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Abstract Support vector machines (SVM) represent one of the most promising Machine Learning

(ML) tools that can be applied to develop a predictive quantitative structure–activity relationship

(QSAR) models using molecular descriptors. Multiple linear regression (MLR) and artificial neural

networks (ANNs) were also utilized to construct quantitative linear and non linear models to com-

pare with the results obtained by SVM. The prediction results are in good agreement with the exper-

imental value of HIV activity; also, the results reveal the superiority of the SVM over MLR and

ANN model. The contribution of each descriptor to the structure–activity relationships was evalu-

ated.
ª 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Quantitative structure–activity relationship (QSAR) is a math-
ematical model of activity in terms of structural descriptors.

The QSAR model is useful for understanding the factors con-
trolling activity and for designing new potent compounds
(Hasegawa et al., 1996). The main problems encountered in
this kind of research are still the description of the molecular
structure using appropriate molecular descriptors and selection

of suitable modeling methods. At present, many types of
molecular descriptors such as topological indices and quantum
chemical parameters have been proposed to describe the struc-

tural features of molecules (Karelson, 2000; Devillers and
Balaban, 1999; Todeschini and Consonni, 2000). Many differ-
ent chemometric methods, such as multiple linear regression
(MLR), partial least squares regression (PLS), different types

of neural networks (NNs), genetic algorithms (GAs), and sup-
port vector machine (SVM) can be employed to derive correla-
tion models between the molecular structures and properties.

As a new and powerful modeling tool, support vector
machine (SVM) has gained much interest in pattern
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Table 1 Compounds and the predicted results of the biological activity (log(1/Ki)).

No. Substituents log(1/Ki)

