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Abstract

A general real matrix-variate probability model is introduced here, which covers almost all
real matrix-variate densities used in multivariate statistical analysis. Through the new density
introduced here, a pathway is created to go from matrix-variate type-1 beta to matrix-variate
type-2 beta to matrix-variate gamma to matrix-variate Gaussian or normal densities. Other
densities such as extended matrix-variate Student t, F, Cauchy density will also come in as
particular cases. Connections to the distributions of quadratic forms and generalized quadratic
forms in the new matrix are established. The present day analysis of these problems is mainly
confined to Gaussian random variables. Thus, through the new distribution, all these theories
are extended. Connections to certain geometrical probability problems, such as the distribution
of the volume of a random parallelotope in Euclidean space, is also established.
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1. Introduction

Let X = (xij ), i = 1, . . . p, j = 1, . . . , r , r � p, of rank p and of real scalar
variables xij ’s for all i and j, subject to the condition that the rank of X is p, having
the density f (X), where f (X) is a scalar function of X given by

f (X) = c|A 1
2 XBX′A

1
2 |α|I − a(1 − q)A

1
2 XBX′A

1
2 | β

1−q (1.1)

for A = A′ > 0 and p × p, B = B ′ > 0 and r × r , a, β, q scalars, a > 0, β > 0,

I − a(1 − q)A
1
2 XBX′A 1

2 > 0, where A and B are free of the elements in X and c is

the normalizing constant. For convenience let A
1
2 and B

1
2 denote the real symmetric

positive definite square roots of A and B respectively. A prime denotes the transpose,
|(·)| denotes the determinant of (·), I is the identity matrix, (·) > 0 means that the
real symmetric matrix (·) is positive definite. Also tr(·) will denote the trace of (·)
and �(·) will denote the real part of (·). The normalizing constant c can be evaluated
by using the following transformations. Let

Y = A
1
2 XB

1
2 ⇒ dY = |A| r

2 |B| p
2 dX

by using Theorem 1.18 of [3]. Let

U = YY ′ ⇒ dY = π
rp
2

�p

(
r
2

) |U | r
2 − p+1

2 dU

by using Theorem 2.16 of [3], where for example,

�p(α) = π
p(p−1)

4 �(α)�

(
α − 1

2

)
· · ·�

(
α − p − 1

2

)
, α >

p − 1

2
, (1.2)

taking α as real, and if complex the condition is �(α) >
p−1

2 . Let

V = a(1 − q)U ⇒ dV = [a(1 − q)] p(p+1)
2 dU

by using Theorem 1.20 of [3]. Then

1=
∫

X

f (X) dX = c

|A| r
2 |B| p

2

∫
Y

|YY ′|α|I − a(1 − q)YY ′| β
1−q dY

= π
rp
2

�p

(
r
2

) |A| r
2 |B| p

2

∫
u

|U |α+ r
2 − p+1

2 |I − a(1 − q)U | β
1−q dU. (1.3)

At this stage we can consider three possibilities: (i) q < 1, (ii) q > 1, (iii) q = 1. Let
us consider these one by one.

Case (i): q < 1.
Then a(1 − q) > 0 and then by making the transformation V = a(1 − q)U we

have
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c−1 = π
rp
2

�p

(
r
2

) |A| r
2 |B| p

2 [a(1 − q)]p(α+ r
2 )

∫
V

|V |α+ r
2 − p+1

2 |I − V | β
1−q dV.

(1.4)

Now, evaluating the integral in (1.4) by using a matrix-variate type-1 beta, see Sec-
tion 5.1.4 of [3], we have

c−1 = π
rp
2

�p

(
r
2

) |A| r
2 |B| p

2 [a(1 − q)]p(α+ r
2 )

�p

(
α + r

2

)
�p

(
β

1−q
+ p+1

2

)

�p

(
α + r

2 + β
1−q

+ p+1
2

)
(1.5)

for α + r
2 >

p−1
2 . We will assume the parameters to be real for convenience.

Case (ii): q > 1.
In this case write 1 − q = −(q − 1) so that q − 1 > 0. Then in (1.3)

|I − a(1 − q)U | β
1−q = |I + a(q − 1)U |− β

q−1 (1.6)

and then make the transformation V = a(q − 1)U . Then

c−1 = π
rp
2

�p

(
r
2

) |A| r
2 |B| p

2 [a(q − 1)]p(α+ r
2 )

∫
V

|V |α+ r
2 − p+1

2 |I + V |− β
q−1 dV.

