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h i g h l i g h t s
� Atmospheric deposition highlighted contrasting spatial patterns in France.
� Inorganic compounds exhibited common trends in both wet-only and bulk deposition.
� nssSO4

2� concentrations primarily experienced the largest decreasing annual trend in the summer.
� A large number of stations showed an increasing trend in annual pH.
� Trends in nitrogen compounds were not linked to emission inventory changes.
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a b s t r a c t

The long-distance effect of atmospheric pollution on ecosystems has led to the conclusion of interna-
tional agreements to regulate atmospheric emissions and monitor their impact. This study investigated
variations in atmospheric deposition chemistry in France using data gathered from three different
monitoring networks (37 stations) over the period from 1995 to 2007. Despite some methodological
differences (e.g. type of collector, frequency of sampling and analysis), converging results were found in
spatial variations, seasonal patterns and temporal trends. With regard to spatial variations, the mean
annual pH in particular ranged from 4.9 in the north-east to 5.8 in the south-east. This gradient was
related to the concentration of NO3

� and non-sea-salt SO4
2� (maximum volume-weighted mean of 38 and

31 meq l�1 respectively) and of acid-neutralising compounds such as non-sea-salt Ca2þ and NH4
þ. In terms

of seasonal variations, winter and autumn pH were linked to lower acidity neutralisation than during the
warm season. The temporal trends in atmospheric deposition varied depending on the chemical species
and site location. The most significant and widespread trend was the decrease in non-sea-salt SO4

2�

concentrations (significant at 65% of the stations). At the same time, many stations showed an increasing
trend in annual pH (þ0.3 on average for 16 stations). These two trends are probably due to the reduction
in SO2 emissions that has been imposed in Europe since the 1980s. Temporal trends in inorganic N
concentrations were rather moderate and not consistent with the trends reported in emission estimates.
Despite the reduction in NOx emissions, NO3

� concentrations in atmospheric deposition remained mostly
unchanged or even increased at three stations (þ0.43 meq l�1 yr�1 on average). In contrast NH4

þ con-
centrations in atmospheric deposition decreased at several stations located in western and northern
areas, while the estimates of NH3 emissions remained fairly stable. The decrease in non-sea-salt SO4

2� and
NH4

þ concentrations was mainly due to a decrease in summer values and can in part be related to a
dilution process since the precipitation amount showed an increasing trend during the summer.
Furthermore, increasing trends in NO3

� concentrations in the spring and, to a lesser extent, in NH4
þ
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concentrations suggested that other atmospheric physicochemical processes should also be taken into
account.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The atmosphere is a very complex system containing a wide
range of natural compounds and anthropogenic pollutants that
contribute to numerous air quality problems affecting the climate,
human health and the environment (EEA, 2012). Human activities
emit various compounds that influence the atmospheric composi-
tion of trace gases and aerosols. Anthropogenic emissions of
sulphur (mainly SO2) and nitrogen (mainly NOX ¼ NO þ NO2)
originate from major source sectors, such as the industrial and
domestic combustion of fossil fuel, road and marine transport, and
agriculture (Smith et al., 2001; Monks et al., 2009; Reis et al., 2009).
Natural sources of those pollutants originate from soils (NH3, NOx,
and SO2), volcanoes (SO2 and H2S), seawater (sea salt, dime-
thylsulfide, NH3) and lightning (NOx). Compounds emitted directly
into the atmosphere (primary compounds) or those photochemi-
cally produced (secondary compounds) can be removed from the
atmosphere in dry or wet depositions. The scavenging of pollutants
(gas and aerosols) by clouds and rain generates changes in the
chemical composition of atmospheric deposition.