R/R0 Expc MLRd ANNe SVMf

1 CH2C6H5(A)a 8.47 8.30 8.52 8.23

2 Me(A) 5.30 6.00 5.63 5.65

3 CH2C6H4-4-CHMe2(A) 8.96 9.96 8.76 9.12

4 CH2C6H4-4-CHMe2(A) 8.47 8.44 8.49 8.46

5g CH2CHMe2(A) 5.77 5.34 6.46 5.54

6 CH(Me)SMe(A) 5.96 5.59 5.40 5.71

7 CH2-3-indolyl(A)a 6.24 6.17 6.32 6.22

8 CH2-Cy-C6H11(A)a 7.55 6.97 6.37 7.30

9 CH2CH2C6H5(A)a 6.50 6.37 6.41 6.39

10 CH2-2-naphthyl(A) 8.01 8.97 8.06 8.13

11g CH2-3-furanyl(A) 8.08 8.53 8.05 7.89

12 CH2C6H4-3-SMe(A) 8.60 8.56 8.60 8.59

13 CH2C6H4-4-SO2Me-(A) 8.60 9.74 8.63 8.79

14g CH2C6H4-2-OMe-(A) 7.22 7.28 7.08 7.59

15 CH2C6H4-2-OH(A) 7.46 8.46 8.08 7.71

16 CH2C6H4-3-OMe(A) 8.33 8.90 8.36 8.20

17g CH2C6H4-4-OMe(A) 8.07 7.24 7.95 7.95

18 CH2C6H4-4-OH(A) 8.96 8.77 8.80 8.71

19 CH2C6H4-3-NH2(A) 8.55 8.38 8.55 8.34

20 CH2C6H4-3-NMe2(A) 8.37 8.44 8.42 8.49

21 CH2C6H4-4-NH2(A) 8.07 7.90 8.08 7.87

22g C6H4-4-NH2-2HCl(A) 8.15 7.98 7.98 7.95

23 CH2C6H4-4-NMe2(A) 7.34 7.43 7.08 7.50

24 CH2-4-pyridyl(A) 7.66 8.51 7.57 7.44

25 3-(2,5-Me-pyrolyl)-CH2C6H4(A) 6.80 7.79 6.90 7.92

26 CH2C6H4-3,4-(-OCH2O-)(A) 8.89 8.71 8.72 8.69

27 CH2C6H5(B)
b 8.72 8.82 8.72 8.61

28g CH2CHMe2(B) 7.07 7.15 6.74 7.02

29 CHMe2(B) 6.60 7.09 5.86 6.85

30 CH(Me)SMe(B) 5.60 5.96 5.55 5.64

31 CH2C6H4-4-F(B) 8.24 8.92 8.35 8.13

32g CH2C6H4-2-OMe(B) 7.19 7.25 7.23 7.46

33 CH2C6H4-3-OMe(B) 9.06 8.92 8.84 8.79

34 CH2C6H4-3-OH(B) 7.89 7.91 7.81 7.75

35g CH2C6H4-4-OMe(B) 8.54 8.41 8.05 8.30

36 CH2-naphthyl(B) 8.37 8.19 8.38 8.15

37 CH2C6H3-3,5-OMe(B) 8.57 8.39 8.58 8.36

38 CH2-2-thienyl(B) 8.04 8.29 8.22 8.06

a Compounds 1–26 (A) where ðP2=P
0
2Þ ¼ benzyl.

b Compounds 27–38 (B) where ðP2=P
0
2Þ ¼ CH2-Cy-C3H5.

c Experimental activity.
d Predicted activity by MLR.
e Predicted activity by ANN.
f Predicted activity by SVM.
g Test set.
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recognition and function approximation applications recently.
In bioinformatics, SVMs have been successfully used to solve

classification and correlation problems, such as cancer
diagnosis (Sweilam et al., 2010; Chen et al., 2011), identifica-
tion of HIV protease cleavage sites (Wentong and Xuefeng,

2009; Lumini and Nanni, 2006; Noslen et al., 2009), and pro-
tein class prediction (Hua and Sun, 2001). SVMs have also
been applied in chemistry, for example, the prediction of reten-

tion index of protein, and other QSAR studies (Tugcu et al.,
2003; Kramer et al., 2002; Warmuth et al., 2003; Liu et al.,
2003; Hua et al., 2009; Darnag et al., 2010, 2009; Ivanciuc,
2002; Song et al., 2002; Burbidge et al., 2001). Compared with

traditional regression and neural network methods, SVMs
have some advantages, including global optimum, good gener-
alization ability, simple implementation, few free parameters,
and dimensional independence (Vapnik, 1998; Scholkopf and

Smola, 2002). The flexibility in regression and ability to
approximate continuous function make SVMs very suitable
for QSAR studies.

HIV protease, encoded by human immunodeficiency virus
(HIV), plays a very important role during the HIV life cycle.
The mature and infectious viral particles can only be generated

when the precursor polyproteins are cleaved by the HIV prote-
ase properly; otherwise, the viral particles are inactive (Graves
et al., 1992). Accordingly, HIV protease has been considered to
be a promising target for the rational design of drugs against

acquired immunodeficiency syndrome (AIDS). Actually, many
effects have been made to understand the specificity of HIV
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protease and to design HIV protease inhibitors (Chou, 1996).
HIV protease is one of the major viral targets for the
development of new chemotherapeutics. Currently, many

HIV protease inhibitors are used in combination with HIV re-
verse transcriptase inhibitors. In the present paper, we present
the applications of Support Vector Regression (SVR) to inves-

tigate the relationship between structure and activity of 38 cyc-
lic-urea derivatives, inhibiting HIV protease based on
molecular descriptors. The performance and predictive capa-

bility of support vector machine method are investigated and
compared with other methods such as artificial neural network
and multiple linear regression methods. Thereafter, we sought
to measure the contribution of each molecular descriptor.

2. Materials and computer methods

2.1. Data set

In QSAR studies, compounds must be represented using

molecular descriptors. A wide variety of descriptors have been
reported for QSAR analysis, such as topological, geometrical,
electrostatic and quantum chemical descriptors.

The set of 38 cyclic-urea derivatives, inhibiting HIV prote-
ase was compiled from the literature (Garg et al., 1999). The
HIV protease inhibitor activity (Ki in nM) data of cyclic-urea

derivatives were taken from the published work of Garg et al.
(1999). The Ki values were converted into the negative
logarithmic scale (log(1/Ki)). The log(1/Ki) values were used

as response variables. The activities of compounds are shown
in Table 1. All the molecules studied had the same parent skel-
eton (Fig. 1). Each molecule is described by a vector whose ele-
ments are parameters measuring physical factors that we

considered important for protein–inhibitor interaction, in our
study, each molecule was described by four descriptors

� The indicator variables, Ia = 1 stands for an R/R0 substitu-
ent containing an aromatic moiety and Io = 1 stands for an
ortho substituent in the aromatic moiety.

� Charge: dipole moment D.
� MgVol: the molar volume calculated by using the method of
McGowan.