Evaluating the integral by using a matrix-variate type-2 beta integral, see Section
5.1.4 of [3], we have the following:

c−1 = π
rp
2

�p

(
r
2

) |A| r
2 |B| p

2 [a(q − 1)]p(α+ r
2 )

�p

(
α + r

2

)
�p

(
β

q−1 − α − r
2

)

�p

(
β

q−1

)
(1.7)

for α + r
2 >

p−1
2 , β

q−1 − α − r
2 >

p−1
2 .

Case (iii): q = 1.
Irrespective of whether q approaches 1 from the left or from the right it can be

shown that the determinant containing q in (1.3) and (1.6) has the following form,
which will be stated as a lemma:

Lemma 1.1

lim
q→1

|I − a(1 − q)U | β
1−q = e−aβtr(U).

This result can be seen by observing the following: For a real symmetric positive
definite matrix U there exists a matrix Q such that
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QQ′ = I, Q′Q = I, Q′UQ = diag(λ1, . . . , λp), λj > 0, j = 1, . . . , p

(1.8)

where diag(λ1, . . . , λp) denotes a diagonal matrix with the diagonal elements λ1, . . . ,

λp. Then

|I − a(1 − q)U |=|I − a(1 − q)QQ′UQQ′|
=|I − a(1 − q)Q′UQ| = |I − a(1 − q)diag(λ1, . . . , λp)|
=

p∏
j=1

(1 − a(1 − q)λj ).

But

lim
q→1

(1 − a(1 − q)λj )
β

1−q = e−aβλj .

Then

lim
q→1

|I − a(1 − q)U | β
1−q = e

−aβ
(∑p

j=1 λj

)
= e−aβtr(U)

which establishes the result. Hence in case (iii)

c−1 = π
rp
2

�p

(
r
2

) |A| r
2 |B| p

2

∫
U

|U |α+ r
2 − p+1

2 e−aβtr(U) dU

= π
rp
2

�p

(
r
2

) |A| r
2 |B| p

2

�p(α + r
2 )

(aβ)p(α+ r
2 )

, α + r

2
>

p − 1

2
(1.9)

by using Section 5.1.1 of [3].

2. A general density

For X, A, B, a, β, q as defined in (1.1) let

f (X) = c|A 1
2 XBX′A

1
2 |α|I − a(1 − q)A

1
2 XBX′A

1
2 | β

1−q (2.1)

for q /= 1, and for q = 1

= c|A 1
2 XBX′A

1
2 |αe

−aβtr

[
A

1
2 XBX′A

1
2

]
(2.2)

where c in (2.1) is given by (1.5) for q < 1 and by (1.7) for q > 1. From (1.9)
we have the c in (2.2). In (2.1) a necessary condition to be met is that I − a(1 −
q)A

1
2 XBX′A 1

2 > 0. Note that when q moves from −∞ to 1, that is, −∞ < q < 1
then (2.1) maintains a matrix-variate type-1 beta form and when q becomes greater
than 1 then the type-1 beta form switches to a type-2 beta form. That is, to the left of
1 for q a type-1 beta form is available and to the right of 1 for q a type-2 beta form
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is available. Both these type-1 and type-2 beta forms go to a matrix-variate gamma
form at q = 1. Thus the pathway for q describes a wide range of statistical densities
covering type-1 and type-2 beta forms and gamma forms. It may also be noted from

(1.1) that one need not go for the symmetric square roots A
1
2 and B

1
2 of A and B,

one needs to obtain only a representation A = A1A
′
1 and B = B1B

′
1. Then one A

1
2

could be replaced by A′
1 and one B

1
2 by B ′

1.

2.1. Arbitrary moments

Arbitrary hth moment for the determinant |A 1
2 XBX′A 1

2 | or that for |XBX′| can
be obtained from c−1 in (1.5), (1.7), (1.9) for the cases q < 1, q > 1, q = 1 respect-
ively, by changing α to α + h and then taking the ratio of the normalizing constants.
Thus we have the following, where E denotes the expected value.

