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Abstract

The modi3ed Bessel function Ki�(x), also known as the Macdonald function, 3nds application in the
Kontorovich–Lebedev integral transform when x and � are real and positive. In this paper, a comparison of
three codes for computing this function is made. These codes di7er in algorithmic approach, timing, and
regions of validity. One of them can be tested independent of the other two through Wronskian checks, and
therefore is used as a standard against which the others are compared.
Published by Elsevier B.V.
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1. Introduction

Before the advent of desktop computers, the reference standard for special function values consisted
of a large number of published tables. For a long time, such tables were crucial for computation.
For example, over half of the well-known Handbook of Mathematical Functions [1], written in
1964, is composed of such tables, together with instructions for interpolation. As computers became
commonplace, the value of codes which generate special function values became clear. A signi3cant
number of codes were written in a variety of languages, mainly Fortran 77, during the mid-1980s and
early 1990s aimed at responding to this need. Today, tables as an aid to computation are relics of
the pre-computer era. Many have been replaced with codes that are adequate for most applications.
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This replacement is far from complete. The survey paper [10] contains a list of functions for which
no appropriate software exists. Modern programming languages such as C, Fortran 90, and most
recently JAVA, are reshaping the scienti3c computing environment. Their capabilities far surpass
their Fortran 77 and Pascal predecessors and allow for new, more powerful, and more accurate
codes to be written.

The modi3ed Bessel functions I�(z) and K�(z) appear as independent solutions to the di7erential
equation

z2 d2w
dz2 + z

dw
dz

− (z2 + �2)w = 0: (1.1)

Our concern is with the second function, known as the Macdonald function, in the special case
z = x; � = i�, and x; � real and positive. Ki�(x) stands out in the family of Bessel functions as a
real-valued solution to Eq. (1.1). It is of great interest since it forms the kernel of the Kontorovich–
Lebedev transform, which is used to solve di7erential equations in wedge-shaped geometries.

When x¿ 0 and �¿ 0, the integral representations

Ii�(x) =
1

2�i

∫ ∞+i�

∞−i�
ex cosh (t)−i�t dt (1.2)

and

Ki�(x) =
1
2

∫ ∞

−∞
e−x cosh (t)+i�t dt (1.3)

are valid. Since Ii�(x) is complex, Dunster [3] introduced the real-valued function

Li�(x) = 1
2 (Ii�(x) + I−i�(x)): (1.4)

The functions Ki�(x) and Li�(x) form a numerically satisfactory pair of solutions of Eq. (1.1) in the
sense of Miller [13]; see also ref. [25].

In this paper, we examine three di7erent codes which compute the Macdonald function. These
codes di7er in algorithmic approach and other characteristics. Because of its robustness, Iexibility,
and internal consistency, the newest one can serve as a reference code against which the accuracy
and regions of validity of the others can be compared.

The reference code will be described fully in a forthcoming paper [6]. It computes Ki�(x), Li�(x),
and their derivatives by integrating Eq. (1.1) numerically along stable paths or by summing uniform
asymptotic or power series expansions. We refer to this code as Code F and brieIy outline the
algorithm in Section 2. The second code [21–23] was developed for, and entered into, the numerical
program library at Moscow State University in the 1980s. It uses a combination of power series
expansions, the Lanczos tau approximating method, and numerical quadratures. We refer to this code
as Code R and discuss its algorithm in Section 3. The third code [5], Code E, was kindly provided
to us by the author. It appeared as part of a code which computes Kontorovich–Lebedev transforms.
It evaluates a modi3cation of the integral representation Eq. (1.3) using quadrature routines available
in the NAG 1 library [16]; see Ref. [5] for details. Section 4 contains a comparison of these codes
against one another, and Section 5 concludes with a discussion and views towards the future.

1 The identi3cation of any commercial product or trade name does not imply endorsement or recommendation by the
National Institute of Standards and Technology.
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2. Code F

Code F maximizes the use of uniform asymptotic expansions to compute the function Ki�(x) and
its derivative. In regions where the expansions do not yield suMciently accurate results, it computes
the function using Taylor series integration of Eq. (1.1) along stable integration paths. Since x = 0
is an accumulation point for the zeros of Ki�(x), the oscillations for small values of x will be so
dense that the integration will fail. In this case, Code F sums power series expansions which capture
the oscillatory nature of the function. A detailed description of these regions and their determination
can be found in Ref. [6].