2.2. Chemometric methods

2.2.1. Multiple linear regression

MLR is a statistical tool that regresses independent variables
against a dependent variable. The objective of MLR is to find
Figure 1 Chemical formulae of the inhibitors.
a linear model of the property of interest, which takes the form
below:

y ¼ a0 þ
Xn
i¼1

aixi

where y is the property which is the dependent variable, xi rep-
resents molecular descriptors, ai represents the coefficients of

those descriptors and a0 is the intercept of the equation.

2.2.2. Artificial neural networks

ANNs are artificial systems simulating the function of the hu-

man brain. Three components constitute a neural network: the
processing elements or nodes, the topology of the connections
between the nodes, and the learning rule by which new infor-

mation is encoded in the network. While there are a number
of different ANN models, the most frequently used type of
ANN in QSAR is the three-layered feed-forward network
(Zupan and Gasteiger, 1993). In this type of networks, the neu-

rons are arranged in layers (an input layer, one hidden layer
and an output layer). Each neuron in any layer is fully con-
nected with the neurons of a succeeding layer and no connec-

tions are between neurons belonging to the same layer.
According to the supervised learning adopted, the networks

are taught by giving them examples of input patterns and the

corresponding target outputs. Through an iterative process,
the connection weights are modified until the network gives
the desired results for the training set of data. A back-propaga-

tion algorithm is used to minimize the error function. This algo-
rithm has been described previously with a simple example of
application (Cherqaoui and Villemin, 1994) and a detail of this
algorithm is given elsewhere (Freeman and Skapura, 1991).

2.2.3. Support vector machine

SVM is gaining popularity due to many attractive features and
promising empirical performance. It originated from early

concepts developed by Cortes and Vapnik(1995). This method
has proven to be very effective for addressing general purpose
classification and regression problems. The main advantage of

SVM is that it adopts the structure risk minimization (SRM)
principle, which has been shown to be superior to the tradi-
tional empirical risk minimization (ERM) principle (Burges,

1998), employed by conventional neural networks. SRM min-
imizes an upper bound of the generalization error on
Vapnik–Chernoverkis dimension (‘‘generalization error’’), as

opposed to ERM that minimizes the training error. So SVM
is usually less vulnerable to the overfitting problem. Since
various introductions into SVM were already stated before
(Cristianini and Shawe-Taylor, 2000), only the main ideas

about SVM are given in this paper.
SVM can be applied to regression problems by the intro-

duction of an alternative loss function that is modified to in-

clude a distance measure. Considering the problem of
approximating the set of data G ¼ fðxi; diÞgni¼1 (xi is the input
vector, di is the desired value, and n is the total number of data

patterns). In SVM method, the regression function is approx-
imated, in a feature space F, by the following function:

fðxÞ ¼ wTUðxiÞ þ b ð1Þ

where w is a vector in F and U(xi) maps the input x to a vector

in F. The coefficients w and b are estimated by minimizing the
regularized risk function, as shown in Eq. (2)
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RðCÞ ¼ 1

2
wTwþ C

1

n

Xn
i¼1

Leðdi; yiÞ ð2Þ

where

Leðd; yÞ ¼
jd� yj � e d� y P e

0 otherwise

�
ð3Þ

e is a prescribed parameter.
In Eq. (2), the first term 1

2
wTw ¼ 1

2
kwk2 is called regularized

term. Minimizing 1
2
kwk2 will make a function as flat as possi-

ble, thus playing role of controlling the function capacity.
The second term is the empirical error measured by the e-insen-
sitive loss function, which is defined by Eq. (3). This defines a e
tube so that if predicted value is within the tube, the loss is
zero, while if predicted point is outside the tube, the loss is
the magnitude of the difference between the predicted value

and the radius e of the tube. C is penalty parameter, which is
a regularized constant to determine the trade-off between
training error and model flatness. To get the estimations of

w and b, Eq. (2) is transformed into the primal objective Eq.
(4) by introducing ni and n�i (slack variables representing upper
and lower constraints on the outputs of the system).