The role of the chemical content of atmospheric deposition is
twofold in relation to soils. First, it has severe harmful effects on the
environment by depositing acidifying and eutrophying com-
pounds, generating nutrient imbalances and changes in biodiver-
sity. Secondly, alkaline compounds in atmospheric deposition can
increase the buffering capacities of the receptor soil and are also a
source of nutrients that can increase ecosystem productivity, and
thus carbon sequestration (Bontemps et al., 2011; de Vries et al.,
2014). The acidification and eutrophication of ecosystems have
mainly been observed in Europe and North America in the past
three decades (Dentener et al., 2006; Hettelingh et al., 2007; Pardo
et al., 2011), and more recently in Asia (Zhao et al., 2009; Palani
et al., 2011). These ecological issues are of worldwide concern
(Kuylenstierna et al., 2001; Bouwman et al., 2002; Pan et al., 2013)
since sulphate, ammonium and nitrate with lifetimes of about four
to six days can be transported thousands of kilometres from their
sources (Chin et al., 2007; Sanderson et al., 2008; Nie et al., 2013).

Several authors have explored long-term trends in the chemical
composition of atmospheric deposition in Europe since 1990
(Puxbaum et al., 2002; Fowler et al., 2005a,b; Sicard et al., 2007;
Fagerli and Aas, 2008; Van Der Swaluw et al., 2011; Torseth et al.,
2012; Hunova et al., 2014; Vet et al., 2014; Waldner et al., 2014).
Despite different sampling periods, a common decreasing trend has
been observed in sulphate and hydrogen concentrations. Indeed,
base cation concentrations also exhibit downward trends and this
might partly explain the absence of any recovery by sensitive
ecosystems from acidification and eutrophication or recovery being
slower than expected (Moncoulon et al., 2007; Jonard et al., 2012).
These trends have been linked to changes in precursor emission
quantities, particularly from combustion or industrial processes
(Probst et al., 1995; Avila and Roda, 2002). Indeed, SO2 and NOX
emissions have been greatly reduced in Europe since 1990 (Monks
et al., 2009), falling by about 60% and 30% respectively.

Under the Convention on Long-Range Transboundary Air
Pollution, sulphur and nitrogen anthropogenic emissions in Europe
have been mitigated by the 1999 multi-pollutants/multi-effects
Gothenburg Protocol. Protocol reduction objectives were achieved
for SO2 and NH3 in France by 2010, as well as in most European
countries. However, these mitigation objectives appear to be less
restrictive for NOX as they are still being emitted in excessively high
quantities (EMEP/CEIP, 2012). Consequently, nitrogen has become a
pollutant of particular interest in relation to environmental issues
(Wamelink et al., 2009).

For the last twenty years, several monitoring networks have
established a representative database of worldwide atmospheric
deposition (Vet et al., 2014). They include the National Atmospheric
Deposition Program/National Trends Network (NADP/NTN)
(Lehmann et al., 2007), the Clean Air Status and Trends Network
(CASTNET) (Butler et al., 2005), the Canadian Air and Precipitation
Monitoring Network (CAPMON) (Zbieranowski and Aherne, 2011),
the European Monitoring and Evaluation Programme (EMEP)
(Torseth et al., 2012), the Acid Deposition Monitoring Network in
East Asia (EANET) (Totsuka et al., 2005), the International Co-
operative Programme on Assessment and Monitoring of Air Pollu-
tion Effects on Forests (ICP Forests) (Lorenz, 1995) and the Atmo-
spheric Chemistry Monitoring Network in Africa (IDAF) (Galy-
Lacaux et al., 2009). In France, the long-term monitoring of atmo-
spheric deposition has been performed by three main networks:
the “Mesure et Evaluation en zone Rurale de la pollution Atmos-
ph�erique �a longue distance” (MERA), the Background Air Pollution
Monitoring Network (BAPMoN) and the “Charge d’Acide Totale
d’origine Atmosph�erique dans les Ecosyst�emes Naturels Terrestres”
(CATAENAT). The data from these three networks have never been
investigated together at country scale.