2.1. Uniform asymptotic expansions

For x and/or � large, Code F evaluates uniform asymptotic expansions for the function and its
derivative. Using the notation of ref. [26], the expansion is

Ki�(�x) =
�e−��=2

�1=3 �(�){Ai(−�2=3�)A�(−�) + �−4=3Ai′(−�2=3�)B�(−�)}; (2.1)

as � → ∞, uniformly with respect to x∈ (0;∞), where � is given by

2
3

[�(x)]3=2 = ln
{

1 + (1 − x2)1=2

x

}
− (1 − x2)1=2; 0¡x6 1;

2
3

[ − �(x)]3=2 =
√

x2 − 1 − arccos
1
x
; x¿ 1

(2.2)

and

�(�) =
(

4�
1 − x2

)1=4

:

The function Ai(x) is the standard Airy function, and the ‘slowly varying’ parts A�(−�) and B�(−�)
represent the expansions

A�(−�) ∼
∞∑
s=0

(−1)s
as(�)
�2s and B�(−�) ∼

∞∑
s=0

(−1)s
bs(�)
�2s : (2.3)

The coeMcients as(�) and bs(�) have speci3c representations in terms of integral-recurrence relations.
We refer the reader to Ref. [6] for details. The expansion in Eq. (2.1) was 3rst found in ref. [2]
and later re3ned in ref. [3].

The algorithm in Section 2.4 below will require the computation of K ′
i�(x) using a uniform asymp-

totic expansion. Therefore, the derivation of such an expansion is outlined here. As was performed
in Ref. [17], one can di7erentiate the expression in Eq. (2.1) with respect to � to obtain

K ′
i�(�x) = −�e−��=2

�4=3 �̂(�){Ai(−�2=3�)C�(−�) + �2=3Ai′(−�2=3�)D�(−�)} (2.4)
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as � → ∞, uniformly with respect to x∈ (0;∞). Here

�̂(�) = − d�
dx

�(�) =
2

x�(�)

and the notation C�(−�) and D�(−�) has been introduced to represent the terms

C�(−�) = �(�)A�(−�) +
d
d�

(A�(−�)) + �B�(−�);

D�(−�) = �−2�(�)B�(−�) − A�(−�) + �−2 d
d�

(B�(−�));

where

�(�) =
�′(�)
�(�)

=
4 − x2�6(�)

16�
:

Using the expansions in Eq. (2.3) in the above equations, one 3nds

C�(−�) ∼
∞∑
s=0

(−1)s
cs(�)
�2s ; D�(−�) ∼

∞∑
s=0

(−1)s+1 ds(�)
�2s ; (2.5)

where, upon equating like powers of �,

cs(�) = �(�)as(�) + a′s(�) + �bs(�); s = 0; 1; 2; : : : ;

ds(�) = �(�)bs−1(�) + as(�) + b′s−1(�); s = 1; 2; : : : ;

with d0 = a0. Again, the reader is referred to Ref. [6] for details.
The uniform asymptotic expansions also require the computation of the Airy functions Ai(x) and

its derivative. There are several codes which compute these functions. Code F uses a new code [7]
written in Fortran 90.

2.2. Uniform asymptotic expansions at the turning point

The uniform asymptotic expansions given above are very powerful in that they are valid for a
large range of variables. However, they become numerically unstable near the turning point x = 1,
or equivalently, � = 0. Two algorithms to compensate for this instability are given in Temme [26],
where the author considered the Airy-type uniform asymptotic expansions for the unmodi3ed Bessel
functions J�(x), Y�(x), and their derivatives.

The 3rst algorithm of Ref. [26] expands the terms as(�), bs(�), cs(�), ds(�), �(�), �̂(�), and �(�)
in the Maclaurin series of the variable � = 2−1=3�. This method requires storing a large number of
coeMcients which can be generated exactly in rational form using a computer algebra system and
stored in Ioating point form. The second algorithm reorders the expansions for the slowly varying
parts in powers of �. The coeMcients are computed in Ioating point using an iteration process
which converges quickly. The obvious advantage of this algorithm is that the number of terms
that must be manually placed in storage with the routine is greatly reduced. Code F uses the 3rst
algorithm because of its simplicity. In principle, the second algorithm could be adapted for use in
Eqs. (2.3) and (2.5), although one needs to be mindful that these expansions di7er in form from those
in Ref. [26].