Rðw; ni; n
�
i Þ ¼

1

2
kwk2 þ C

1

n

Xn
i¼1
ðni þ n�i Þ ð4Þ

Subject to:

wTUðxiÞ þ b� di 6 eþ n�i
di � wTUðxiÞ � b 6 eþ ni

ni; n
�
i P 0; i ¼ 1; . . . ; n

8>>><
>>>:

ð5Þ

Thus, decision function (1) becomes the following form:

fðxÞ ¼
Xn
i¼1
ðai � a�i ÞKðxi; xÞ þ b ð6Þ

In Eq. (6), ai and a�i are the introduced Lagrange multipli-
ers. They satisfy the equality aia�i ¼ 0; ai P 0, a�i P 0 (i= 1,

. . ., n) and are obtained by maximizing the dual form of Eq.
(4) which has the following form:

Uðai; a
�
i Þ ¼

Xn
i¼1

diðai; a
�
i Þ � e

Xn
i¼1
ðai � a�i Þ �

1

2

Xn
i¼1

Xn
j¼1

ðai � a�i Þðaj � a�j ÞKðai; ajÞ ð7Þ

Subject to:Xn
i¼1
ðai � a�i Þ ¼ 0

ai; a�i 2 ½0;C�; i ¼ 1; . . . ; n

8>>><
>>>:

Through selecting the appropriate kernel function, the non-
linear relation between the building cooling load and its correl-
ative influence parameters based on SVM is established.

Any function satisfying Mercer’s (1909) condition can be

used as the kernel function, and the typical kernel functions in-
clude linear, polynomial, Gaussian and sigmoid functions.
Among these functions, the Gaussian function can map the

sample set from the input space into a high dimensional fea-
ture space effectively, which is good for representing the com-
plex non-linear relationship between the output and input

samples. Moreover, there is only one variable (the width
parameter) in it needed to be determined, which ensures the
high calculation efficiency. Because of the above advantages,
the Gaussian function is used widely. In this paper, Gaussian

function is also selected as the kernel function, whose expres-
sion is shown as follows:

Kðxi; xjÞ ¼ exp �kxi � xjk2

2c2

 !
ð8Þ

where c is the width parameter.

All SVM models, in our present study, were implemented
using the software LIBSVM for classification and regression
developed by Chang and Lin. All calculation programs imple-

menting ANN were written in an M-file based on the MAT-
LAB script, developed in our laboratory.

2.3. Model development

The original data set (38 compounds) was split into a training
set (30 compounds), used for establishing the QSAR models
and selecting the parameters of the methods used, and a test

set (eight compounds) for external validation. The test set is se-
lected such that each of its members is close to at least one point
of the training set. To assess the predictivity of the developed

QSAR models, several diagnostic statistical tools are used:

2.3.1. Root Mean Square Error (RMSE)

The residual between observed and estimated data is evalu-

ated. This index assumes that larger estimated errors are of
greater importance than smaller ones; hence they are given a
more than proportionate penalty. The RMSE is known to be

descriptive when the prediction capability among predictors
is compared, it is defined by:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
m¼1
ðym � ŷmÞ2

vuut
2.3.2. Scatter Index (SI)

SI is a standard metric for wave model intercomparison.
Essentially, it is a normalized measure of error that takes into

account the observed data. It is defined as:

SI ¼ RMSE

�ym

Lower values of the SI are an indication of a better
prediction.

2.3.3. Correlation coefficient

The predictive power of the QSAR models developed on the
selected training sets is estimated on the predictions of an

external test set and also examined by cross validation test to
the calculating statistical parameters of Q2:

Q2 ¼ 1�
PN

m¼1ðŷm � ymÞ
2PN

m¼1ðym � �yÞ2
:

2.3.4. Average Absolute Relative Error (AARE)

AARE indicates the relative absolute deviation in percent from
the experimental values. It is defined as:



Figure 2a RMSE versus C (c = 0.01, e = 0.25).

Figure 2b RMSE versus c (C = 100, e = 0.25).
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AARE ð%Þ ¼ 1

N

XNs

m¼1

ym � ŷm
ym

����
����� 100

A lower value implies a better correlation.
In these equations, ym is the desired output, ŷm is the pre-

dicted value by model, �y is the mean of dependent variable,
and N is the number of the molecules in data set.

3. Results and discussion

In order to develop QSAR models for predicting the biological
activity of cyclic-urea derivatives, inhibiting HIV protease, the

most commonly practiced stages (optimization, prediction
model development and the descriptor’s contribution) have
been achieved: The first one was aimed at selecting the param-

eters of the MLR, ANN and SVM. The second one was aimed
at determining the predictive ability of these methods. In the
third session, we attempt an evaluation of the importance of
the descriptors used.