Based on those data, the aims of this paper were (i) to set up a
common database for French atmospheric deposition, (ii) to
determine the amount of the inorganic component concentrations
and fluxes in atmospheric deposition, (iii) to investigate the spatial
pattern of these compounds, and (iv) to examine the seasonal
evolution and long-term trends in atmospheric deposition over the
period 1995 to 2007 for the major element concentrations and
fluxes at country scale.
2. Materials and methods

2.1. Sampling sites

Table 1 presents the location and acronyms of the 37 sampling
sites selected from the three French monitoring networks for the
period 1995e2007. These sampling sites were distributed
throughout France (Fig. 1) and represented the various climatic
influences encountered (Mediterranean, Atlantic, continental and
mountain influences). Monitoring stations were set up based on
similar siting rirements. In particular, they were not directly
exposed to industrial or urban emissions and could be considered
as regional background sites. The collectors were shielded from
disturbance by the erection of a fence around the station. The
MERA, CATAENAT and BAPMoN stations fulfil the siting criteria
defined in the EMEP manual (EMEP, 1996), the ICP Forests manual
(ICPF, 2010) and the GAW Precipitation Chemistry Programme
(WMO, 2004) respectively.

As part of the GAW/WMO programme (Global Atmosphere
Watch/World Meteorological Organisation, http://www.wmo.int/
pages/prog/arep/gaw/gaw_home_en.html), the worldwide
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Fig. 1. Location of sampling stations. N.B.: The first letter of the acronyms defines the sampling type (B: bulk; W: wet-only); the second letter defines the network name (C:
CATAENAT; M: MERA; B: BAPMoN). Some cities (>150,000 inhabitants) are highlighted in red star. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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BAPMoN network has been managed by the French National
Meteorological Centre since 1977 (C�enac and Z�ephoris, 1992). The
goal is “to monitor the atmosphere’s composition as influenced by
human activities on a continental or regional scale, excluding
however any significant single sources” (Kohler, 1980). The three
wet-only BAPMoN sampling sites in France closed in 2007, which is
the main reason why data up to 2007 was used in this study.

Within the scope of EMEP (http://emep.int/), the MERA network
was set up in 1989 by the French Environment Ministry and the
French Agency for Environment and EnergyManagement (ADEME).
Its aim is to study background atmospheric pollution and especially
the long-range transport of pollutants and their deposition
(Plaisance et al., 1996a,b). The MERA network includes 13 wet-only
remote sites in 2014, but only seven sites were effectively moni-
tored during the 1995e2007 period.

Within the ICP Forest programme (http://icp-forests.net/), the
CATAENAT network, which is part of the RENECOFOR1 network, has
been in operation in France since 1993. It is managed by the French
National Forest Agency to monitor atmospheric deposition and its
impact on forest ecosystems. Bulk atmospheric deposition has been
sampled in 27 open-field sites close to forest monitoring sites.
BC210EV is located on the island of Corsica to the south of mainland
France. Detailed information about the CATAENAT network can be
found in Crois�e et al. (2005).
1 R�eseau National de suivi �a long terme des Ecosyst�emes Forestiers.
2.2. Sampling equipment and chemical analysis

Wet-only precipitations were monitored on a weekly basis at
the BAPMoN sampling sites, and on a daily basis at the MERA
sampling sites. All the 27 CATAENAT sites were equipped with a
weekly bulk collector (Table 1): precipitation was collected every
week and kept at 4 �C in the dark before samples were pooled into
four-week composites for chemical analysis. The precipitation
amount was measured using a separate reference rain gauge at
each sampling site. Non-automatic rain gauges were used in the
CATAENAT network and automatic ones were used in the BAPMoN
and MERA networks.

The CATAENAT bulk collectors consisted of a high-density
polyethylene (HDPE) funnel and an HDPE bottle for rain sampling
or a bag for snow sampling. Sedimenting droplets, wet and dry
particles or gases were included in the bulk measurements. The
BAPMoN and MERA wet-only collectors comprised a lid coupled to
a sensor allowing them to open only when it rained or snowed,
hence only wet deposition was collected in an HDPE bottle.

Following technical improvements, different types of wet-only
collectors and sensors have been used over time by the networks.
In the CATAENAT network, wet-only collectors were equipped with
a Pr�ecis M�ecanique sensor from 1993 to 2003 and with an Eigen-
brodt IRSS 88 sensor from 2004 to 2007. In theMERA network, wet-
only collectors were equipped with a Pr�ecis M�ecanique sensor from
1990 to 2002, andwith an Eigenbrodt RS85 sensor from 2002 to the
present day. The three types of precipitation sensors have different
systems to control the opening and closing of the collector. The IRSS

http://emep.int/
http://icp-forests.net/


Table 1
List of stations in the three networks monitoring atmospheric deposition in France for the period 1995e2007.