Theorem 2.1

E|A 1
2 XBX′A 1

2 |h = 1

[a(1 − q)]ph

�p

(
α + h + r

2

)
�p

(
α + r

2

) �p

(
α + r

2 + β
1−q

+ p+1
2

)

�p

(
α + h + r

2 + β
1−q

+ p+1
2

)

for q < 1, α + h + r

2
>

p − 1

2
(2.3)

= 1

[a(q − 1)]ph

�p

(
α + h + r

2

)
�p

(
α + r

2

) �p

(
β

q−1 − α − h − r
2

)

�p

(
β

q−1 − α − r
2

) (2.4)

for q > 1,
β

q − 1
− α − h − r

2
>

p − 1

2
, α + h + r

2
>

p − 1

2

= 1

(aβ)ph

�p(α + h + r
2 )

�p(α + r
2 )

for q = 1, α + h + r

2
>

p − 1

2
.

(2.5)

One may wonder whether (2.3) and (2.4) go to (2.5) when q → 1 from the left
and right respectively. This can be seen from an asymptotic expansion for gamma
functions or from Stirling’s approximation. These will be stated as lemmas.

Lemma 2.1. For |z| → ∞ and a a bounded quantity,

�(z + a) ≈ √
2πzz+a− 1

2 e−z, (2.6)

where ≈ means “approximately equal to”.

Then by applying lemma 2.1 and writing �p(·) in explicit forms one has the
following results.
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Lemma 2.2

lim
q→1




1

[a(1 − q)]ph

�p

(
α + r

2 + β
1−q

+ p+1
2

)

�p

(
α + h + r

2 + β
1−q

+ p+1
2

)

 = 1

[aβ]ph
. (2.7)

This can be seen by observing the following:
�p

(
α + r

2 + β
1−q

+ p+1
2

)

�p

(
α + h + r

2 + β
1−q

+ p+1
2

) =
p∏

j=1


 �

(
α + r

2 + β
1−q

+ p+1
2 − j−1

2

)

�
(
α + h + r

2 + β
1−q

+ p+1
2 − j−1

2

)

 .

When q goes to 1 from the left β
1−q

→ ∞. Then, for example,
p∏

j=1

�

(
α + h + r

2
+ β

1 − q
+ p + 1

2
− j − 1

2

)

=
p∏

j=1

√
2π

(
β

1 − q

)α+h+ r
2 + β

1−q
+ p+1

2 − j−1
2 − 1

2

e− β
1−q

= (
√

2π)p
(

β

1 − q

)p
(
α+h+ r

2 + β
1−q

)
+ p(p+1)

4

e− pβ
1−q .

Hence,

1

[a(1 − q)]ph

p∏
j=1

�
(
α + r

2 + β
1−q

+ p+1
2 − j−1

2

)

�
(
α + h + r

2 + β
1−q

+ p+1
2 − j−1

2

) = 1

(aβ)ph
.

This establishes that (2.3) goes to (2.5) when q → 1 from the left. In a similar way
one can see that (2.4) also goes to (2.5). Thus q is a pathway from moments in (2.3)
and (2.4) to go to the moments in (2.5).

One can make some interesting observations from (2.3)–(2.5). From (2.3) we
have,

E|a(1 − q)A
1
2 XBX′A

1
2 |h

=
p∏

j=1

�
(
α + r

2 + h − j−1
2

)

�
(
α + r

2 − j−1
2

) �p

(
α + r

2 + β
1−q

+ p+1
2 − j−1

2

)

�
(
α + r

2 + β
1−q

+ p+1
2 + h − j−1

2

)

=
p∏

j=1

E
(
xh
j

)
, (2.8)

where xj is a real scalar type-1 beta random variable with the parameters(
α + r

2
− j − 1

2
,

β

1 − q
+ p + 1

2

)
, j = 1, . . . , p.
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Thus, structurally, |a(1 − q)A
1
2 XBX′A 1

2 |, for q < 1, is a product p of statistically
independently distributed real type-1 beta random variables with the parameters as

mentioned above. Similarly for q > 1, |a(q − 1)A
1
2 XBX′A 1

2 | is a product of p stat-
istically independently distributed type-2 real scalar beta random variables, and from

(2.5), |aβA
1
2 XBX′A 1

2 | is a product of p independently distributed gamma random
variables. These products of independent real scalar type-1 beta and type-2 beta
random variables go to a product of independent real scalar gamma random variables
when q → 1. Thus, through q a pathway is achieved to go to product of independent
gamma variables from products of independent type-1 beta and type-2 beta variables.

