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Given a ring A with a ring endomorph&m (T and a u-derivation S (i.e., 

qab) = S(a)b + u(a) S(b)), one can form a twisted polynomial ring in the 
noncommuting variable x, A[x; u, 61, subject to the relation 

xa = a(a)x + S(a). 

Such rings were studied by Ore [lo], Jacobson [7], Amitsur [l], Jategaonkar [8], 
Carcanague [2] and others, usually in the case when A was a division ring, 
although Jategaonkar in particular considers more general coefficient rings but 

with S = 0. 
In this paper we study the ring A[x; u, S] in the case when A is a semisimple 

Artinian ring and u is any injective endomorphism. Our results may be sum- 
marized as establishing close connections with the case when A is a division ring. 

We start by considering the nature of the pair u, 6 under the circumstances 

of the ring A being a finite product of rings or a matrix ring. This enables us to 
concentrate our attention on rings of the form A[%; u], i.e., 6 = 0, with A a 
finite product of division rings, say A = J-J:=, Dd where u(DJ C D,+l (letting 
D - 4). This is a class of rings studied by Jategaonkar [8]. Such a ring too n+1 - 

can be described in an alternative fashion; namely as a multiple idealizer subring 
of the n x n matrix ring over D,[P; CP]. This provides a route for obtaining its 
properties. We illustrate this by describing its ideals. 

Some of the results of this paper are used in [3] where some further properties 
of twisted polynomial rings are studied. 
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1. ENDOMORPHISMS AND DERIVATIONS OF PRODUCTS 

Throughout this section we consider a triple (/I; U, 6) where A is a ring with 1, 
u is an injective ring endomorphism of A, and 6 is a o-derivation of A (i.e., 6 is an 

additive map from A to A such that 6(ab) == S(a)6 T u(u) S(b) for all Q, b E -4). 
We will assume that there is a finite bound on the cardinality of sets of orthogonal 
idempotents of A. Thus A = n,“I, Ai, a finite product of indecomposable 
rings. We will let e, denote the identity of Aj . 

LEMMA 1.1. For each i there is a unique j such that a(AJ C Aj . 

Proof. Choose a set, X say, of orthogonal idempotents of A, having maximum 

cardinality. Clearly C {x ~ x E X} = 1. Also, each x E X belongs to one of the Ai ; 
for otherwise x would decompose as the sum of its projections, producing a 

larger set of orthogonal idempotents. We set X, = X n A, . It follows that 

ei = C {x 1 x E Xi}. 
Note that aX is also a set of orthogonal idempotents, and has maximum 

cardinality. Therefore, as before, al = C {u(x) / x E X} = 1, and each member 

of OX belongs to one of the Aj . Suppose that 

Let 

f = 2 (x 1 x E xi ) u(x) E A,}, 

g = c (x 1 x E xi ) u(x) $?L Aj). 

Thenf +g = e,. Also 

u(f) u(Ai) u(g) C u(f) Au(g) C Aj n n Ak = 0. 
kfj 

Since o is injective,fA,g = 0. SimilarlygAif = 0. It follows thatf, g are central 
idempotents and Ai = f/Ii @ gA, . However A, is indecomposable and f f 0. 
Therefore g = 0, and so u(XJ C A, . Finally, if a E Ai , then a = eia and thus 
u(a) = U(Q) u(u) E Aj . Hence u(AJ C A, . 1 

Notation. This result shows that u induces a permutation of the index set 

{I,..., m}. We denote this permutation by p. Thus a(Ai) C Apci) . 

LEMMA 1.2. S(AJ C A, + Aoci) . 

Proof. If a E A, , then a = eia . Therefore 

s(a) = S(e& + 44 s(a) E Ai + 4,~ . I 
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These results combine to give 

THEOREM 1.3. Suppose that y1 ,..., yk are the orbits of p. Let 

Bj=n(A,IiEYi} 

and let oj , Sj be the restriction to Bj of o, 6. Then aj is an injectiwe e&morphism 
of Bi , and 69 is a a,-derivation and 

(A; a, S) = fi (B) ; al, Sj). 1 
j=l 

We restrict our attention now to the indecomposable case. Thus, after 
re-ordering if necessary, we can suppose that p is the cycle (1 2 a** m). Then 
o(ei) = eifl , with the convention that e,+l = e, . 