Acronym Networks Type of collector Sampling frequency Chemical analysis frequency Monitoring sites Latitude Longitude Altitude (m) Number of years (n)

WM76BR MERA Wet-only daily daily Brotonne 49� 240 N 00� 420 E 115 13
WM05CA MERA Wet-only daily daily Le Casset 45� 000 N 06� 280 E 1750 13
WM67DO MERA Wet-only daily daily Donon 48� 300 N 07� 080 E 775 13
WM64IR MERA Wet-only daily daily Iraty 43� 020 N 01� 050 W 1300 13
WM58MO MERA Wet-only daily daily Morvan 47� 160 N 04� 050 E 620 13
WM32PE MERA Wet-only daily daily Peyrusse-Vieille 43� 370 N 00� 110 E 236 13
WM08RE MERA Wet-only daily daily Revin 49� 540 N 04� 380 E 390 13
WB80AB BAPMON Wet-only weekly weekly Abbeville 50� 080 N 01� 500 E 70 13
WB84CA BAPMON Wet-only weekly weekly Carpentras 44� 050 N 05� 030 E 99 13
WB46GO BAPMON Wet-only weekly weekly Gourdon 44� 450 N 01� 240 E 259 13
BC40GB CATAENAT Bulk weekly 4-week CHP40HCT 43� 440 N 00� 500 W 20 13
BC59LO CATAENAT Bulk weekly 4-week CHP59HCT 50� 100 N 03� 450 E 149 13
BC35LI CATAENAT Bulk weekly 4-week CHS35HCT 48� 100 N 01� 320 W 80 13
BC41CC CATAENAT Bulk weekly 4-week CHS41HCT 47� 340 N 01� 150 E 127 13
BC77FO CATAENAT Bulk weekly 4-week CPS77HCT 48� 270 N 02� 430 E 80 13
BC71AN CATAENAT Bulk weekly 4-week DOU71HCT 47� 050 N 04� 050 E 650 13
BC08TH CATAENAT Bulk weekly 4-week EPC08HCT 49� 560 N 04� 480 E 480 13
BC63GC CATAENAT Bulk weekly 4-week EPC63HCT 45� 450 N 02� 570 E 950 13
BC74CE CATAENAT Bulk weekly 4-week EPC74HCT 46� 130 N 06� 200 E 1200 13
BC87PC CATAENAT Bulk weekly 4-week EPC87HCT 45� 480 N 01� 480 E 650 13
BC30VA CATAENAT Bulk weekly 4-week HET30HCT 44� 060 N 03� 320 E 1400 13
BC54AZ CATAENAT Bulk weekly 4-week HET54aHCT 48� 300 N 06� 420 E 325 12
BC64AN CATAENAT Bulk weekly 4-week HET64HCT 43� 090 N 00� 390 W 400 13
BC20EV CATAENAT Bulk weekly 4-week PL20HCT 42� 150 N 08� 500 E 1100 13
BC17GO CATAENAT Bulk weekly 4-week PM17HCT 45� 580 N 01� 160 W 15 13
BC40LO CATAENAT Bulk weekly 4-week PM40cHCT 44� 020 N 00� 000 W 150 13
BC72LA CATAENAT Bulk weekly 4-week PM72HCT 47� 440 N 00� 200 E 153 13
BC85DM CATAENAT Bulk weekly 4-week PM85HCT 46� 520 N 02� 080 W 5 13
BC44GA CATAENAT Bulk weekly 4-week PS44HCT 47� 320 N 01� 480 W 38 13
BC67HA CATAENAT Bulk weekly 4-week PS67aHCT 48� 510 N 07� 420 E 175 13
BC76MS CATAENAT Bulk weekly 4-week PS76HCT 49� 270 N 00� 440 E 70 13
BC05CR CATAENAT Bulk weekly 4-week SP05HCT 44� 290 N 06� 270 E 1360 13
BC11BE CATAENAT Bulk weekly 4-week SP11HCT 42� 520 N 02� 060 E 950 12
BC25MO CATAENAT Bulk weekly 4-week SP25HCT 46� 580 N 06� 270 E 1000 13
BC38CB CATAENAT Bulk weekly 4-week SP38HCT 45� 250 N 06� 070 E 1100 13
BC57AB CATAENAT Bulk weekly 4-week SP57HCT 48� 360 N 07� 080 E 400 13
BC68LA CATAENAT Bulk weekly 4-week SP68HCT 47� 560 N 07� 070 E 680 13
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88 optical sensor does not need to heat the device since the sensing
area is generated by infrared beams. Snow-catching pins and the
heated surface of the RS85 precipitation sensor ensure the efficient
collection of all kinds of atmospheric precipitation. With the Pr�ecis
M�ecanique electrical sensor, the residual drops from the events are
dried with a resistance grid of electrode bars, ensuring collector
closing. These three types of sensors have to be adjusted in order to
provide reliable precipitation measurements (e.g. so as not to
respond to fog or dew in the case of electrical sensors or to spider’s
webs in the case of optical sensors). Since an elevated temperature
can lead to changes in pH (D€ammgen et al., 2005), sample solutions
have been stored in a refrigerated collector since 2002 (Eigenbrodt
NSA181 for MERA, Eigenbrodt UNS130 for CATAENAT and M�et�eo
France collectors for BAPMoN).

