
P
f
a
a
c
c
p
i
h
v
a

F
D
P
t
M
I
f

a

Journal of the American College of Cardiology Vol. 54, No. 10, 2009
© 2009 by the American College of Cardiology Foundation ISSN 0735-1097/09/$36.00
P

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Genetics/Genomics

Mutations in Ribonucleic Acid Binding Protein
Gene Cause Familial Dilated Cardiomyopathy

Katharine M. Brauch, MS,* Margaret L. Karst, BA,* Kathleen J. Herron, BA,*
Mariza de Andrade, PHD,§ Patricia A. Pellikka, MD,† Richard J. Rodeheffer, MD,†
Virginia V. Michels, MD,� Timothy M. Olson, MD*†‡

Rochester, Minnesota

Objectives We sought to identify a novel gene for dilated cardiomyopathy (DCM).

Background DCM is a heritable, genetically heterogeneous disorder that remains idiopathic in the majority of patients. Familial
cases provide an opportunity to discover unsuspected molecular bases of DCM, enabling pre-clinical risk detection.

Methods Two large families with autosomal-dominant DCM were studied. Genome-wide linkage analysis was used to
identify a disease locus, followed by fine mapping and positional candidate gene sequencing. Mutation scanning
was then performed in 278 unrelated subjects with idiopathic DCM, prospectively identified at the Mayo Clinic.

Results Overlapping loci for DCM were independently mapped to chromosome 10q25-q26. Deoxyribonucleic acid se-
quencing of affected individuals in each family revealed distinct heterozygous missense mutations in exon 9 of
RBM20, encoding ribonucleic acid (RNA) binding motif protein 20. Comprehensive coding sequence analyses
identified missense mutations clustered within this same exon in 6 additional DCM families. Mutations segre-
gated with DCM (peak composite logarithm of the odds score �11.49), were absent in 480 control samples,
and altered residues within a highly conserved arginine/serine (RS)-rich region. Expression of RBM20 messenger
RNA was confirmed in human heart tissue.

Conclusions Our findings establish RBM20 as a DCM gene and reveal a mutation hotspot in the RS domain. RBM20 is prefer-
entially expressed in the heart and encodes motifs prototypical of spliceosome proteins that regulate alternative
pre-messenger RNA splicing, thus implicating a functionally distinct gene in human cardiomyopathy. RBM20
mutations are associated with young age at diagnosis, end-stage heart failure, and high mortality. (J Am Coll
Cardiol 2009;54:930–41) © 2009 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2009.05.038
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revention of heart failure has been a major public health
ocus, founded on knowledge of pathogenic mechanisms
nd modifiable risk factors for hypertension and coronary
rtery disease (1). Heart failure remains an idiopathic
ondition, however, in 50% of adults (2) and 66% of
hildren (3) referred to cardiologists, and end-stage idio-
athic dilated cardiomyopathy (DCM) is the most common
ndication for cardiac transplantation (4,5). Indeed, onset of
eart failure symptoms in DCM typically portends ad-
anced myocardial disease and risk for sudden death (6)
fter years to decades of clinically silent but insidiously
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rogressive myopathy. Even in children, this inherent delay
n diagnosis and treatment of DCM accounts for 10-year
ransplantation-free survival of only 42% (3). Improved
rediction, treatment, and prevention of DCM will require
iscovery of pre-clinical biomarkers, better tools for risk-
tratification, and the molecular and cellular basis of disease
o enable mechanism-based therapies (1).

See page 942

Recognition of DCM as a familial disorder in 20% to
8% of cases (7–11) has provided a rationale for routine
creening echocardiography in at-risk relatives to detect
re-symptomatic disease (12). Moreover, it has been the
mpetus for human genetics investigations to uncover the

olecular basis of DCM (13,14). Since 1993, pathogenic
utations in over 20 genes encoding cytoskeletal, contrac-

ile, nuclear membrane, calcium-regulating, and ion channel
roteins have been identified in patients with DCM (15).

he majority of studies are hypothesis-based, targeting
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andidate genes like cardiac actin (16) that encode proteins
ith established function in the heart. By contrast, unan-

icipated DCM genes and insights into disease pathobiology
ave emerged from rare families suitable for whole genome
apping studies (17–20). Here, we used genetic linkage

nalysis in 2 large families with autosomal-dominant DCM
o map a disease locus, leading to discovery of a mutation
otspot within a ribonucleic acid (RNA)-binding protein
ene associated with high morbidity and mortality.

ethods

tudy subjects. Patients with DCM evaluated at the Mayo
linic in the years 1987 to 1992 and 1999 to 2008 and their

elatives were recruited, and medical records were reviewed.
e enrolled 280 unrelated probands; familial DCM was

onfirmed in 24% (DCM documented in �1 first degree
elative) and suspected in 27% (on the basis of history
lone). Family history of sudden death was present in 18%.
he 8 families described in the current study were white and
f northern European ancestry by self-reporting. An ethni-
ally matched group of 480 control subjects with normal
chocardiograms was randomly selected from a community-
ased cohort (21). Subjects provided written informed
onsent under research protocols approved by the Mayo
linic Institutional Review Board.
Echocardiograms in relatives were performed for clinical

ndications or under the auspices of the research study.
iagnostic criteria for DCM were: lack of an identifiable

ause for disease, left ventricular diastolic and/or systolic
imensions �95th percentile indexed for body surface area
22), and left ventricular ejection fraction �50%. Subjects
ith normal echocardiograms were classified as “unaf-

ected,” and those with equivocal or insufficient data were
lassified as “uncertain.” Genomic deoxyribonucleic acid
DNA) was isolated from peripheral-blood white cells
Puregene Blood Kit, Gentra/QIAGEN, Valencia, Califor-
ia) or from paraffin-embedded tissue (QIAamp DNA
FPE Tissue Kit, QIAGEN).
inkage analysis and fine mapping. Genome-wide link-
ge analysis was performed with the ABI PRISM Linkage