2.2. Some special cases

In (2.2) when α = 0 one has the famous matrix-variate Gaussian or normal dens-
ity. For q = 1 and α replaced by the degrees of freedom and with appropriate change
in A = 1

2V −1, V = V ′ > 0 and B = I and expected value of X null, we have the
extended Wishart density. The standard Wishart density is the central density in mul-
tivariate statistical analysis. We have extended type-1 beta, extended type-2 beta, F,
Student t, Cauchy and other distributions coming as special cases. Note that all these
are defined on rectangular matrices and hence we call them the extended versions.
The following is a list of some particular cases and the transformations are listed
to go from the extended versions to the regular cases. If a location matrix is to be
introduced then one may replace X by X − M where M is a p × r constant matrix.

q < 1, a(1 − q) = 1 Extended type-1 beta density
q < 1, a(1 − q) = 1, Y = XBX′ Non-standard type-1 beta density

q < 1, a(1 − q) = 1, Y = A
1
2 XBX′A 1

2 Standard type-1 beta density
q < 1, a(1 − q) = 1, α = 0, β = 0 Extended uniform density
q < 1, a(1 − q) = 1, Y = XBX′ Non-standard uniform density

q < 1, a(1 − q) = 1, α + r
2 = p+1

2 , β = 0, Y = A
1
2 XBX′A 1

2 Standard uniform density
q < 1, a(1 − q) = 1, α = 0, β

1−q
= 1

2 (m − p − r − 1) Inverted T density of Dickey

q < 1, a = 1, α = 0, β = 1 A q-binomial density
q > 1, a(q − 1) = 1 Extended type-2 beta density
q > 1, a(q − 1) = 1, Y = XBX′ Non-standard type-2 beta density

q > 1, a(q − 1) = 1, Y = A
1
2 XBX′A 1

2 Standard type-2 beta density
q > 1, a(q − 1) = 1, β

q−1 = m
2 , α = 0 T density of Dickey

q > 1, a(q − 1) = 1
n

, β
q−1 = n+1

2 , Y = A
1
2 XBX′A 1

2 Standard T density

q > 1, a(q − 1) = 1, α + r
2 = p+1

2 , β
q−1 = 1, Y = A

1
2 XBX′A 1

2 Standard Cauchy density

q > 1, a(q − 1) = m
n

, α + r
2 = m

2 , β
q−1 = m+n

2 , Y = BXB ′ Non-standard F density

q > 1, a(q − 1) = m
n

, α + r
2 = m

2 , β
q−1 = m+n

2 , Y = A
1
2 BXB ′A 1

2 Standard F density

q = 1, a = 1, β = 1 Extended gamma density
q = 1, a = 1, β = 1, Y = XBX′ Non-standard gamma density

q = 1, a = 1, β = 1, Y = A
1
2 XBX′A 1

2 Standard gamma density
q = 1, a = 1, β = 1, α = 0 Gaussian density
q = 1, a = 1, β = 1, α + r

2 = n
2 , Y = XBX′, A = 1

2 V −1 Wishart density
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For p = 1, r = 1, that is, in the scalar case,

|I − a(1 − q)Z| β
1−q = (1 − a(1 − q)z)

β
1−q .

Let us see what we obtain if we expand this by Taylor series.

[
1 + a(q − 1)z

]− β
q−1 = 1 − β

az

1! + β[β + (q − 1)] (az)2

2!
−β[β + (q − 1)][β + 2(q − 1)] (az)3

3!
−β[β + (q − 1)][β + 2(q − 1)][β + 3(q − 1)] (az)4

4! − · · ·

(2.9)

This is a type of q-binomial series. Hence one can also look upon (2.1) for α = 0 as
a matrix-variate analogue of a q-binomial series.

2.3. Special cases as quadratic forms

One interesting special case is when p = 1, r > p. Then the constant matrix A is
a scalar and without any loss of generality we may take it as 1.

A
1
2 XBX′A

1
2 = (x1, . . . , xr )B




x1
...

xr


 = u (say) (2.10)

which is a real positive definite quadratic form in the first row of X, denoted by
(x1, . . . , xr ). The density of this quadratic form is available from (1.3) for the case
q < 1 and from (1.6) for the case q > 1. Denoting the density of u by g(u) we have
the following:

Theorem 2.2. The density of u in (2.10) is given by

g(u) = c1u
α+ r

2 −1[1 − a(1 − q)u] β
1−q (2.11)

with 1 − a(1 − q)u > 0, where, for q < 1

c1 =
[
a(1 − q)

]α+ r
2 �

(
α + r

2 + β
1−q

+ 1
)