Potential biases may exist from the sampler type (wet-only vs.
bulk) and from the sampling interval (daily vs. weekly). These
biases depend on the station location, the type of air masses
impacting the station, the surrounding terrain, meteorological
conditions etc. (Butler and Likens, 1998; Thimonier, 1998; Staelens
et al., 2005; Cape et al., 2009). Some biases may neutralise and
cancel out the effect of other biases. For example, base cation
concentrations (Ca2þ, Mg2þ and Kþ) are significantly affected by
coarse particles deposited on the wall of the bulk collectors, rep-
resenting between 16% and 46% on average of bulk deposition
(Balestrini et al., 2007). A longer sampling period affects pH and N
compounds. Butler and Likens (1998) report that daily NH4

þ con-
centrations are approximately 14% higher than weekly values.
Precipitation sensors are known to be a critical part of the wet-only
collectors. Plaisance et al. (1998) demonstrate that the collection
efficiency for those three sensors is about 90% on average. They also
report significant differences in ionic compositions for Hþ, Ca2þ,
Mg2þ and Kþ (of about 20%), associated with the exposure of the
funnel to dry deposition of particles or gases according to the
system for controlling the lid opening and closing. Overall, Hþ and
nssBC concentrations in the four-week bulk samples should be
higher than in the daily wet-only samples, when NH4

þ concentra-
tions should be lower.

Over the study period, all samples were analysed for their
chemical composition by the same laboratory, SGS Multilab. Data
quality assurance programmes were set up within the networks.
Samples were analysed for pH, major anions (Cl�, NO3

�, SO4
2�) and

cations (Naþ, Kþ, Mg2þ, Ca2þ, NH4
þ). Concentrations of selected ions

were obtained using various analytical techniques, as detailed in
Table 2. Anionswere analysed by ion chromatography for thewhole
period. Cations (except NH4

þ) were measured by ion chromatog-
raphy or by inductively coupled plasma atomic emission spec-
troscopy. The method used for analysing NH4

þ has changed several
times since 1995 in order to adapt to potentially interfering sub-
stances and to avoid the use of toxic agents by the Nessler method.
The SGS Multilab analytical laboratory has systematically partici-
pated to WMO/GAW intercomparisons, EMEP intercomparisons
and ICP Forest intercomparison experiments. The primary goal of
those experiments is to guarantee that participating laboratories
that use various analytical methods are able to provide comparable
measurements. According to the EMEP and GAW intercomparisons
for NH4

þ concentration, the results reported by SGS Multilab were
on average within 1 ± 15% (1991e2008) and 3 ± 14% (1992e2007)
of the expected values respectively.