We recall that, if b E A, then there is a derivation 6, given by 

&,(a) = ba - a(u)b. 

This is called an inner a-derivation of A. 

LEMMA 1.4. If m > 1, then 8 is an inner a-derivation. 

Proof. Let a E A. Then aei = eia = eiaei , and so 

S(e,a) = S(e&Zf?i) 

= S(e,) Uei + a(ei) S(a)f?i + a(e,) a(a) S(ep.) 

= S(eJ eia + s(a) ei+l% + a@> ei+ls(ei). 

:. S(a) = C s(w) 
i 

= (T s(e&i) fz + 44 (T ei+Aed)- 

If we let a = 1, we see that 

0 = S(1) = C S(e,)e, + C ei+,S(e~). 

Thus, letting b = C S(e,) ei = -C ei+lS(e,) we have that 

S(a) = ba - a(a)b 

and so 6 is an inner a-derivation. 1 

This result has also been proved independently by H. Wexler in a paper to 
appear in the seminaire d’algebre (Aribaud, Dubreil, M. P. Malliavin) 
(Paris 1977). 
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2. END~MORPHISMS END DERIVATIONS 0~ MATRICES 

We continue to study the triple (A, u, 8). We suppose that the conditions on A 
and the Ai are as in Section 1, and that p is the cycle (1 2 ... m). We will also 
impose an extra condition. We will be considering the case when A, is an 

n X nmatrixring; say/l, = i%Zn(O1). If El is a D,-module such that Er) E Dy), 
we will require that El _N D, . This condition holds, for example, if D, is 

Artinian, or if D, is a semifir [4]. 

LEMMA 2.1. Let A, be an n x n matrix ring. Then so too aye A, ,..., A, . 

Proof. Let {e,?} be a complete set of matrix units for A, . Then {uJC-l(e,j)} is a 
complete set of matrix units for A, . 1 

LEMMA 2.2. Let (eij} and {elij} be two complete sets of n x n matrix unitsfor A,. 
Then there is an inner automorphism 01~ of A, such that ei, = ol,(elij). 

Proof. We write A = M,(Dr) ‘v End(Dy)) with respect to {eij}. We choose 

a basis or ,..., n v for 0:“). Now consider the set {e’ij}. It is clear that 

efiiD1(11’ ‘v eljjD1(R’ ‘v El say; 

and then 0:“) = xi efi,Dy) N Ey). 

By assumption, E1 ‘v D, . Thus we obtain a second basis for Dy); say 

V’l )...) dn . Note that 

eij(vk) = &vi and e’ijv’k = &v’~ 

where ?$, is the Kronecker symbol. Let u be the automorphism of 0:“) given by 
u(v’~) = vi , i = l,..., n. Then eij = ue’iju-l for all i, j. We set a1 to be the inner 

automorphism of A, given by U. a 

LEMMA 2.3. Let (eij} be a complete set of n x n matrix units for A, . Then there 
is an inner automorphism OL of A such that, for all i, j, 

a(uk(eij)) = ak(eij) for K = 1, 2 ,..., m - 1, 

a(P(eij)) = eij . 

Proof. Define 01 to be 1 on A, ,..., A, and to be 01~ on A,, where ocr is 

obtained, as described in Lemma 2.2, taking etij = aPn(e,j). 1 

THEOREM 2.4. Let A, be an n x n matrix ring. Then A N Mn(D) with 
D = l-IL, Di and MJDi) N A, . Moreover there is an inner automorphism o2 
of A and an injective endomorphism o1 of D such that o = a& where 8, denotes 
the natural extension of q to M’%(D). 
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Proof. If we write 

fij = eij + u(eij) + ... + urn-l(eij), 

then {fij} is a complete set of 1z x n matrix units for A. Then A N M,(D), 
and A, N_ M,(DJ, and D = n Di . Let OL be the inner automorphism described 
in Lemma 2.3. Then, for all i, j, 

cm(ak(eij)) = uk+l(eij) for kfm-1, 

au(am-l(eij)) = aum(eij) = eij . 