apping Set MD10, version 2.5 (Applied Biosystems,
oster City, California), consisting of polymerase chain

eaction (PCR) primer pairs for 400 short tandem repeat
arkers. After PCR amplification of DNA samples, frag-
ents were resolved on an ABI PRISM 3130xl, and

enotypes were scored with GeneMapper Software (Ap-
lied Biosystems). Two-point and multipoint linkage anal-
ses were performed using the FASTLINK program and
pecification of the following variables: a phenocopy rate of
.001, equal marker allele frequencies, and dichotomous
iability classes (“affected” and “unaffected”). For mutations,

frequency of 0.001 was specified. Logarithm of the odds
LOD) scores were determined for affected subjects only
nd for 80% and 100% penetrance models at recombination

requencies of 0.0 to 0.4. f
Fine locus mapping was per-
ormed with microsatellite mark-
rs on physical maps, accessible
n the website of the National
enter for Biotechnology Infor-
ation (NCBI) (23). Genotyp-

ng was accomplished by PCR
mplification of DNA radiola-
eled with [alpha32P] deoxycyti-
ine triphosphate, resolution of
lleles by polyacrylamide-gel
lectrophoresis, and visualization
y autoradiography. Scored ge-
otypes were assembled as hap-

otypes to define the critical re-
ion.

utation detection and haplo-
ype analysis. Expression pro-
les of candidate genes, derived
rom Affymetrix GeneChip array
ata for 12 normal human tissues
accession GDS424) or 61 nor-
al mouse tissues (accession
DS592), were assessed by

earching the Gene Expression
mnibus (GEO) link on the
CBI website (24). The genomic structure of RBM20 was

ased on predicted reference messenger ribonucleic acid
mRNA) sequence (accession NM_001134363.1), retrieved
rom NCBI. Primer pairs were designed for genomic DNA
CR-amplification of the coding regions of the 14 pre-
icted exons (Online Table 1), with Oligo Primer Analysis
oftware, version 6.71 (Molecular Biology Insights, Cas-
ade, Colorado). For sequencing, amplified products were
reated with ExoSAP-IT (USB Corp., Cleveland, Ohio)
nd sequenced by the dye-terminator method with use of an
BI PRISM 3730xl DNA Analyzer (Applied Biosystems).
he DNA sequences were viewed and analyzed with Se-
uencher, version 4.5 DNA analysis software (Gene Codes
orp., Ann Arbor, Michigan). The reference mRNA and
erived protein sequence (accession NP_001127835.1) were
sed for annotation of identified mutations.
Denaturing high-performance liquid chromatography

DHPLC) heteroduplex analysis (WAVE DHPLC Sys-
em, Transgenomic, Omaha, Nebraska) was used to screen
or sequence variants in our DCM cohort and control
amples. Ideal buffer gradients and column melting temper-
tures were determined with Transgenomic Navigator soft-
are version 1.7.0 Build 25 and subsequent optimization

Online Table 1). Chromatographic elution profiles of
mplified fragments were compared against the wild-type
omoduplex pattern; samples yielding anomalous traces
ere selected for sequencing. To test for a common founder

mong families with the same RBM20 mutation, haplotypes

Abbreviations
and Acronyms

cDNA � complementary
deoxyribonucleic acid

DCM � dilated
cardiomyopathy

DHPLC � denaturing high-
performance liquid
chromatography

DNA � deoxyribonucleic
acid

GEO � Gene Expression
Omnibus

ICD � implantable
cardioverter-defibrillator

LOD � logarithm of the
odds

mRNA � messenger
ribonucleic acid

NCBI � National Center for
Biotechnology Information

PCR � polymerase chain
reaction

RNA � ribonucleic acid

RS � arginine/serine
or mutant alleles were construct
ed from an intragenic
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etranucleotide-repeat sequence and single nucleotide poly-
orphisms, identified by sequencing family members.
ardiac mRNA expression and protein structure analysis.
otal RNA was extracted from frozen human heart tis-

ue (RNeasy Fibrous Tissue Midi Kit, QIAGEN), and 1.0
g was reverse transcribed with an oligo(dT) primer to
roduce complementary deoxyribonucleic acid (cDNA)
rom mRNA (SMART RACE cDNA Amplification Kit,
lontech, Mountain View, California). Primers cDNA-F

CCTACCCCAGATCATCCAAAATGC) and cDNA-R
AACAAACACTTTGCAGTCAGTTATACA) were
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esults

henotype of index families. Clinical data and DNA
amples were collected from 2 large families in which a
linically aggressive form of DCM segregated as an
utosomal-dominant trait (Fig. 1, Table 1). Kindred DC-12
as recruited for the study in 1991, when an unaffected

amily member sought medical genetics consultation. The
atriarch (Fig. 1A: I.1) was of Scottish ancestry and died
uddenly at age 39 years. Ten family members developed
ocumented DCM, 2 as young children (mean age at
iagnosis: 30.0 years). Two underwent cardiac transplanta-
ion as young adults, and all but 3 have died of their disease
mean age at death: 37.7 years). Kindred DC-35 was
ecruited in 2005, after a diagnostic screening echocardio-
ram in the proband (Fig. 1B) (III.17) whose father died
uddenly at age 29 years. The family was of Norwegian
ncestry and comprised 12 relatives with documented DCM
mean age at diagnosis: 41.3 years) and 5 others with DCM
nd/or sudden death by history alone. Seven family mem-
ers with confirmed or suspected DCM died at a mean age
f 45.7 years. Five living relatives with DCM had received
mplantable cardioverter-defibrillators (ICDs).