Table 2
Type of analytical techniques applied per ion per time period by the networks.

Analytical techniques Ions MERA BAPMON CATAENAT

IC Cl�,N-NO3
�, S-SO4

2� 1995e2007 1995e2007 1995e2007
Naþ, Kþ, Mg2þ, Ca2þ 1995e2007 e 1995e2007
NH4

þ 2003e2007 e 2003e2007
ICP-AES Naþ, Kþ, Mg2þ, Ca2þ e 1995e2007 e

INDO NH4
þ 1995e2002 1995e2002/2007 1995e2002

FIAS NH4
þ 2002e2003 e 2002e2003

NES NH4
þ e 2003e2006 e

IC: ion chromatography.
ICP-AES: inductively coupled plasma atomic emission spectroscopy.
INDO: indophenol blue colorimetric method.
FIAS: flow injection atomic spectroscopy.
NES: Nessler’s reagent colorimetric method.
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2.3. Methods for calculation

Data were aggregated by season or by year: average values were
not calculated if more than 20% of the data were missing over the
considered period. Data could be missing due to a shutdown of the
monitoring station or to a variety of mechanical or electrical
problems. The four seasons were defined as follows: December
(previous year)-February (winter), MarcheMay (spring), June-
eAugust (summer), and SeptembereNovember (autumn).

Volume-weighted mean concentrations (CVWM) of ions were
computed for years and seasons using the following Equation (1):

CVWM ¼
Xn
i¼1

ðRi � CiÞ
,Xn

i¼1

Ri (1)

Annual and seasonal deposition fluxes of ions were estimated
using the following Equation (2):

D ¼
Xn
i¼1

ðRi � CiÞ (2)

where n is the number of individual samples, Ci the concentration
of the ions and Ri the precipitation measured by a reference rain
gauge. The precipitation amount associated with invalid samples
was used to calculate the annual precipitation amount. If the pre-
cipitation amount was missing, samples were not accounted for.

Sodium ion was used to estimate the non-sea-salt (nss) ionic
concentrations from the ionic ratio of sea water expressed in eq/eq,
e.g. the ratio for SO4

2�/Naþ is 0.12, Mg2þ/Naþ ¼ 0.228, Kþ/
Naþ ¼ 0.021, Ca2þ/Naþ ¼ 0.043 (Keene et al., 1986). The concen-
trations of non-sea-salt base cations (nssBC) were obtained by
summing the nssMg2þ, nssKþ and nssCa2þ concentrations (in
meq l�1).

pH was measured using a pH meter, then transformed to Hþ to
calculate the volume-weighted mean concentration. Finally an
average pH was calculated using the volume-weighted mean Hþ

concentration.

2.4. Statistical trend analysis

Numerous methods can be applied for the study of long-term
trends in air quality and atmospheric deposition chemistry. Since
data distribution is not normal and robust, the non-parametric
seasonal Mann Kendall test is considered to be the most appro-
priate and powerful for detecting linear trends (Marchetto et al.,
2013). As this study showed, differences between a seasonal
Mann Kendall test and a Mann Kendall test for long series were
negligible. Therefore, a Mann Kendall test was performed over the
13-year period (Gilbert, 1987) to determine whether a trend was
significant or not, using either yearly data or seasonal data. Addi-
tionally, the Sen’s method (Sen, 1968) was used to calculate the
trend slope. The software tool MakeSense (Salmi et al., 2002) was
used to detect and estimate annual and seasonal trends in atmo-
spheric deposition for each sampling site. The probability of
observing a trend was computed using the Z-score. The trend was
considered as statistically significant when the level of significance
was above 90%.