Thus au(fij) = fij . It follows that CUJ is the extension to J&(D) of an injective 
endomorphism, aa say, of D. Then w = ~?r and so u = a& where us = 01-l 
is inner. 1 

It remains to consider the u-derivation S in these circumstances. If m > 1 
then, as shown in Lemma 1.3, 6 is inner. So we will consider only the case when 
m = 1. In the light of Theorem 2.4, we will suppose also that u = 6,) the 
extension of an injective endomorphism U, of D. 

THEOREM 2.5. Let 6 be a 6,-derivation of M,(D). Then 6 = 8, + 6, where 6, 
is an inner &-derivation and 6, is a al-derivation of D. 

Proof. 1 = xi eileli and therefore 

Hence 

Similarly 

N9w @hk> 

0 = s(l) = C S(k) eli + 2 4(ed %i) 

= 2 S(G) eli + C eil%i). 

o = (c s(eil)eli + c eils(eli)) ehk 

= s(ehl)elk + (1 eils(ed) ehk . 

o = ehk (x s(eideli) f ehls(elk)a 

s(ehlelk) = S(ehl) elk + eh,%J and so 

Let b = C S(e,,) eri = - C eirS(eri). Then we see that 

‘tehk) = behk - %kb for all h, h. 
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Thus, if we define s,(a) = ba - &(u)b, then 

and so 6 - 6, is the extension to J&,(D) of a or-derivation, 6, say, of D. a 

Note. This proof is based on an argument of Kawada [9] pointed out to us 

by D. Jordan. 

3. TWISTED POLYNOMIAL RINGS 

Given a triple (A, 0, 8) as before, one can construct a twisted polynomial ring 

A[%; O, 61 in which the commutation law is 

xa = u(a)x + S(u). 

We will consider the structure of this ring in the case when A is semisimple 
Artinian, c is an injective endomorphism and 6 is a a-derivation. We let p denote 

the permutation induced by cr on the simple Artinian factors of A. 

THEOREM 3.1. The ying A[x; 0, S] decomposes as a direct product BJx; O, S] 

where each Bj comprises the product of the simple Artinian factors belonging to an 

orbit of p. 

Proof. This is clear from Theorem 1.3. 1 

We can therefore, without serious loss, restrict our attention to the case when p 
is a cycle on the simple Artinian factors A, ,..., A,, of A. By Lemma 2.1 these 
will all be n x n matrix rings, for some n, over division rings D, ,..., D,,, say. 

We let D = n,“_, Di . 

THEOREM 3.2. Suppose that Ai N M,(DJ for i = I,..., m. Then there is an 
injective endomorphism 4 of D = nG, Di and a q-derivation 6, of D, and 
elements u, v E A, u being a unit, such that 

4s; 0, 61 = A[Y; 6,) 8,] = W@[Y; 01, %I) 

where y = ux -k v. Moreover, ;f m > 1, we can choose 6, to be trivial. 

Proof. We see, by Theorem 2.4 that there is an inner automorphism o2 of A 
and an injective endomorphism aI of D such that o = a,& . Say q,(a) = u-luu. 
We set x1 = ux. Then we have 

A[x, u, S] = A[xx, ; 8, , S’] 



TWISTED POLYNOMIAL RINGS 233 

where 6’ = US and S’ is a &,-derivation of A. But then, by Theorem 2.5, 
6’ = & + 6, , where 6, is an inner al-derivation (say S,(a) = oa - ur(u)w) and 
6, is a or-derivation of D. Therefore 

A[x; u, S] = A[x, ; 6, , S’] = A[y, 6, , &] 

= WPb; 01, %I)> 
as claimed. 

Finally, if m > 1 then, by Lemma 1.4, 6’ is an inner al-derivation, and so 
we can arrange that 6, is trivial. 1 

This effectively reduces the study of A[x; u, S] to the case when A is the 
product of m division rings which are cycled by u. The case when m = 1, or 
m # 1, are rather different to each other so we will discuss them separately. 

4. ONE DIVISION RING 

In this section we will describe briefly the ideals of the ring R = D[x; u, S] 
with D a division ring, u an endomorphism and 6 a derivation, Our main interest, 
for the following section, is in the case when 6 = 0. This case has been discussed 
by Jacobson [7], and the general case by Carcanague [2]. However, we will sketch 
proofs of some of the facts we will be needing. 