CM locus mapping. Genome-wide linkage analyses,
ollowed by regional high-density genotyping on chromo-
ome 10, identified a peak 2-point LOD score of 3.55 at

6
1
-
3
2
1
4
6
3
3
2
4

2
6
-
4
2
5
7
6
6
4
2
4

9
6
+
4
1
1
3
8
2
5
9
3

5
2
-
3
2
2
1
8
4
3
1
1

7
3
-
3
2
5
5
3
5
3
4
1

6
6
-
1
2
2
3
8
1
5
4
6

8
2
-
1
2
5
2
8
1
2
4
8

3
2
-
5
2
4
3
3
3
5
1
1

5
2
-
3
2
5
4
9
2
5
9
1

9
6
+
4
1
1
3
8
2
5
9
4

DC-35
MI 60s CVA 60s

DCM 59

MS 50

II

I

III

IV

DCM 54 ALZ 77

DCM 53 6
3
-
5
2
3
3
2
4
3
1
2

7
3
-
3
2
5
5
3
5
3
4
1

5
2
-
3
2
2
1
8
4
3
1
1

7
3
-
3
2
5
5
3
5
3
4
1

9
6
+
4
1
1
3
8
4
3
1
1

5
6
+
4
1
1
3
8
2
5
9
4

3
2
-
5
2
4
3
3
3
5
1
1

5
2
-
3
2
2
1
8
4
3
1
1

3
2
-
1
2
5
2
8
1
2
4
8

5
2
-
3
2
2
1
8
2
5
9
4

8
2
-
1
2
5
2
8
1
2
4
8

9
6
+
4
1
1
3
8
2
5
1
1

8
2
-
1
2
5
2
8
1
2
4
1

1 2

1 2 3 4 5 6

1 2 3 4 5 6 7

1 2 3 4 5 6 7

B

Figure 1 Continued
arker D10S1269 in DC-12 and 4.55 at marker D10S221 R
n DC-35. Linkage to other regions of the genome with
-point LOD scores �1.0 was excluded by multipoint
nd/or haplotype analyses with additional markers (data not
hown). Fine mapping in DC-12 identified a disease-
ssociated haplotype on chromosome 10q25.1-q26.2 (Fig.
A), a region spanning 19.3 Mb, which was inherited by all
ffected subjects (peak multipoint LOD score 3.62 for all
ubjects, assuming 100% mutation penetrance, and 2.67 for
ffected subjects only). A recombination event within this
nterval occurred in a 43-year-old woman with a normal
chocardiogram (III.14). The critical region narrowed to 4.6

b, assuming she did not inherit the disease-associated
utation. Fine mapping in DC-35 identified an overlap-

ing disease-associated haplotype (Fig. 1B) spanning 22.8
b (peak multipoint LOD score 4.89 for all subjects,

ssuming 100% mutation penetrance, and 3.58 for affected
ubjects only). The haplotypes were different for each
amily, suggesting they did not share common ancestry, yet
he overlapping disease loci raised the possibility of a shared
CM gene.
utation identification. Candidate genes were selected

rom the 19.3-Mb critical region in DC-12, comprising
ore than 150 genes, on the basis of cardiac expression

nd/or physiologic rationale. Mutations within exons of 25
enes were excluded by DNA sequencing (Online Table 2).
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Phenotypic and Genetic Data for Families With DCMTable 1 Phenotypic and Genetic Data for Families With DCM

Pedigree
(Country of

Origin)

Age at
Diagnosis

(yrs)

Age at
Evaluation (yrs)

(Indication)
LVID
(mm)

LVEF
(%) ECG, Arrhythmia

Other Diagnostic
Testing Treatment Outcome Pathology Diagnosis

RBM20
Mutation Status

DC-12
(Scotland)

II.5 — 58 (F) 55/31 68 Normal None Alive 58 yrs Unaffected Normal

II.9 53 53 (R) 64*/53* 39 LVH, PVC Death 58 yrs DCM P638L

II.10 44 45 (S) Severe LVE* LVSD AF, PVC D, F CHF, death
45 yrs

Autopsy: congestive
myopathy,
fibrosis, myocyte
hypertrophy, no
CAD

DCM P638L (inferred)

III.2 28 28 (S) SD 28 yrs Autopsy: EFE,
congestive
myopathy, no
CAD

DCM P638L

III.3 37 37 (F) 62*/57* 15 LAD, VT Neg. angio D, B Death 41 yrs Autopsy: mild
fibrosis

DCM P638L

III.5 30 (R) 40/24 64 Normal Death 38 yrs Autopsy: normal
LV and cardiac
mass, no CAD

Uncertain (suspected
arrhythmia)

Normal

III.8 36 (F) 43/30 51 Normal None Alive 39 yrs Unaffected Normal

III.9 30’s 36 (S) LBBB Transplant 36 yrs Death 36 yrs DCM P638L

III.11 33 33 (F) 72*/62* 26 LVH, IVCD D, C Alive 42 yrs DCM P638L

III.13 29 29 (S) SD 29 yrs Autopsy: CM, mild
fibrosis, no CAD

DCM P638L

III.14 43 (F) 51/36 50 Normal None Alive 46 yrs Unaffected Normal

III.15 24 25 (F) 88*/79* 15 LVH, IVCD Transplant 26 yrs Death 27 yrs DCM P638L

III.16 14 14 (F)¡
22

57*/41*¡
57*/41*

48¡
45

Short PR, SVT D, So Alive 24 yrs DCM P638L

IV.1 3 3 (F)¡
12

44*/30*¡
62*/40*

50¡
64

Short PR, LVH D, L Alive 12 yrs DCM P638L

DC-35
(Norway)