3.1. Optimization

The training set (30 compounds) is used to select the parame-

ters of SVM, ANN and MLR methods.

3.1.1. Support vector machine

The training of the SVM model included the selection of

capacity parameter C, e of e-insensitive loss function and the
corresponding parameters of the kernel function. Firstly, the
kernel function should be decided, which determines the sam-

ple distribution in the mapping space. Generally, using RBF
kernel function will yield better prediction performance (Nia-
nyi et al., 2004), and it was used as the SVM model’s kernel

in this study accordingly. The radial basis function used is:

expð�ckl� mk2Þ

where c is the parameter of the kernel, l and m are two indepen-
dent variables.

Secondly, corresponding parameters, i.e., c of the kernel

function greatly affects the number of support vectors, which
has a close relation with the performance of the SVM and
training time. Over many support vectors could produce over-
fitting and increase the training time. In addition, c controls

the amplitude of the RBF function, and therefore, controls
the generalization ability of SVM.

Parameter e-insensitive prevents the entire training set

meeting boundary conditions and so allows for the possibility
of sparsity in the dual formulation’s solution. The optimal
value for e depends on the type of noise present in the data,

which is usually unknown.
Lastly, the effect of capacity parameter C was tested. It con-

trols the trade-off between maximizing the margin and mini-

mizing the training error. If C is too small then insufficient
stress will be placed on fitting the training data. If C is too
large then the algorithm will overfit the training data. How-
ever, Wang et al. (2005) indicated that prediction error was

scarcely influenced by C. To make the learning process stable,
a large value should be set up for C.

The grid optimization of LIBSVMwas used to find the opti-

mal values of the C, c and e parameters when using the radial
basis function kernel in the SVM mode. In the grid for data
set, a series ofC values ranging from 50 to 600 with incremental
steps of 50, c in the range from 0.005 to 0.05 with incremental

steps of 0.005 and e from 0.05 to 0.5 with incremental steps of
0.05 have been exploited. The optimal values of C, c and e are
identified to be 150, 0.02 and 0.5, respectively. The values of R2

and RMSE are 0.94 and 0.275, respectively. Because the grid
search was performed over three parameters, the RMSE could
not be shown in one plot to be visualized easily. Figs. 2a–2c

show the influence of each parameter with the other two fixed
to the optimal values on the model performance.

3.1.2. Artificial neural networks

All the feed-forward ANNs used in this paper are three-layer
networks with 10 units (10 molecular descriptors) in the input
layer, a variable number of hidden neurons, and one unit
(log(1/Ki)) in the output layer. A bias term was added to the

input and hidden layers. Each neuron in any layer is fully con-
nected with the neurons of a succeeding layer. There are nei-
ther connections between the neurons within a layer nor any

direct connection between those of the input and the output
layers. Input and output data are normalized between 0.1
and 0.9. The sigmoid function was used as the transformation

function (Freeman and Skapura, 1991). The weights of the



Figure 2c RMSE versus e (C = 100, c = 0.01).

7

8

9

10

er
im

en
ta

l a
ct

iv
ity

 (n
M

) training
test

SVM model

Table 3 Q2, RMSE and SI of SVM, ANN and MLR using

cross validation (CV).

Method Q2 RMSE SI

SVM 0.89 0.171 0.022

ANN 0.83 0.265 0.034

MLR 0.77 0.330 0.043
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connections between the neurons were initially assigned with
random values uniformly distributed between �0.5 and +0.5
and no momentum was added. The learning rate was initially

set to 1 and was gradually decreased during training. The
back-propagation algorithm was used to adjust those weights.

One major problem in neural network is how to determine

the number of nodes in the hidden layer. Though there is no
rigorous rule to rely on (Golbraikh and Tropsha, 2002), a
practical way is to use a ratio, q, to determine the number of

hidden units (Andrea and Kalayeh, 1991). q is defined as the
following:

q ¼ number of compounds presented to the network

number of connections in the network
:

The reasonable value of q should be between 1.0 and 3.0. If
q < 1, the network simply memorizes the data, whereas if
q > 3, the network is not able to generalize (Golbraikh and

Tropsha, 2002). In our study, the four selected variables were
used as input and the analgesic activity was used as output, so
a 4-x-1 (x represents the number of hidden neurons) network
was constructed and the suitable value of x could be defined

from 2 to 5 (q was located between 1.0 and 2.5). Each architec-
ture was trained with 10 different initial random sets of weights
and with the number of cycles limited to 1000. In all cases 100

cycles were enough to obtain stable results. The results are re-
ported in Table 2. Among all architectures of ANN, the best
one is 4-4-1 (R2 = 0.92 and RMSE = 0.319).