B.R. Fabijonas et al. / Journal of Computational and Applied Mathematics 161 (2003) 179–192 183

2.3. Power series

A power series expansion for the Macdonald function is

Ki�(x) = −
(

��
sinh(��)

)1=2 ∞∑
s=0

hs(�)
(
x2

4

)s
sin(� ln(x=2) − ��;s); (2.6)

where

hs(�) = {s![(�2)(12 + �2) · · · (s2 + �2)]1=2}−1 (2.7)

and

��;s = arg{!(1 + s + i�)}: (2.8)

The functions hs(�) and ��;s are continuous in � and ��;s → 0 as � → 0; cf. ref. [3]. There is a
typographical error in Ref. [3] in the expansion of Ki�(x) where it should read (x2=4)s rather than
(x2=4)2. The computation of ��;s is discussed in Ref. [6].

2.4. Taylor series integration of the ODE

In the 3nal region, Code F computes Ki�(x) and its derivative using Taylor series integration of
Eq. (1.1) in the framework of an initial value problem along rays parallel to the x-axis as described
in ref. [11]. This integration must be carried out in a stable manner, which means that the wanted
solution must grow at least as fast as all independent solutions. The error term will be a linear
combination of the wanted solution and a linearly independent solution. Since at in3nity |Ki�(x)|
is exponentially small and all linearly independent solutions are exponentially large in modulus,
the desired direction for integration is towards the origin for Ki�(x). Thus, the contribution of the
unwanted solution to the error term decays exponentially in the chosen direction of integration. The
initial values at suMciently large values of x are computed from the uniform asymptotic expansions
discussed in Section 2.1.

The integration path is divided into P + 1 points labeled x0; x1; : : : ; xP, where x0 is the initial point
of the integration path and xP is the terminal point at which the function value is desired. Pairs
of independent solutions pj(x) and qj(x) are constructed for each interval xj−1xj with the initial
conditions

pj(xj−1) = 1; p′
j (xj−1) = 0; qj(xj−1) = 0; q′j(xj−1) = 1: (2.9)

Then, (
y(xP)

y′(xP)

)
= APAP−1AP−2 · · ·A1

(
y(x0)

y′(x0)

)
; (2.10)

where Aj denotes the matrix

Aj =

(
pj(xj) qj(xj)

p′
j (xj) q′j(xj)

)
; j = 1; 2; : : : ; P (2.11)
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and y(x) is the solution to Eq. (1.1) for a 3xed value of �. The elements of Aj are computed from
the Taylor series expansion of pj(x) and qj(x) at x = xj−1.

3. Code R

This code computes Ki�(x) by summing a power series expansion or by 3nding an approximate
solution to Eq. (1.1) by using the Lanczos tau-method or by using quadratures. Code R originally
was used to compute Ki�(x) only on the square 0¡x¡ 10, 0¡�¡ 10. A 3gure is shown in Ref.
[27] which indicates the regions in which each algorithm was used.

3.1. Power series

Power series (2.6) can be reexpressed in the form

Ki�(x) =
(

�
� sinh(��)

)1=2

(A(�; x) sin('(�; x)) + B(�; x) cos('(�; x))) (3.1)

for x¿ 0, where

'(�; x) = � ln
x
2
− arg!(i�); (3.2)

A(�; x) =
∞∑
k=0

ak(�; x); B(�; x) =
∞∑
k=0

bk(�; x): (3.3)

The terms ak(�; x), bk(�; x) are generated by the recurrences

a−1 = 0; b0 = 1; (3.4)

ak = ak−1mk + bknk ; bk+1 = bkmk − ak−1nk ; k = 0; 1; 2; : : : ; (3.5)

where, for k = 0; 1; 2; : : :,

mk =
x2

4((k + 1)2 + �2)
; nk =

�x2

4(k + 1)((k + 1)2 + �2)
: (3.6)

For details, see Refs. [15,27]. This expansion converges for 0¡x¡∞ and 0¡�¡∞, but is
computationally eMcient for only small and moderate values of x=�.

3.2. The Lanczos tau-method

Consider Eq. (1.1) on the interval x∈ [1;∞). Changing variables by

y(x) =
( �

2x

)1=2
e−xV (x);

and moving the singular point at in3nity to the origin by the transformation , = 1=x, Eq. (1.1)
becomes

,2v′′(,) + 2(, + 1)v′(,) + ( 1
4 + �2)v(,) = 0; (3.7)
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where v(,) = V (x). An initial condition for v(,) corresponds to a condition at in3nity for Ki�(x),
which is given by

v(0) = lim
x→∞ ex

√
2x
�

Ki�(x) = 1:

This follows from PoincarSe expansions for Ki�(x). See, for example, Ref. [12]. Taking two integrals
of Eq. (3.7), integrating by parts, and using the identity∫ ,

0

∫ .