By Euclid’s algorithm one sees that R = D[x; u, S] is a principal left ideal 
domain (and it is not hard to deduce that R is also a principal right ideal domain 
if and only if u is an automorphism). Of course, each non zero left ideal I is 
generated by the manic polynomial of least degree belonging to it. That makes it 
plain that R/l is a finite D-vector space and hence, as an R-module, has finite 
composition length. Thus, each proper factor ring of R is a left Artinian principal 
left ideal ring. The theory of such rings [7, pp. 75-761 shows that each ideal is a 
commutative product of maximal ideals. Hence 

PROPOSITION 4.1. Each nonzero ideal of R is a unique commutative product 
of maximal ideals. 

Suppose for the moment that 6 = 0. Then it is clear that Rx is a maximal ideal. 
Let Rp be another maximal ideal, with p a polynomial of degree 7~ say. If we 
choosep of the formp = 1 + qx it is an elementary calculation that p is central. 
Moreover, if the leading coefficient of p is u E D, then u”(a) = u-%zu for a E D. 
This demonstrates 

PROPOSITION 4.2 (Jacobson). If 6 = 0, each ideal of R has the form Rpxm 
with p central. Moreover, unless some power of u is an inner automorphism, the 
nonzeYo ideals all have the form Rxm. fl 
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We note that Carcanague proves that, in the case when S # 0, if Q is a manic 
polynomial of minimal dcgrec such that Rq is a proper ideal, then the ideals 

of R have the form Rpq”’ with p central. And again, if R has more than one 

maximal ideal, then D must be an automorphism some power of which is inner. 

5. A CYCLE OF DIVISION RINGS 

In this section we consider the type of ring described in Theorem 3.2. Thus 

D = nrsl Di is the direct product of division rings D, ,..., D, , and 0 is an 
injective endomorphism of D such that g(Di) C D,+l , a(D,) _C D, . As shown in 
Theorem 3.2, any g-derivation would be inner. So we consider only the ring 
R = D[x; c]. Rings of this type have been studied before by Jategaonkar [8]. 
We wish to describe some further facts and an alternative viewpoint. \Ve let ei 
denote the identity element of Di . 

It is well known that R is a left Noetherian left hereditary prime ring (and R is 
right Noetherian and right hereditary if and only if u is an automorphism). 

Thus R has a left quotient ring Q which is simple Artinian. We recall [7, Chap. 61 
that if I is an ideal of R then 

O,(I) = {q E Q 1 Iq L I} ‘v End(,l). 

LEMMA 5.1. Let I =z Re,R and S = O,.(I). Then 

(i) I=D,+(D,+Dl)x+(D,+D,+D2)x2+~~~ 
+ (D, + D, + ... -.I- D,p,) a+* + Rx+I. 

(ii) S = x-(“-l)(Dn + (D, + uD,)x + ... -t (D, + oD, $- I.. 
+ a”-lD,J ~“-1 + (D, + CD, jm .I. + cn-lD,) X= + . ..). 

Proof. (i) This is an easy computation. 

(ii) From (i), I > R9-l, and so 

qE S =s IqC R 3 RxnplqC R > xn-lqe R a qe~+“-~‘R. 

Therefore S C X-(r~-l)R. Bearing in mind the fact that I is the sum of homo- 
geneous subsets, it is enough to check homogeneous subsets of x-(‘~- I’R. 
The result follows after an easy, but lengthy, computation. 1 

PROPOSITION 5.2. S = O,(Re,R) N Mn(D,[xn; an]). 

Proof. First we note that S contains the elements displayed in the following 
n X 1z array: 

el e,x-le, eIx+e3 3 ‘. elx-tn-l)e ?l 

e2xel e2 e2x-le3 . . . e2x-(n-2)e, 
..I . . . . . . . . . . . 

e,xnel e e,xn-ze e Xn-3e .., 
2 n 3 eTL 
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These form a complete set of n x n matrix units. Moreover enSen = e,Re, = 

QP; u”]. Therefore 

S N M,(e,Se,) = M,(D,[xn; CT”]). 1 

We note that I = Re,R = Re, @ Re,x @ ... @ Re,x+l. Now this is a 
decomposition of 1 as a direct sum of n isomorphic left ideals. Therefore 

End(,Z) N M,(End Re,) N M,(e,Re,). 