3.1.3. Multiple linear regression

The linear function constructed from the four molecular
descriptors and the training set has the following form:

log
1

Ki

� �
¼ 5:82þ 0:98� D� 0:08�MgVolþ 2:79� Ia

� 0:96� Io
Table 2 Statistical results of different ANN architectures.

ANN architecture R2 RMSE SI

4-2-1 0.88 0.358 0.046

4-3-1 0.90 0.333 0.043

4-4-1 0.92 0.319 0.041

4-5-1 0.86 0.384 0.049
N ¼ 30; R2 ¼ 0:81; RMSE ¼ 0:535:
3.2. Prediction model development

The main goal of any QSAR modeling is that the developed

model should be robust enough to be capable of making accu-
rate and reliable predictions of biological activities of new
compounds. Tropsha et al. (2003) emphasize the importance

of rigorous validation as a crucial, integral component of
QSAR model development. The validation strategies check
the reliability of the developed models for their possible appli-

cation on a new set of data, and confidence of prediction can
thus be judged.

For the present work, the proposed methodology was vali-
dated using several strategies: internal validation, external val-

idation using division of the entire data set into training and
test sets and Y-randomization. Furthermore, the domain of
applicability which indicates the area of reliable predictions

was defined.

3.2.1. Internal validation

The internal validation technique used is cross-validation

(CV). CV is a popular technique used to explore the reliability
of statistical models. Based on this technique, a number of
modified data sets are created by deleting in each case one or

a small group (leave-some-out) of objects. For each data set,
an input–output model is developed, based on the utilized
modeling technique. The model is evaluated by measuring its

accuracy in predicting the responses of the remaining data
(the ones that have not been utilized in the development of
the model). The leave-one-out (LOO) procedure was utilized,
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Figure 3a log(1/Ki) observed experimentally versus log(1/Ki)

predicted by SVM.
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Figure 3b log(1/Ki) observed experimentally versus log(1/Ki)

predicted by ANN.
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Figure 3c log(1/Ki) observed experimentally versus log(1/Ki)

predicted by MLR.

Table 5 Results of randomization test of the developed

models.

Modeling technique R2 from non

random model

Mean value of R2 from

model trials

SVM 0.94 0.14

ANN 0.92 0.20

MLR 0.81 0.23

Figure 4 Williams plot of the current QSAR model.
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in this study, which produces a number of models by deleting

one from the whole data set (38 cyclic-urea derivatives).
Five ANN architectures of 4-x-1 (x = 1–5) have been

tested. The results of QSAR done by these ANN architectures,

by MLR analysis and by SVM method are listed in Table 3.
The quality of the fitting is estimated by the RMSE and by
the statistical parameter Q. As it can be seen in Table 3, high
correlation coefficient (Q2 = 0.89) and low RMSE= 0.171,

SI = 0.022 have been obtained by means of the SVM. Accord-
ing to this table, it is clear that the performance of SVM is
Table 4 Statistical parameters and predictive ability of training an

Method Training set

R2 ARRE (%) RMSE S

SVM 0.94 0.027 0.275 0

ANN 0.92 0.026 0.319 0

MLR 0.81 0.049 0.536 0
better than those obtained by ANN and MLR techniques. In-

deed, in every case, the SVM’s correlation coefficient is greater
and its standard deviation is lower than those of the ANN and
MLR.

3.2.2. External validation

In order to estimate the predictive power of SVM, MLR and
ANN, we must use a set of compounds which have not been
used for training set (used for establishing the QSAR model).

The models established in the computation procedure, by
using the 30 cyclic-urea derivatives, are used to predict the
activity of the remaining eight compounds. The plot of pre-

dicted versus experimental values for data set is shown in
Fig. 3a (SVM), Fig. 3b (ANN) and Fig. 3c (MLR). Among
all these figures, the first one shows that the activity values cal-

culated by the SVM are very close to the experimental ones.
The statistical parameters of the three models are shown in
Table 4. As can be seen from this table, the statistical param-

eters of SVM model are better than the other ones.
d testing data set.