III.1 55 55 (F) 47/39* 46 PAC Neg. stress imaging Alive 58 yrs DCM R634Q

III.6 45 45 (S)¡
55

70*/¡
60*/50*

10¡
30

LAE, IVCD, ST-T Neg. angio D, Cv, L, Sp, W, ICD
(EF, FH)

Alive 55 yrs DCM R634Q

III.7 60 (F) 44/29 60 Normal None Alive 62 yrs Unaffected Normal

III.8 60 (F) 39/29 60 None Alive 60 yrs Unaffected Normal

III.9 52 (F) Normal 65 Normal None Alive 56 yrs Unaffected Normal

III.10 51 (HTN) 44/28 67 None Alive 52 yrs Unaffected Normal

III.11 55 55 (S) 72*/63* 20 Short PR, IVCD,
ST-T, VT

D, Cv, L, ICD (EF,
FH, VT)

Alive 55 yrs DCM R634Q

III.12 47 47 (A) Death 47 yrs Autopsy: CM and
LV dilation

DCM

Continued on next page
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ContinuedTable 1 Continued

Pedigree
(Country of

Origin)

Age at
Diagnosis

(yrs)

Age at
Evaluation (yrs)

(Indication)
LVID
(mm)

LVEF
(%) ECG, Arrhythmia

Other Diagnostic
Testing Treatment Outcome Pathology Diagnosis

RBM20
Mutation Status

III.14 46 52 (F) 63*/51* 30 ICD (EF, FH) Alive 52 yrs DCM R634Q

III.15 51 (F) 54/27 55 None Alive 51 yrs Unaffected Normal

III.17 48 48 (F) 61*/44* 45 IVCD, ST-T, VT Neg. angio M, L, ICD (FH) Alive 49 yrs DCM R634Q

IV.1 50 50 (S) 64*/55* 20 LAD, LAE, ST-T Neg. angio Cv, L Alive 52 yrs DCM R634Q

IV.2 37 37 (S) Severe LVE* 15 LAE, LAD Neg. angio,
CK 102 U/l

D, E, W CHF, death
37 yrs

Biopsy: myocyte
hypertrophy,
mild fibrosis

DCM

IV.3 44 (F) 56*/36 65 Normal None Alive 48 yrs Uncertain Normal

IV.4 44 (F) 51/32 52 Normal None Alive 46 yrs Unaffected Normal

IV.5 40 40 (F) 56*/43* 40 Normal Neg. stress
imaging;
CK 70 U/l,
cTnI �0.3 ng/ml

M, L Alive 44 yrs DCM R634Q

IV.6 24 (F) 54*/35 58 Normal Neg. stress imaging None Alive 27 yrs Uncertain R634Q

IV.7 23 (F) 39/27 65 None Alive 23 yrs Unaffected Normal

IV.8 18 18 (F) 61*/51* 37 IVCD, LVH Neg. angio Cv, L, ICD (FH, EF) Alive 19 yrs DCM

IV.9 30 30 (R) 63*/45* 42 Normal Alive 30 yrs DCM R634Q

IV.10 24 24 (R) 59/46* 45 LVH Alive 24 yrs DCM R634Q

DC-50
(Germany)

II.3 49 52 (S)¡
60

68*/62*¡
71*/65*

17¡
15

LVH, ST-T, AF, VT,
VF

Neg. angio,
CK 43 U/l,
cTnI �0.5 ng/ml

D, F, P, C, A, W,
ICD (Sy, FH)

CHF, death
60 yrs

Autopsy: sev. CM,
mild fibrosis

DCM P638L

II.5 29 29 (S) ST-T, VT, VF CK 29 U/l D, P, PC CHF, death
29 yrs

DCM P638L (inferred)

III.3 25 25 (R)¡
42

55*/45*¡
51/—

33¡
40

LVH D, Cv, L Alive 42 yrs DCM P638L

III.4 29 29 (R)¡
44

45/35¡
52/38*

40¡
49

ST-T Cv, E Alive 44 yrs DCM P638L

III.5 15 15 (S) 75*/68* 18 LVH, ST-T, VT D, L, W, N, Mx CHF, SD 18
yrs

Biopsy: myocyte
hypertrophy,
mild fibrosis

DCM

III.6 29 (R) 51/28 70 Normal None Alive 46 yrs Unaffected Normal

III.7 27 (R) 50/32 60 Normal None Alive 36 yrs Unaffected Normal

III.8 21 27 (R)¡
37

54*/40*¡
56*/46*

51¡
35

Short PR, SVT Cv, L Alive 38 yrs DCM P638L

IV.1 17 17 (S) 51/40* 40 LVH, SVT M, E Alive 22 yrs DCM P638L

DC-46
(Germany)

IV.1 26 18 (F)¡
26

53/36¡
56*/46*

58¡
30

ST-T cTnT �0.03 ng/ml Cv, L, ICD (EF, FH) Alive 27 yrs DCM R636S
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ContinuedTable 1 Continued

Pedigree
(Country of

Origin)

Age at
Diagnosis

(yrs)

Age at
Evaluation (yrs)

(Indication)
LVID
(mm)

LVEF
(%) ECG, Arrhythmia

Other Diagnostic
Testing Treatment Outcome Pathology Diagnosis

RBM20
Mutation Status

DC-49
(Germany)

II.2 40 40 (S)¡
45

71*/64*¡
65*/52*

10¡
20

LVH, ST-T, IVCD,
VT

D, M, L, Sp, F, W,
Mx, ICD (CA)

Alive 45 yrs DCM R636H

II.3 39 39 (F)¡
44

63*/49*¡
52/42*

43¡
45

VT Neg. angio Cv, Rm, Cn Alive 44 yrs DCM R636H

DC-27
(Norway)

