for some k has a partitioning into three types:

Type 1: bridgeless graphs of even order.
Type 2: bridgeless graphs of odd order.
Type 3: graphs of even order having at least one bridge such that for any bridge e, $G - e$ has two components each of odd order.

By Theorems 2.1 and 3.1, all graphs of Type 1 are zero-sum \mathbb{Z}_2^3-magic. Additionally, since these graphs contain an odd factor by Theorem 2.7, then by the method of label construction in the proof of Theorem 4.4, G has a \mathbb{Z}_2^4-magic labeling ϕ with weight $(0, 0, 0, 1)$.

By Theorem 4.1 and Corollary 3.3, each graph G of Type 2 has the properties that for all $k \geq \tau(G)$, G is \mathbb{Z}_2^k-magic and all \mathbb{Z}_2^k-magic labelings of G have weight 0. Since $\tau(G) \leq 3$, then G is \mathbb{Z}_2^4-magic and all \mathbb{Z}_2^4-magic labelings of G have weight 0.
By the opening comments of Section 3, each graph G of Type 3 is not zero-sum \mathbb{Z}_2^k-magic for any k. Moreover, by the method of label construction in the proof of Theorem 4.4, there exists a \mathbb{Z}_2^4-magic labeling of G with weight $(0, 0, 0, 1)$. We thus have the following.

Theorem 5.1. Let G be a (not necessarily connected) graph. Then G is \mathbb{Z}_2^k-magic for some k only when

(i) each component of G is of Type 1 or Type 2, or
(ii) each component of G is of Type 1 or Type 3.

Moreover, if (i) holds, G is zero-sum \mathbb{Z}_2^3-magic. And if (ii) holds, then there is a \mathbb{Z}_2^4-magic labeling ϕ with weight $(0, 0, 0, 1)$. □

The authors wish to thank the referees for their commentary, which resulted in a much improved paper.

References