0
v(t) dt d. =

∫ ,

0
(,− .)v(.) d.; (3.8)

a Volterra-type integral equation for v(,) is obtained, namely

,2v(,) =
∫ ,

0

[(
9
4

+ �2

)
x −

(
1
4

+ �2

)
,− 2

]
v(x) dx + 2,: (3.9)

The problem is now formulated so that one can use the tau-method [19] and the approximation
method [4] to construct a sequence of approximate solutions to Eq. (3.9) denoted by vn(,). The
elements of the sequence vn(,) are polynomials of degree n and are solutions to the following
equation:

,2vn(,) =
∫ ,

0

[(
9
4

+ �2

)
x −

(
1
4

+ �2

)
,− 2

]
vn(x) dx + 2,

+ /1T ∗
n+1(,) + /2T ∗

n+2(,); (3.10)

where T ∗
j (,) is the jth shifted Chebyshev polynomial and /1; /2 are coeMcients to be determined.

The tau-method constructs the solutions vn(,) by 3rst constructing a set of canonical polynomials
for Eq. (3.9), denoted by Qm(x), where m indicates the degree of the polynomial. These polynomials
are solutions of the equation

,2Qm(,) =
∫ ,

0

[(
9
4

+ �2

)
x −

(
1
4

+ �2

)
,− 2

]
Qm(x) dx + 2,Qm(0) + ,m+2: (3.11)

See Refs. [19,20]. These canonical polynomials assist in the transition from nth to (n+ 1)st approx-
imation. By writing the canonical polynomials in the form

Qm(,) =
m∑
i=0

bmi,i; (3.12)

a (stable) 3rst-order linear recurrence for the coeMcients bmi is determined:

bmm =
1
fm

; bmi =
−2

(i + 2)fi
bm; i+1; i = m− 1; m− 2; : : : ; 0;

where

fi = 1 − 9=4 + �2

i + 2
+

1=4 + �2

i + 1
; i = 0; 1; 2; : : : ; m:
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Then, the tau-method constructs the polynomial solution to Eq. (3.10) by expanding vn(,) in terms
of the above-constructed canonical polynomials

vn(,) = /1

n−1∑
m=0

C(m + 2; n + 1)Qm(,) + /2

n∑
m=0

C(m + 2; n + 2)Qm(,); (3.13)

where

C(m; j) = (−1)j+m22m−1

[
2

(
j + m

j − m

)
−
(
j + m− 1

j − m

)]
;

are the coeMcients of the shifted Chebyshev polynomials, that is,

T ∗
j (,) =

j∑
m=0

C(m; j),m:

Finally, /1 and /2 are obtained by inserting the solution form (3.13) into Eq. (3.10):

/1C(0; n + 1) + /2C(0; n + 2) = 0;

− 2vn(0) + 2 + /1C(1; n + 1) + /2C(1; n + 2) = 0: (3.14)

Summarizing,

Ki�(x) = e−x

√
�
2x

[
n−1∑
m=0

{/1C(m + 2; n + 1) + /2C(m + 2; n + 2)}Qm

(
1
x

)

+ /2C(n + 2; n + 2)Qn

(
1
x

)
+ Rn

]
(3.15)

valid on the interval 16 x¡∞, where Rn is the remainder. In the code, n was chosen by numerical
experimentation to satisfy |Rn|¡ 10−16 within the region where the method was applied.

3.3. Numerical quadrature

Di7erent quadrature formulas (Filon’s, Gauss–Legendre, quadrature of the trapezoidal kind) were
considered. It was determined that the best accuracy and speed were achieved with quadrature
formulas of the trapezoidal kind.

An integral representation of the modi3ed Bessel function Ki�(x) is

Ki�(x) =
∫ ∞

0
e−x cosh t cos(�t) dt; (3.16)

cf. Eq. (1.3). Because of the rapidly decreasing integrand for increasing t, it is possible to truncate
these integrals while maintaining the necessary precision. Thus, Code R uses the truncated integral

I =
∫ b

0
e−x cosh t cos(�t) dt; (3.17)
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where the upper limit of integration b is determined from the condition

ex(1−cosh b) = 10−N ;

the code sets N = 16.
The trapezoidal rule gives

I(h) = h


0:5 e−x +

k∑
j=1

e−x cosh ( jh) cos(�jh)