II.6 70 80 (S) 63*/— 25 SB, AF D, Cv, L, F, W CHF, death
85 yrs

DCM R636S

III.2 64 (F) 55*/40* 50 IRBBB Cv Alive 64 yrs Uncertain R636S

III.3 59 None SD 59 yrs Autopsy: CM, LVE,
CAD but no acute
MI, fibrosis

DCM R636S (inferred)

III.5 55 59 (F) 59*/44* 44 1° AVB, RBBB,
VT

Neg. angio Cv Alive 60 yrs DCM R636S

III.8 50 (F) 45/— 60 Normal None Alive 55 yrs Unaffected Normal

III.10 39 (F) 54/38* 55 None Alive 47 yrs Uncertain R636S

IV.1 35 35 (S) 68*/55* 38 LVH, ST-T Neg. angio Cv, L Alive 36 yrs DCM R636S

IV.5 27 36 (S) 72*/65* 23 LAD, IVCD, ST-T Neg. angio Cv, Ln Alive 37 yrs Biopsy: myocyte
hypertrophy,
mod. fibrosis

DCM R636S

IV.7 28 (R) 50/33 66 Normal None Alive 31 yrs Unaffected Normal

IV.9 15 (F) 52*/34 57 Normal None Alive 18 yrs Uncertain R636S

DC-09
(Norway)

III.2 57 57 (R)¡
68

58*/46*¡
59*/49*

35¡
34

Short PR, PVC D, E, F, A Alive 68 yrs DCM R636S

III.4 Neg. angio Alive 68 yrs DCM (by history) R636S

IV.2 17 17 (S) 68*/60* 22 LVH, ST-T D, H, N, F, W CHF, SD 18
yrs

DCM

IV.3 27 (R) 50/32 60 Normal None Alive 38 yrs Unaffected R636S

IV.4 24 (R) 53/33 61 Normal None Alive 36 yrs Unaffected Normal

IV.6 19 20 (S) Transplant 20 yrs Alive 43 yrs DCM R636S

DC-22
(England)

II.2 44 45 (S) 53*/44* 25 ST-T, VT Neg. angio D, F, A, Cv, Ln, ICD
(EF, FH)

CHF, alive
54 yrs

DCM S637G

II.3 27 27 (S) Transplant 32 yrs Alive 49 yrs DCM S637G

Continued on next page
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he basis of its genomic location and expression pattern.
mong 12 human tissues, RBM20 is most highly expressed

n the heart, with transcript abundance 4-fold greater in
ardiac than in skeletal muscle according to GEO array
ata. Moreover, it is 1 of only 19 genes with a mean
xpression in the heart �8-fold higher than the combined
ean expression in 11 other tissues. Similarly, among 61
urine tissues it is most highly expressed in heart (�5-fold

keletal muscle). Sequencing of the 14 exons of RBM20
dentified a distinct heterozygous missense mutation in exon

in each family, resulting in a P638L substitution in
C-12 and a R634Q substitution in DC-35 (Figs. 1 and

A). Mutations cosegregated with the disease phenotype
nd were absent in unaffected family members and 480
thnically matched control subjects.

To determine whether RBM20 mutations were present in
ther cases of DCM, we screened the 14 coding exons in
ur remaining cohort of 278 subjects with DHPLC. Three
nique heterozygous missense mutations—R636S, R636H,
nd S637G—were identified in 6 other families, all clus-
ered within exon 9 (Figs. 2 and 3A). Among the 8 families
ith RBM20 mutations, 2 had an identical mutation

esulting in P638L substitution, and 3 had an identical
utation resulting in R636S substitution. Haplotype anal-

sis (Online Table 3) excluded a common ancestral founder
or the P638L substitution. Although the disease-associated
aplotypes were the same in the 3 families with an R636S
ubstitution, the majority of individual alleles comprising
he haplotype are the most common variants within a white
uropean population. Consequently, a founder effect could
ot be conclusively established. Mutations were absent in
ontrol samples and cosegregated with DCM in the 7
amilies where DNA samples were available from 2 or more
ffected subjects. Combined peak 2-point LOD scores for
utations versus DCM in the 4 largest families (DC-12,
C-35, DC-27, DC-50) ranged from 8.02 (affected sub-

ects only) to 11.49 (all subjects, assuming 100% mutation
enetrance).
ardiac mRNA expression and protein structure

nalysis. RBM20 comprises, on the basis of the predicted
eference cDNA (mRNA), 14 exons (Fig. 3B). Portions of
xons 2 and 14 and all of exons 3 through 13 were verified
n a single open reading frame cDNA derived from
ligo(dT)-primed heart RNA (Fig. 3B). This confirmed
hat these exons are transcribed and spliced into mRNA in
he heart, including exon 9, which contained the cluster of
dentified RBM20 mutations. A Conserved Domain Data-
ase search of the translated reference RBM20 cDNA
ndicated homology to an RNA Recognition Motif 1
uperfamily domain spanning exons 6 and 7 (e-value �
.005) and a U1 zinc finger domain (e-value � 2e�4)
panning exons 13 and 14. Additionally, exon 9 encodes an
rginine/serine (RS)-rich domain, which is disrupted by the

identified unique missense mutations. Each resultant
mino acid substitution alters a residue in RBM20 con-
served among diverse species (Fig. 3C).C
o T (C
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enotype-phenotype correlation. RBM20 mutations
ere associated with clinically aggressive DCM. Collec-

ively, the 39 subjects in our 8 families with a mutation
nd confirmed DCM were diagnosed 9 years earlier than
comparable series of patients with sporadic and familial
CM who underwent family screening (mean age at

iagnosis 35.9 vs. 45.2 years) (7). Death occurred in 11
mean age 45.2 years) and was deemed sudden in 3; 4
nderwent cardiac transplantation (mean age 28.5 years);
nd 8 underwent ICD insertion. Subjects who enrolled in
ur study, however, did not fully represent the malignant
ature of their familial disease as revealed by their
edigrees. Among the 32 additional relatives with sus-
ected DCM by family history, for whom medical
ecords were unavailable and/or mutation status could not
e determined, 13 died suddenly (mean age 32.7 years), 3
nderwent cardiac transplantation, and 3 had ICD inser-
ion. There were no consistent electrocardiographic fea-
ures in subjects with an RBM20 mutation; 9 had
entricular tachycardia. Variable degrees of myocyte hy-
ertrophy and interstitial fibrosis were observed on his-
opathological analysis. Most enrolled subjects with ac-