Moreover S = O,(I) N End(J), with the elements of S acting via right 
multiplication. This provides an alternative route to the description of S. 

There is a converse result to Proposition 5.2 as follows. 

PROPOSITION 5.3. Let D, be a division ring with an endomorphism 7 and let 
S = M,(D,[ y; T]). Then there is a ring R of the form D[x; u] with D the direct 
sum of n division rings and (T an injective endomorphism, such that S N O,.(Re,R). 

Proof. Let D = D, @ ... @ D, with Di N D, and define u: D + D by 

44 > 4 ,..., 4 = (4 , 4 , 4 ,...> d,_,). Let R = D[x; u]. Then, by Propo- 
sition 5.2, 

O,(Re,R) N MJD,[x”; CT”]). 

Nowon =ronD,. Therefore, setting y = x”, we have 

O,(Re,R) N S. 1 

We now consider the ideals of R = D[x; u] in the special case when u is not 
an automorphism. 

PROPOSITION 5.4. If u is not an automorphism and B is a nonzero ideal of R 
then, for some m, 

Rxn” C B C Rx”-n+l. 

Proof. It is clear that e,Be, is a nonzero ideal of enRen . Now 
e,Re, ‘v Dn[xn; u”] and, of course, an is not an automorphism of D, . Thus 
e,Be, contains a power of e,xne, . The same is true of e,Be, for i = I,..., n - 1 
and thus B contains a power of xn. 

Now we choose m minimal such that Rxqn C B. Let b E B; b = aixi + ... + 

4%,A am-r (mod Rx”), with ai # 0. By multiplying by an element of D, we can 
arrange that ai = ej for some j. However, 

xkqxixn-k-l = ej+kxi+n-ls 

Hence there is a manic polynomial of degree i + n - 1 belonging to B. If 
i + n - 1 < m, one could deduce that x +-l E B, contradicting the minimality 
of m. Hence i + it - 1 2 m and B C Rx+n+l. f 
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Next we aim to describe in more detail the relationship between R and S. 
We will use the notion of a multiple idealizer subring. If U is a ring and A4, > 

A, > ... I A, is a chain of right ideals of U then 

v = I(A, ) A, ,..., A,) == {U E U 1 u,4, c A4i ) i := l)..., hj 

is called the multiple idealizer of U at that chain (see [6, 131). The rings CY and I’ 
are particularly closely linked when A,c is semimaximal (i.e., when L-i.-!,. is a 
semisimple module). Similar remarks apply to left ideals Bj . 

Returning now to the rings R and S, we let 

fj = e,.i 1 -L fi yz + ‘.. L- e, , g, -: Cl i e2 :- ‘.. - f, , 

and Ai = fiS -.- Re,R, and Bmmmi == Sgi -;- Re,R. Note that A,,+, = Re,,li, 
B 1t-1 = Re,R. 

THEOREM 5.5. (i) R = I(A, , A, ,..., A..,). 

(ii) If CT is an automorphism, then A,_., and B,-, are semimaximal in S, and 
R = I(B, , B, ,..., B, ml). 

ts a multiple idealizer from S at a chain of left ideals if and on[?~ $ oliplj4 R 
1 =L D, ; and in that case R = I(B, ,..., B,-,). 

Proof. (i) Let A, S. Then we will prove by induction on k that 

I(A, , ‘4, ,..., Ak) =- -4, m/- R. Th’ is is obvious if k =Y- 0, and is what we wish 

to establish if k --: n --~ 1. \I’e suppose it holds for h - 1. We note that one can 
compute that I(A, , A, ,..., A,.) 2 A, +- R. Now A,~_, = e,S 2 ;1, . Thus wc 
need only prove that, if e&l, C A, , then e,s E A, + R. However 

u,L~, C -4, =:- e,sA, C enA, -- e,sAk CR. 