�
(
α + r

2

)
�

(
β

1−q
+ 1

) , α + r

2
> 0, (2.12)

for q > 1

c1 =
[a(q − 1)]α+ r

2 �
(

β
q−1

)

�
(
α + r

2

)
�

(
β

q−1 − α − r
2

) , α + r

2
> 0,

β

q − 1
− α − r

2
> 0,

(2.13)

and for q = 1
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c1 = (aβ)α+ r
2

�
(
α + r

2

) , α + r

2
> 0. (2.14)

Distributions of quadratic forms in real Gaussian random variables are discussed in
[6] and the distributions of generalized quadratic forms with Gaussian vector random
variables are considered in [7]. But if the p × r, r � p real random matrix X has a
matrix-variate distribution as in (1.1), which covers rectangular matrix-variate type-
1 beta, type-2 beta, gamma type and Gaussian type distributions, then the density of
the generalized quadratic form follows trivially from (1.1). This will be given as the
next theorem.

Theorem 2.3. When the p × r, r � p real random matrix X has the matrix-variate

distribution as given in (1.1) then the generalized quadratic form Y = A
1
2 BXB ′A 1

2

has the following density, denoted by

f1(Y ) = c2|Y |α+ r
2 − p+1

2 |I − a(1 − q)Y | β
1−q , (2.15)

where, for q > 1

c2 =
[a(1 − q)]p(α+ r

2 )�p

(
α + r

2 + β
1−q

+ p+1
2

)

�p

(
α + r

2

)
�p

(
β

1−q
+ p+1

2

) , α + r

2
>

p − 1

2
,

(2.16)

for q > 1

c2 =
[a(q − 1)]p(α+ r

2 )�p

(
β

q−1

)

�p

(
α + r

2

)
�p

(
β

q−1 − α − r
2

) , α + r

2
>

p − 1

2
,

β

q − 1
− α − r

2
>

p − 1

2
(2.17)

and for q = 1

c2 = (aβ)p(α+ r
2 )

�p(α + r
2 )

, α + r

2
>

p − 1

2
. (2.18)

3. Connection to geometrical probability problems

While considering the distributional aspects of the volume content of a
r-parallelotope generated by the convex hull of linearly independent random points
in Euclidean n-space many authors had considered the problem when the points are
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isotropic and are distributed according to a beta type-1, type-2 and Gaussian situ-
ations, see for example [8,9,10]. The distributions of the random points that they
considered were particular cases of (2.11) with B = I . More general situations in
this category of problems are considered in [4]. Since the determinant of the type

|A 1
2 XBX′A 1

2 |, appearing in (1.1), can be considered to be volume of an appropri-
ately defined parallelotope a more general model in this category of problems is
available from (1.1). Note that the p × r matrix X of full rank can also be looked
upon as p linearly independent points in a r-dimensional Euclidean space. Then
|XX′| is the square of the volume of the parallelotope generated by the convex hull of

these p points in r-space, r � p. Hence |a(1 − q)A
1
2 XBX′A 1

2 | is the square of the
volume of the parallelotope generated by p points in a transformed space. Also from

(2.3)–(2.5) it is seen that |A 1
2 XBX′A 1

2 | is structurally a product of p independent
type-1 beta, type-2 beta and gamma random variables corresponding to q < 1, q > 1
and q = 1 respectively. The same structure is appearing in geometrical probability
problems also. For such structures, approximations and asymptotic results are de-
rived in [2] and in Chapter 4 of [5]. Hence approximations and asymptotic results
will not be discussed here.

4. Remarks

In (1.1) we dealt with a general model when the elements in X are real scalar
random variables. If a relocation parameter matrix is to be introduced then we may
replace X by X − M where M is a location parameter matrix. If the model in (1.1)
is to be extended to the complex domain then the Jacobians and the integrals will
be slightly different. The necessary tools are available in [3] and the procedure is
parallel to the real case. Hence we will not deal with the case here when X is in the
complex domain.