Test set

I Q2 ARRE (%) RMSE SI

.035 0.93 0.028 0.227 0.030

.041 0.89 0.036 0.334 0.044

.069 0.85 0.037 0.377 0.050



Figure 5 Contributions of the four molecular descriptors to QSAR.
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3.2.3. Y-randomization test

Y-randomization is an attempt to observe the action of chance
in fitting given data. In other words it is applied to exclude the

possibility of chance correlation. This technique ensures the
robustness of a QSAR model (Tropsha et al., 2003; Tropsha
and Golbraikh, 2007). The dependent variable vector

[y= log(1/Ki)] is randomly shuffled and a new QSAR model
is developed using the original molecular descriptors. The
new QSAR models (after several repetitions) are expected to

have low R2 values. If the opposite happens then an acceptable
QSAR model cannot be obtained for the specific modeling
method and data.

In this work, 10 random shuffles of the y vector were per-
formed for SVM, ANN and MLR. The results are shown in
Table 5. For each technique, the mean value of random models
is significantly lower than the corresponding value of the non-

random model. This suggests that the models are not obtained
by chance.

3.2.4. Domain of applicability

The domain of application (Eriksson et al., 2003) of a QSAR
model must be defined if the model is to be used for screening
new compounds. Predictions for only those compounds that

fall into this domain may be considered reliable. Extent of
Extrapolation (Gramatica, 2007) is one simple approach to de-
fine the applicability of the domain. It is based on the calcula-

tion of the leverage hi for each chemical, for which QSAR
model is used to predict its activity:

hi ¼ xT
i ðXTXÞ�1xi; i ¼ 1; . . . ; n

where xi is the descriptor vector of the considered compound

and X is the descriptor matrix derived from the training set
descriptor values. The superscript T refers to the transpose
of the matrix/vector. The warning leverage h* is, generally,

fixed at 3(k+ 1)/N, where N is the number of training com-
pounds and k is the number of model parameters. A leverage
greater than the warning leverage h* means that the predicted

response is the result of substantial extrapolation of the model
and, therefore, may not be reliable.

The Williams plot for the presented SVMmodel is shown in
Fig. 4. From this plot, the applicability domain is established

inside a squared area within (±3s) standard deviations and a
leverage threshold h* of 0.5. As shown in the Williams plot
(Fig. 4), hi values of all the compounds in the training and test
sets are lower than the warning value (h* = 0.5). None of the
compounds are particularly influential in the model space and
the training set has great representativeness. For all the com-
pounds in the training and test sets, their standardized residu-

als are smaller than three standard deviation units (2s). This
means that all predicted values are acceptable.

3.3. Analysis of descriptor’s contribution

One of the major goals of QSAR studies is the determination of
the factors influencing the activity of the studied compounds.

They contribute to the comprehension of modes of action com-
posed on their biological targets and guide the synthesis toward
compounds with optimal activity. We thus saw necessary to

evaluate their contribution of the molecular descriptors to the
model established by the SVM. The contribution of each
descriptor to the establishment of the QSAR was estimated
from the trained SVM using a technique proposed by Cherqa-

oui et al. (1998). We excluded descriptor i from data set and re-
trained the resulting SVM as usual. The mean of the deviations’
absolute values Dei between the experimental activity and the

estimated activity for all compounds has been calculated. This
process has been reiterated for each descriptor. Finally, the
contribution (Ci) of the descriptor i is given by

Ci ¼
100� DeiPN

i¼1Dei

where N is the number of descriptors.

Fig. 5 indicates that the relative importance of the descrip-
tors varied in the following order: MgVol > D > Io > Ia.

We can notice that the descriptor related to the molar vol-

ume calculated by using the method of McGowan (MgVol)
and dipole moment (D) are the most important in the establish-
ment of the QSAR of cyclic-area derivatives.

4. Conclusion

In the present work, we have compared the performance of
MLR, ANN, and SVM in QSAR study. The obtained results

show that SVM can be used to derive statistical models with
better qualities and better generalization capabilities than lin-
ear regression methods. The optimization process of SVM is

relatively easy to be implemented. They can be used as alterna-
tive nonlinear modeling tools in QSAR. The main factors con-
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trolling the biological activity of cyclic-urea derivatives have
been determined by SVM. Molar volume and dipole moment
parameters of the compounds were thus found to take the

most relevant part in the molecular description. The SVM ap-
proach would seem to have great potential for determining
quantitative structure–HIV-1 activity relationships and as such

be a valuable tool for the chemist.
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