3. Results and discussion

3.1. Spatial distribution and seasonal variability

3.1.1. Precipitation
Precipitation has a considerable influence on the deposition

amount of inorganic species. Below-cloud scavenging (washout) of
aerosol and gases leads to higher concentrations in lower precipi-
tation samples (Ulrich et al., 1998; Anderson and Downing, 2006).
After the washout, concentrations result mainly from the rainout of
clouds, leading to lower concentrations in higher precipitation
samples. The mean annual precipitationwas 1109 ± 372 mm across
all sampling sites (n ¼ 37, Fig. 2). Spatial differences were observed
between sampling sites. Annual precipitation was high in the mid
and high French mountains. A southern site, located in the area of
the C�evennes Mountains, received the highest annual precipitation
(BC30VA site, mean 2400 mm). It was characterised by strong
convective precipitation, which usually occurred in autumn (Vidal
et al., 2010). The enhancement of precipitation by orographic ef-
fects has also been highlighted in the Alps by Frei and Sch€ar (1998).
Lowannual precipitationwas recorded in the southern andwestern
areas, which are influenced by the Mediterranean and marine west
coast climates respectively.

A high variability in seasonal precipitationwas recorded (Fig. 3).
The seasonal variations in mountain and continental sites reached a
maximum in the summer (e.g. at BC74CE 351 mm for the three
summer months) and a minimum in late winter and spring (e.g. at
BC63GC 274mm for the three spring months). Themonthly pattern
on plain sites was the opposite for mountain sites. For example, the
driest month was observed in June at the BC85DM site (105 mm for
the three summer months) located on the western coast, while the
rainiest months occurred between September and December
(247 mm for the autumn months).

3.1.2. SO4
2� ions

The non-sea-salt sulphate ion (nssSO4
2�) is representative of

non-marine sources of sulphate such as urban and industrial ac-
tivities (Lim et al., 2014; Watmough et al., 2014). The annual VWM
concentrations of nssSO4

2� ranged from 16 to 38 meq l�1 (Fig. 2). The
highest concentration of nssSO4

2�was found in southern and north-



Fig. 2. Volume-weighted mean concentrations and deposition fluxes of non-sea-salt SO4
2�, NO3

�, NH4
þ, non-sea-salt base cation, Hþ, mean pH (from volume-weighted mean Hþ

concentrations) and annual precipitation in France for the period 1995e2007.
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Fig. 3. Annual and seasonal volume-weighted mean concentrations of non-sea-salt SO4
2�, NO3

�, NH4
þ, non-sea-salt base cation, mean pH (from volume-weighted mean Hþ con-

centrations) and precipitation in France for the period 1995e2007 (n ¼ 37). The plot whiskers extend to 1.5 times the interquartile range from the box. The bottom and top of the
box are the 25th and 75th percentile respectively, and the band inside the box is the 50th percentile.
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eastern France. Several studies have identified the occurrence of
nssSO4

2� in these parts of France and in neighbouring countries
(Probst et al., 1990; Sanusi et al., 1996; Ulrich et al., 1998; Marquardt
et al., 2001; Andr�e et al., 2007; Sicard et al., 2007). Spatial distri-
bution of nssSO4

2� deposition was partly influenced by high pre-
cipitation (Spearman coefficient 0.82, p < 0.001), particularly at the
eastern Alpine relief and C�evennes sites, while the influence of
concentrations was not significant (Spearman coefficient 0.19,
p ¼ 0.25).

Seasonal nssSO4
2� concentrations were higher in the spring

(mean 34 meq l�1) and summer (mean 37 meq l�1) than in the
autumn and winter (both mean 21 meq l�1) (Fig. 3). This can be
attributed to a larger formation of sulphuric acids due to enhanced
photochemistry and a higher conversion rate in the warm season
(Calvert and Stockwell, 1984). These seasonal patterns can also be
related to seasonality in anthropogenic aerosols and primary
emissions (Soner Erduran and Tuncel, 2001; Freney et al., 2011;
Bourcier et al., 2012).