Consider the homogeneous components of e,S; namely 

Multiply each, on the right, respectively by the elements 

e,L , en-, ,..-, e,+l , w+, ek.lxn ,..., elxn, e# ,..., e,x”, e,.x” ,... 

of A, . The fact that the first n - k products have negative degrees shows that 
these homogeneous components contain no elements of I(A,). And the other 
products show that the elements of the remaining components belong to [(A,.) 
only if they already belong to R. 

(ii) If 0 is an automorphism, then SP --- xnS’ is a maximal ideal of S, 
the factor ring being simple Artinian. Moreover, A,-, 2 xRS and B,-, 2 Y’S 

and so both are semimaximal. By (i), R = I(A, ,..., =1,-r) and so, using f6] 
or [13] it follows immediately that R = I(B, ,..., B,-,). 
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(iii) We start by considering under what circumstances Sxz CR. By 

Lemma 5.1, 

SxZ = X-(-1)(D, + (D, + aD,)x + ... 

+ (D, + oD, + ... + an-lDn) xn-l + ...) x1. 

Checking the homogeneous components one by one, we see that Sxz C R if and 
only if 1 3 n - 1 and D, C un-lD, D, + oD, C un-lD,..., D, + oD, + ... + 
on-ID, C d-lD. These latter conditions are equivalent to’ the condition that 

1 > n - 1 and D, = un-lD1 . 
Suppose now that R is a multiple idealizer from S. If u is an automorphism 

then, of course, un-lD1 = D, and the result follows from (ii). If u is not an 
automorphism then, by Proposition 5.4, we know that each ideal of R contains 
a power of x. However, if R = I(C, ,..., C,) then Ct is a left ideal of S and an 

ideal of R. Thus Sxl C R for some 1. Hence un-lD1 = D, by the preceding 
paragraph. 

Conversely, suppose un-lD1 = D, . Then Sx” C R. However Sxn is a maximal 
ideal of S, with SISxn being simple Artinian. Moreover Sxn C Re,R. Thus 
B 1 ,..., Bnpl are semimaximal left ideals of S and, calculating modulo Sx”, 
it is easily verified that R = I(.& ,..., B,_,). 4 

Next we consider the ideal structure of R, starting with the collection of 
maximal ideals. 

THEOREM 5.6. Each maximal ideal M of R is either of the form M = 
R(1 - ei) + Rx or of the form M = X A R where X is a maximal ideal of S 
other than Sxn. 

Proof. First suppose u is not an automorphism. By Proposition 5.4, each 
ideal of R contains a power of x. Thus each maximal ideal M contains Rx. 
Therefore M has the form R(l - ei) + Rx. 

Second, suppose u is an automorphism. By Theorem 5.5(ii), R is a multiple 
idealizer from S at semimaximal left ideals containing Sxn. Hence, by [12, 
Proposition 2.61, the simple left R-modules are of one of the following types; 

(i) simple left S-modules A not annihilated by Sx”, 

(ii) subfactors B of the left R-module S/Sxn = S/x”&‘. 

Now each maximal ideal M of R arises as the annihilator of some unfaithful 
simple module. If A is unfaithful over R, and hence over S, then M = annR A = 
arms A A R = X n R. As for B, note that xnB = 0. Thus annR B 2 Rx. 
Hence annR B = R(l - eJ + Rx for some i. 1 

THEOREM 5.7. Each ideal I of R can be written uniquely in the form I = 
AM,nl “. Mpt where Mi = Xi n R, with Xi a maximal ideal of S other than Sxn, 
and where A is an ideal such that Rx1 1 A 2 Rx~+~-~ for some 1. 



238 CAUCHON AND ROBSON 

Proof. If u is not an automorphism, this is clear from Proposition 5.4. 
If 0 is an automorphism, then R is a hereditary Noetherian prime ring and, by 
Theorem 5.6, has only finitely many idempotent maximal ideals (for the ideal 
114 = X n R cannot be idempotent since S is an ideal of the principal ideal ring 
S and so 0 AY-ni :-= 0). By [5, Theorems 2.9, 4.21 each ideal of R is the unique 
product of an eventual idempotcnt ideal and some maximal invertible ideals. 

The latter all have either the form Mj Xi n R, or else equal Rx. The former 
all contain Rx+l by [5, Proposition 4.31. The result now follows. 1 
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