DC-27

DC-49DC-50I

II

IV

III
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*

*
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Figure 2 Pedigrees of Additional Families With RBM20 Mutatio

Diamonds � 2 or more family members of both sexes; parentheses � inferred RB
essible follow-up data had advanced disease and i
xhibited minimal improvement or further deterioration
n medical treatment, although drug therapy was highly
ariable. Correlation between RBM20 mutations and
henotype was not without exception, however. There
ere 5 female subjects who inherited a mutation but did
ot fulfill diagnostic criteria for DCM: 1 subject in
C-35 (age 24 years) and 3 subjects in DC-27 (ages 15,

9, and 64 years) had left ventricular enlargement with
ormal ejection fraction; 1 subject in DC-9 (age 27 years)
ad a normal echocardiogram. No overt noncardiac
henotypes were evident among subjects with RBM20
utations.

iscussion

olecular basis of disease. The majority of known
CM genes encode cytoskeletal or contractile proteins of

ardiac myocytes, with direct roles in the generation
nd/or transmission of contractile force through protein–
rotein interactions (14). An expanded understanding of
he pathobiology of DCM has emerged from identifica-
ion of mutations that perturb myocardial function via
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omeostasis (18,19). Collectively, these molecular ge-
etic etiologies for DCM reveal a fundamental defect in
xcitation-contraction coupling and the heart’s capacity
o perform under physiologic and stress conditions.
otable exceptions to this paradigm have been revealed

hrough discovery of unsuspected DCM genes, like
MNA and EYA4, in large families suitable for linkage
nalysis. LMNA encodes lamin A/C, a ubiquitously
xpressed nuclear membrane protein. By unknown mech-
nisms, mutations in LMNA cause DCM and conduction
ystem disease (17) or a spectrum of noncardiac disorders.
YA4 encodes a transcriptional coactivator, which inter-

1        2   3     4 5    6      7    8

500 bp

RRM-1 R

ATG

Heart cDNA

Human
Chimpanzee
Dog
Cow 
Mouse 
Rat 
Chicken 
Zebrafish
Pufferfish 

G C C G CG G T C T C

A

R634Q

DC-35

c.1901 G>A
R636S

DC-9, DC-27, DC-46

G GT C T C GT A G T

A

c.1906 C>A

�

�

� 628 - Y G P E R P
605 - • • • • • •
265 - • • • • • •
586 - • A • • • •
630 - • • • • • •
8 - • • • • • •

511 - • • T • • •
168 - • L • • • •
412 - • L • • • T

Figure 3 RBM20 Mutations Identified in Families With Dilated

(A) Genomic deoxyribonucleic acid (DNA) mutation scans with denaturing high-perf
pared with the control wild-type profile (gray), in exon 9 of RBM20 in 8 dilated car
were absent in 480 control samples. Below the heteroduplex profiles, DNA sequen
mutation and its resultant amino acid substitution are based on predicted referen
indicated below each chromatogram. Mutation c.1906 C�A, R636S was shared b
genomic structure of RBM20, consisting of 14 exons, is depicted to scale. Exons
acid (RNA) recognition motif 1 (RRM-1, in purple), arginine/serine-rich region (RS-ri
and stop (TGA) codons are located in exons 1 and 14, respectively. A polyadenyla
genomic structure, cDNA amplification and sequencing confirmed transcription of m
alignment. The cDNA transcript contains the complete RS domain and identified R
tein sequences that flank the amino acid substitutions is shown. The RS domain s
low. Residues conserved between human RBM20 and another species are indicat
identified RBM20 missense mutations (residues 634, 636, 637, and 638, indicat
NP_001127835.1 for human, XP_508032 for chimpanzee, XP_544017 for dog, X
chicken, XP_683222 for zebrafish, and CAG01297 for pufferfish.
cts with DNA-binding transcription factors. Mutations m
n EYA4 are predicted to alter cochlear and cardiac gene
xpression, causing a syndrome of DCM and sensori-
eural hearing loss (20). RBM20, here identified as a
ene for familial DCM, suggests perturbation of post-
ranscriptional pre-mRNA processing as a distinct mo-
ecular basis for the disorder.

RBM20 encodes RNA binding motif protein 20, with
prototypical RNA-recognition motif followed by an RS
omain (27). These structural features are characteristic
f a family of RNA-binding SR proteins that assemble in
he spliceosome, a large multiprotein complex that or-
hestrates constitutive and alternative splicing of pre-
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iomyopathy

ce liquid chromatography revealed abnormal heteroduplex profiles (red), com-
pathy families. Abnormal profiles indicated DNA sequence alterations, which

evealed corresponding heterozygous missense mutations. The location of each
20 complementary deoxyribonucleic acid (cDNA) and protein sequences and are
ilies, and c.1913 C�T, P638L was shared by 2 families. (B) The predicted
code peptides homologous to highly conserved functional domains—ribonucleic