 ; (3.18)

where k = [b=h]. This could be implemented by starting with an initial h = h0, generating I(h) for
h = h0; h0=2; h0=4; : : : ; until the relative di7erence between successive approximations is smaller than
10−N−1, but this procedure may cost many iterations, depending on the value of x. This diMculty
was avoided in Ref. [9] by estimating the relative error of quadrature formula (3.18) as

|TI(h)| ∼= 10−M (�2=h−��=2)=Ka; (3.19)

where M = log10 e and Ka is the value of Ki�(x) computed from the 3rst term in its PoincarSe
asymptotic expansion. Requiring |TI(h)|6 10−N , h is chosen to satisfy

h6 �2=(N=M + ��=2 − ln(Ka)): (3.20)

The code sets N = 16. The method is valid for all x and �, but becomes computationally ineMcient
as x=� → 0; cf. Ref. [9].

4. Comparisons

The 3rst purpose of this section is to establish the validity of the reference Code F. The second
is to compare the other two codes to the reference code. In all comparisons the error measure will
be the relative precision of two real numbers x and y, de3ned as

rp(x; y) = |ln(x=y)|: (4.1)

This is a symmetric variation of conventional relative error, applicable when x and y are nonzero
and have the same sign; cf. refs. [10,18]. As a rule in Ioating-point computation, the rp will increase
as zeros are approached. In such cases, only absolute precision can be maintained.

A reliable test for a numerically satisfactory pair of solutions of a linear second-order ordinary
di7erential equation is veri3cation of Wronskians. Of the codes considered here, this method is
available only for Code F. The Wronskian to be used is

W{Ki�(x); Li�(x)} = 1=x: (4.2)

Because Ki�(x) and Li�(x) form a numerically satisfactory pair of solutions, the rp of Eq. (4.2)
should be constant for all x and �. This rp is a good measure of the rp of the two functions and
their derivatives, except near a zero of one of them.

Code F was designed to enable the computation of the functions Ki�(x) and Li�(x) in various
precisions. Using a Fortran 90 extension o7ered by many compilers, it was run with a wordlength of
128 bits. The signi3cant length was 113, corresponding to an rp of 2−112, or 10−33:7, approximately.
Fig. 1 shows points for which the rp of Eq. (4.2) exceeds 10−32 on a random grid. The 3gure is
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Fig. 1. The relative precision (rp) of the Wronskian of Ki�(x) and Li�(x) computed by Code F in 128-bit precision. The
white parts of the region 0¡x; �6 150 correspond to points where the rp is less than 10−32. The maximum rp is 3:0−26.

also a good measure of the rp of Ki�(x) for points �; x that are not “close” to a zero of Ki�(x).
The largest errors occur near the line � = 44 at the top of the integration region. This is attributed
to error ampli3cation due to argument reduction in computing trigonometric functions used in the
power series expansion for Li�(x). This expansion provides the starting values for integration and
the errors propagate into the integration region.

As an aside, the apparent boundaries in the 3gure correspond, in part, to the computational sub-
domains of Code F. For parameter values which fall in the quadrilateral �¡x6 100, 0¡�6 44,
the functions are computed using integration of the ODE. For parameter values in the triangle
0¡x6 �6 44, Code F uses power series expansions. Outside these regions, Code F sums the
uniform asymptotic expansions, and in particular uses the method described in Section 2.2 for
0:72�6 x6 1:59�.

The comparison of the other codes with Code F is carried out in the following way. First, a
random grid is generated in the precision of the code that is to be tested, in this case double precision
on a 32-bit machine (64 bits with 53-bit signi3cant), corresponding to an rp of 2−52, or 10−15:6,
approximately. Next, function values are generated on this grid using Code F at twice the precision.
This amount of guarding precision is suMcient to provide a virtual guarantee that comparison values
to full double-precision rp are available on the random grid, even in neighborhoods of 3nite zeros.

The upper and lower parts of Fig. 2 show points for which the relative precision of Code R
exceeds 10−14. The upper part covers the region for which Code R was designed, 0¡�; x6 10.
The maximum rp is 4:6×10−9 which lies at x= 0:13, �= 8:1 near a zero of Ki�(x). The much larger
region covered in the lower part of the 3gure, 0¡�; x6 150, is included for comparison with the
other codes; see Figs. 1 and 3. It can be noted that Code R performs well in a substantially larger
region than called for by its design, and that further improvements of Code R are possible with a
suMcient expenditure of e7ort. The stairlike boundary in the upper part of Fig. 2 corresponds, in
part, to the di7erent computational domains: to the left, Code R uses power series summation; to the
right and below � = 4:2, the Lanczos tau-method; and in the 3nal region, the numerical quadrature.
The curves seen in the upper part of the 3gure for x¡� correspond to zeros of Ki�(x). These curves
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Fig. 2. The relative precision (rp) of Code R. The left 3gure covers the region for which Code R was designed,
0¡x; �6 10. The much larger region covered in the right 3gure, 0¡x; �6 150, is included only for comparison
with Codes F and E (see Figs. 1 and 3). The white parts of the 3gures correspond to points where the rp is less than
10−14.