When p = 1, r = 1, A = I , B = I , β = 1 and α = 0 we obtain Tsallis’ statistics

as a special case from (1.1). The q-binomial function [1 − (1 − q)t] 1
1−q is also a

solution of the power law

dy

dt
= −yq (4.1)

which is associated with the generalized entropy

k

∫ ∞
−∞ f 1−q(t)dt − 1

q − 1
, (4.2)

where f (t) is a density function and k is a constant. When q → 1, (4.2) goes to Shan-
non’s entropy. These considerations are very relevant in physics problems. Nowadays
Tsallis’ statistics is a hot subject, applicable in a wide range of problems in astro-
physics, extending the theories in various topics in astrophysics areas. For a window
into the vast areas of research activities one may start with [11].
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Extensions of the ideas in (1.1) to densities involving many matrix variables in
the real or complex domain are also straightforward. As an example let us look into
the matrix-variate Dirichlet type family of distributions. For a discussion of matrix-
variate Dirichlet and Liouville distributions see [1]. Let Xj , p × rj , rj � p, j =
1, . . . , k be real matrix random variables having a joint density of the following type:

f (X1, . . . , Xk) = Ck




k∏
j=1

∣∣∣∣A
1
2
j (Xj − Mj)Bj (Xj − Mj)

′A
1
2
j

∣∣∣∣
αj




×
∣∣∣∣∣∣I − (1 − q)

k∑
j=1

(
A

1
2
j (Xj − Mj)Bj (Xj − Mj)

′A
1
2
j

)∣∣∣∣∣∣ ,
(4.3)

where Ck is the normalizing constant, Aj , p × p, Bj , rj × rj , j = 1, . . . , k are
real symmetric positive definite constant matrices and Mj , p × rj , j = 1, . . . , k are
constant matrices. The normalizing constant Ck can be evaluated by using the steps
described in this paper. Many interesting properties can be seen from the model in
(4.3). For q < 1 and the last factor in (4.3) remaining positive, the density is an
extended Dirichlet type-1 type, then when q > 1 the model switches to an extended
type-2 type. But when q = 1 the random matrices are independently distributed and
of the extended gamma types. This statistical independence property is a surprising
result. There are various generalizations of the Dirichlet model available in the lit-
erature. Such generalizations can also be extended to the rectangular matrix-variate
cases, real or complex, and those can then be extended to their q-versions by using
the procedure discussed in this paper.

Another observation that one can make is the following: In the real scalar case
our model in (1.1) becomes

f (x) = cyα[1 − (1 − q)y] β
1−q , y = xx′ = x2 (4.4)

with 1 − (1 − q)y > 0, taking A = I , B = I . In this case, we can replace y by zδ ,
δ > 0. Then when q → 1 one can go to generalized gamma, Weibull and other distri-
butions. But in the matrix case, powers such as δ are not feasible, even though we are
dealing with real symmetric positive definite or hermitian positive definite matrices,
because when transformations are needed the Jacobians do not go into nice forms.
Even for δ = 2 see the complicated form of the Jacobian from [3]. The special cases
available from (4.4), which itself is a special case of (1.1), are the following:

q = 1, α = 0, a = 1 Gaussian or normal density for −∞ < x < ∞
q = 1, α = 3

4 , a = 1 Maxwell–Boltzmann density in physics
q = 1, α = 1

2 , a = 1 Rayleigh density
q = 1, α = n

2 − 1, a = 1 Hermert density
q = 0, α = 0, β = 1 U-shaped density
q = 2, a = 1

v
, β = v+1

2 , α = 0 Student-t for v degrees of freedom,

−∞ < x < ∞
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q = 2, a = 1, β = 1 Cauchy density for −∞ < x < ∞
q < 1, a(1 − q) = 1, x2 = y Standard type-1 beta density
q > 1, a(q − 1) = 1, x2 = y Standard type-2 beta density
α = 1

2 , β = 1, a = 1, x2 = y Tsallis statistics in astrophysics, power law, q-

binomial density
α = 1

2 , q = 0, β = 1, x2 = y Triangular density
q = 2, α + 1

2 = m
2 , a = m

n
, β = m+1

2 , x2 = y F-density

q = 1, α = 1
2 , a = 1, β = mg

KT
, x2 = y Helley’s density in physics

q = 1, a = 1, x2 = y Gamma density
q = 1, a = 1, β = 1

2 , α + 1
2 = v

2 , x2 = y Chisquare density for v degrees of freedom
q = 1, a = 1, α = 1

2 , x2 = y Exponential density (Laplace density with
y=|z|,−∞ < z < ∞)

q = 1, a = 1, x2 = zδ , δ > 0 Generalized gamma density
q = 1, a = 1, α = 1

2 , x2 = zδ , δ > 0 Weibull density
q = 2, a = 1, β = 2, α = 1

2 , x2 = ey Logistic density for −∞ < y < ∞
q = 2, a = eδ , β = 1, α = − 1

2 , x2 = eγy , γ > 0 Fermi–Dirac density in physics
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