blue), and U1 zinc finger (zf-U1, in green)—are indicated. Putative start (ATG)
gnal (AATAAA) is located at the 3’ end of exon 14. Directly below the RBM20
nger RNA from exons 2 to 14 in human heart tissue, as depicted by parallel
mutations in the 5’ region of exon 9. (C) Alignment of homologous RBM20 pro-
residues 632 to 654, with arginine (R) and serine (S) residues highlighted in yel-
(●) and amino acid deletions by (�). Amino acids that are altered by the
h red bars) are conserved among all 8 species. Accession numbers:
772 for cow, BAE24961 for mouse, NP_001101081 for rat, XP_421755 for
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ultiple mRNA transcripts via alternative splicing of
xons, conferring vast diversity to the proteome (29).
eritable diseases are frequently attributable to cis-acting
utations, which disrupt normal splicing of the gene in
hich the mutation occurs. However, trans-acting muta-

ions within spliceosome protein genes have been iden-
ified in only 3 human disorders—spinal muscular atro-
hy, retinitis pigmentosa, and Prader-Willi syndrome
28). Such mutations have the potential to impair normal
plicing of multiple genes, as recently demonstrated by
xon microarray analysis in a mouse model of spinal
uscular atrophy (30). The specific function of RNA

inding motif protein 20 in the human heart and the
ownstream effects of the identified RBM20 mutations
hat cause DCM remain unknown. However, a patho-
enic link between genetic disruption of alternative
plicing-regulating SR proteins of the spliceosome and
CM has now been established in mouse models (31).
linical implications. Since the first DCM-associated

ene was identified by linkage analysis over 15 years ago
32,33), clinical application of research findings has proved
hallenging due to the marked genetic heterogeneity of
CM. Although routine genetic testing might be practical

n certain heritable cardiac disorders (34), no single gene or
utation for DCM has emerged as common (15). Targeted

enetic testing might be practical, however, in clinically
efined subgroups. For example, mutations in LMNA
nd SCN5A have been associated with a cardiac syndrome
f DCM, impaired automaticity and conduction, and
trial fibrillation (17–19). By use of genome-wide linkage
nalysis, the present study further expands the spectrum
f DCM genes. Remarkably, the 5 unique RBM20
utations identified in 8 families are clustered within a

ingle exon that encodes an RS-rich domain. In our
ohort, this mutation hotspot accounted for 3% (8 of
80) of all DCM cases, 5% (8 of 151) of confirmed or
uspected familial cases, and 13% (7 of 54) of cases with
history of sudden death.
Our study highlights the importance of family screen-

ng to detect pre-symptomatic DCM (7,12). Indeed, 68%
43 of 63) of the subjects in our 8 families were
symptomatic and first diagnosed with DCM on the basis
f a screening echocardiogram. Despite the lack of
ymptoms, the RBM20 mutations we identified were
ighly penetrant, and only 5 of 44 individuals with a
utation did not fulfill diagnostic criteria for DCM. In

act, 4 of these 5 subjects had left ventricular dilation, a
nown precursor to overt DCM (7,10). However, pen-
trance of familial DCM is age dependent, and the
ajority of subjects who enrolled in our study were

dults. Discovery of the genetic basis for DCM in these
amilies now enables a pre-clinical diagnosis in at-risk
hildren and young adults. Given the malignant nature of
BM20 mutations, this knowledge would justify closer

linical follow up, meticulous attention to coexistent

odifiable risk factors, and earlier institution of therapies
roven to alter the natural history of heart failure (35)
nd decrease the risk of sudden death (6).

cknowledgments
he authors gratefully acknowledge the patients and fami-

ies who participated in this study and the physicians who
eferred them. The authors thank Jeanne L. Theis, PHD, for
ritical review of the paper.

eprint requests and correspondence: Dr. Timothy M. Olson,
ayo Clinic, Stabile 5, 200 First Street Southwest, Rochester,
innesota 55905. E-mail: olson.timothy@mayo.edu.

EFERENCES

1. Braunwald E. Cardiovascular medicine at the turn of the millennium:
triumphs, concerns, and opportunities. N Engl J Med 1997;337:
1360–9.

2. Felker GM, Thompson RE, Hare JM, et al. Underlying causes and
long-term survival in patients with initially unexplained cardiomyo-
pathy. N Engl J Med 2000;342:1077–84.

3. Towbin JA, Lowe AM, Colan SD, et al. Incidence, causes, and
outcomes of dilated cardiomyopathy in children. JAMA 2006;296:
1867–76.

4. Taylor DO, Edwards LB, Boucek MM, et al. Registry of the
International Society for Heart and Lung Transplantation: twenty-
fourth official adult heart transplant report—2007. J Heart Lung
Transplant 2007;26:769–81.

5. Boucek MM, Aurora P, Edwards LB, et al. Registry of the Interna-
tional Society for Heart and Lung Transplantation: tenth official
pediatric heart transplantation report—2007. J Heart Lung Transplant
2007;26:796–807.

6. Desai AS, Fang JC, Maisel WH, Baughman KL. Implantable defi-
brillators for the prevention of mortality in patients with nonischemic
cardiomyopathy: a meta-analysis of randomized controlled trials.
JAMA 2004;292:2874–9.

7. Michels VV, Moll PP, Miller FA, et al. The frequency of familial
dilated cardiomyopathy in a series of patients with idiopathic dilated
cardiomyopathy. N Engl J Med 1992;326:77–82.

8. Mestroni L, Krajinovic M, Severini GM, et al. Familial dilated
cardiomyopathy. Br Heart J 1994;72:S35–41.

9. Keeling PJ, Gang Y, Smith G, et al. Familial dilated cardiomyopathy
in the United Kingdom. Br Heart J 1995;73:417–21.

0. Baig MK, Goldman JH, Caforio AL, Coonar AS, Keeling PJ,
McKenna WJ. Familial dilated cardiomyopathy: cardiac abnormalities
are common in asymptomatic relatives and may represent early disease.
J Am Coll Cardiol 1998;31:195–201.