Fig. 3. The relative precision (rp) of Code E. The left 3gure covers the region 0¡�6 10 and 0:756 x6 10, for
comparison with Code R. The right 3gure covers the region 0¡�6 150, 0:756 x6 150, for comparison with the other
two codes. The white parts of the 3gures correspond to points where the rp is less than 10−9.

indicate the diMculty that Code R has in computing the function value near a zero, a feature that is
common to many algorithms when executed in Ioating point arithmetic.

Fig. 3 is similar to Fig. 2, but for Code E. Again, we see the expected diMculty in computing the
zeros of Ki�(x). The accuracy of Code E is limited by the tolerances chosen in the NAG subroutine
calls. In order to cover as large a part of the domain as possible, we use the accuracy of 10−14 on
0:75¡x6 150, 0¡�6 150. Computations in the strip 0¡x¡ 0:75 require signi3cantly reduced
tolerances and is therefore omitted. We see that Code E returns values accurate to single precision
in much of the square 0¡x; �6 10, and that this accuracy is continued outside this square. In fact,
the accuracy is doubled for large values of x and small �. The maximum rp is 1:9×10−3 at x= 1:2,
� = 6:4 near a zero of Ki�(x).
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5. Discussion and views towards the future

The purpose of a reference code is to provide a standard against which to compare other codes
that compute the same functions. The speed of execution is secondary to accuracy, robustness and
reliability. The ability to compute to high precision, in the current computing environment to at least
quadruple precision, is essential. OverIow and underIow should be mitigated or eliminated. These
attributes should apply to a very wide range of argument and parameter values, so that tests can be
constructed to cover all eventualities. Coincidentally, a reference code can serve as a working code
in applications where no superior alternative exists.

We have found that the graphical display of errors is a useful way of presenting code comparisons.
It allows us to see at a glance whether or not a given code is suitable for a particular application.
It also provides assistance in code development. For example, with detailed information about the
location of the largest errors, we can examine the code to see if we can remove bugs or incorporate
better algorithms.

Code F was designed to be a reference code, capable of generating function values in single, double
and quadruple precision. The previous section demonstrates its value in assessing the capabilities of
two codes that compute the Macdonald function Ki�(x). From Fig. 2 we were able to see immediately
that Code R, for example, meets its design criteria within the small region 0¡x; �6 10, but also
that it remains valid for much larger values of x if � is relatively small, and vice versa. We were also
able to observe the boundaries between subregions of 0¡x; �6 10 in which di7erent algorithms
were used. Boundaries are often places where algorithms break down, and the larger errors to the
left of the stairlike structure in the 3gure provides a guide to possible improvements in the code.

Figs. 2 and 3 also show that Codes R and E cannot deal with computations of Ki�(x) when
x; � are both large. Accordingly, for some applications it may be necessary to use the reference
Code F. A comparison of the double precision speed of Codes F and R is shown in Fig. 4.
These timings are somewhat misleading in that Code R computes only the function Ki�(x) whereas

x

ν

0 100 150
0

0

50

100

150

5

Fig. 4. Timing comparison. Code F was faster at light gray points, and Code R for the dark gray points. The white regions
correspond to points where the rp of Code R exceeds 10−12. In particular, Code F is faster in the thin region just above
the x-axis for x¿ 15.
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Code F computes both the function and its derivative simultaneously. Code R almost always is faster
when 0¡x; �6 10, and this advantage could be important in Kontorovich–Lebedev transforms. The
timings were obtained using the STOPWATCH timing program [14]. It will be a challenge for software
developers to construct codes for Ki�(x); Li�(x) that are more eMcient than the reference Code F.

Finally, it should be mentioned that work in refs. [24,25] has prepared the theoretical framework
for yet another algorithm for computing Ki�(x), Li�(x), and their derivatives by using the method of
steepest descents and quadrature with the integral representations (1.2), (1.3). Work is in progress;
see ref. [8].
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