1. Grünig E, Tasman JA, Kücherer H, Franz W, Kübler W, Katus HA.
Frequency and phenotypes of familial dilated cardiomyopathy. J Am
Coll Cardiol 1998;31:186–94.

2. Burkett EL, Hershberger RE. Clinical and genetic issues in familial
dilated cardiomyopathy. J Am Coll Cardiol 2005;45:969–81.

3. Collins FS, McKusick VA. Implications of the human genome project
for medical science. JAMA 2001;285:540–4.

4. Olson TM. Monogenic dilated cardiomyopathy. In: Walsh RA,
editor. Molecular Mechanisms of Cardiac Hypertrophy and Failure.
1st edition. Boca Raton, FL: Taylor & Francis, 2005:525–40.

5. Hershberger RE, Parks SB, Kushner JD, et al. Coding sequence
mutations identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3,
and TCAP from 313 patients with familial or idiopathic dilated
cardiomyopathy. Clin Translational Science 2008;1:21– 6.

6. Olson TM, Michels VV, Thibodeau SN, Tai YS, Keating MT. Actin
mutations in dilated cardiomyopathy, a heritable form of heart failure.
Science 1998;280:750–2.

7. Fatkin D, MacRae C, Sasaki T, et al. Missense mutations in the
rod domain of the lamin A/C gene as causes of dilated cardiomy-

opathy and conduction-system disease. N Engl J Med 1999;341:
1715–24.

mailto:olson.timothy@mayo.edu


1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

K
m

F

941JACC Vol. 54, No. 10, 2009 Brauch et al.
September 1, 2009:930–41 Mutations in RBM20 Cause Familial DCM
8. McNair WP, Ku L, Taylor MRG, et al. SCN5A mutation associated
with dilated cardiomyopathy, conduction disorder, and arrhythmia.
Circulation 2004;110:2163–7.

9. Olson TM, Michels VV, Ballew JD, et al. Sodium channel mutations
and susceptibility to heart failure and atrial fibrillation. JAMA 2005;
293:447–54.

0. Schönberger J, Wang L, Shin JT, et al. Mutation in the transcriptional
coactivator EYA4 causes dilated cardiomyopathy and sensorineural
hearing loss. Nat Genet 2005;37:418–22.

1. Redfield MM, Jacobsen SJ, Burnett JC, Mahoney DW, Bailey KR,
Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction
in the community. Appreciating the scope of the heart failure
epidemic. JAMA 2003;289:194–202.

2. Henry WL, Gardin JM, Ware JH. Echocardiographic measure-
ments in normal subjects from infancy to old age. Circulation
1980;62:1054 – 61.

3. National Center for Biotechnology Information (NCBI). Available at:
http://www.ncbi.nlm.nih.gov. Accessed February 20, 2008.

4. Barrett T, Troup DB, Wilhite SE, et al. NCBI GEO: archive for
high-throughput functional genomic data. Nucleic Acids Res 2009;
37(Database issue):D885–90.

5. Schmitt JP, Kamisago M, Asahi M, et al. Dilated cardiomyopathy and heart
failure caused by a mutation in phospholamban. Science 2003;299:1410–3.

6. Bienengraeber M, Olson TM, Selivanov VA, et al. ABCC9 mutations
identified in human dilated cardiomyopathy disrupt catalytic KATP
channel gating. Nat Genet 2004;36:382–7.

7. Long JC, Caceres JF. The SR protein family of splicing factors: master
regulators of gene expression. Biochem J 2009;417:15–27.

8. Wang GS, Cooper TA. Splicing in disease: disruption of the splicing

code and the decoding machinery. Nat Rev Genet 2007;8:749–61. a
9. Johnson JM, Castle J, Garrett-Engele P, et al. Genome-wide survey of
human alternative pre-mRNA splicing with exon junction microar-
rays. Science 2003;302:2141–4.

0. Zhang Z, Lotti F, Dittmar K, et al. SMN deficiency causes tissue-
specific perturbations in the repertoire of snRNAs and widespread
defects in splicing. Cell 2008;133:585–600.

1. Ding JH, Xu X, Yang D, et al. Dilated cardiomyopathy caused by
tissue-specific ablation of SC35 in the heart. EMBO J 2004;23:
885–96.

2. Towbin JA, Hejtmancik JF, Brink P, et al. X-linked dilated cardio-
myopathy. Molecular genetic evidence of linkage to the Duchenne
muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation
1993;87:1854–65.

3. Muntoni F, Cau M, Ganau A, et al. Brief report: deletion of the
dystrophin muscle-promoter region associated with X-linked dilated
cardiomyopathy. N Engl J Med 1993;329:921–5.

4. Robin NH, Tabereaux PB, Benza R, Korf BR. Genetic testing in
cardiovascular disease. J Am Coll Cardiol 2007;50:727–37.

5. Eichhorn EJ, Bristow MR. Medical therapy can improve the biological
properties of the chronically failing heart. A new era in the treatment
of heart failure. Circulation 1996;94:2285–96.

ey Words: dilated cardiomyopathy y genetics y linkage analysis y
utation y RBM20

APPENDIX

or supplementary Tables 1 to 3, please see the online version of this

rticle.

http://www.ncbi.nlm.nih.gov

	Mutations in Ribonucleic Acid Binding Protein Gene Cause Familial Dilated Cardiomyopathy
	Methods
	Study subjects
	Linkage analysis and fine mapping
	Mutation detection and haplo-type analysis
	Cardiac mRNA expression and protein structure analysis

	Results
	Phenotype of index families
	DCM locus mapping
	Mutation identification
	Cardiac mRNA expression and protein structure analysis
	Genotype-phenotype correlation

	Discussion
	Molecular basis of disease
	Clinical implications

	Acknowledgments
	REFERENCES
	APPENDIX