3.1.3. NO3
� ions

The nitrate ion is also an important contributor to precipitation
chemistry. The mean of VWM concentrations of NO3

� for all sam-
pling sites was 21 ± 4 meq l�1 (Fig. 2). The highest annual VWMNO3

�

concentration was observed at a north-eastern site (31 meq l�1).
Annual VWM concentrations of NO3

� in the present study were
similar to those found by Staelens et al. (2005) in Belgium. A higher
annual VWM NO3

� concentration was observed in northern France
(above 20 meq l�1) than in southern France (below 20 meq l�1). In
southern France, NO3

� concentrations were even lower than
nssSO4

2� concentrations (Fig. 2). The NO3
�-to-nssSO4

2� ratio is an
indicator of the relative contribution of sulphuric acids (H2SO4) and
nitric acids (HNO3) to the acidity of rainwater (Galloway et al.,
1982). The low NO3

�-to-nssSO4
2� ratio in the southern part of
France (ranging from 1 to 1.5) indicated that SO4
2� was the greatest

contributor to acidity. Spatial distribution of NO3
� deposition

showed higher values in the northern and eastern parts of France,
with the exception of the maximum observed at the BC30VA site in
the C�evennes Mountains (Fig. 2).

Seasonal variability in NO3
� concentrations was similar to SO4

2�

concentrations (Fig. 3). Higher values in the spring (mean
28 meq l�1) and summer (mean 27 meq l�1) can be attributed to a
larger formation of HNO3 (Calvert and Stockwell, 1984). However,
Bourcier et al. (2012) show that the levels of NO3

� particles are
highest during the cold season. NO3

� particles are primarily in the
form of ammonium nitrate (NH4NO3), which is thermally stable
during the cold season (Mozurkewich, 1993). The predominant
forms in the warm season are coarser (Bourcier et al., 2012) and
some authors suggest an association of NO3

� with Ca2þ or Naþ

(Rodriguez et al., 2004).

3.1.4. NH4
þ ions

NH4
þ ions measured in atmospheric deposition can originate

from ammonium aerosols, which are produced by the association
of NH3 with either NOX or SOX, mostly emitted by anthropogenic
activities. When considering all the sampling sites, the mean
annual VWM concentration of NH4

þ was 28 ± 9 meq l�1 (Fig. 2).
Ranging from 13 to 46 meq l�1, a spatial difference was identified
between northern and southern regions. Other studies investi-
gating atmospheric deposition in France and Europe have found
similar levels of NH4

þ concentrations (Plaisance et al., 1996a,b;
Sicard et al., 2007; Angeli et al., 2009; Celle-Jeanton et al., 2009;
Vet et al., 2014). The NH4

þ-to-SO4
2� ratio was higher than 1 in most

of the northern sampling sites, suggesting that NH3 is abundant
enough to neutralise all the H2SO4 and to form (NH4)2SO4 particles.
Thus, a fraction of NH3 can remain in the gas phase, available to
form NH4NO3 in the aerosol phase. Such behaviour has also been
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observed in the USA by Lehmann et al. (2007), in China by Xie et al.
(2008) and in India by Behera and Sharma (2010). The largest
annual NH4

þ deposition flux was above 400 eq ha�1 yr�1, recorded
at the Cevennes BC30VA site. About 300 eq ha�1 yr�1 of NH4

þ

deposition was recorded in the north-eastern part. This spatial
pattern was strongly influenced by precipitation (Spearman coef-
ficient 0.62, p < 0.001) and concentration (Spearman coefficient
0.63, p < 0.001). However, the correlationwith concentration could
be influenced by the high number of bulk samplers (27 out of 37
stations). High NH4

þ deposition fluxes in the eastern part of France
matched the spatial distribution of annual SO4

2� and NO3
� deposi-

tion fluxes.
Seasonal variability in NH4

þ concentrations revealed that the
maximum was recorded during the spring (mean 46 meq l�1) and
summer (mean 42 meq l�1) (Fig. 3). Similar variations in NH4

þ have
been observed in Spain by Calvo et al. (2012). The increase in NH4

þ

concentrations in the spring and summer might result from the
volatilisation of NH3 from fertiliser application during crop growth
(spring) and the spread of manure in late summer. Previous studies
have already observed a springtime increase in atmospheric
deposition of NH4

þ due to agricultural activities (Anderson and
Downing, 2006; Avila et al., 2010). Moreover, the seasonal vari-
ability in NH3 emissions can be explained by a combination of
agricultural practices and weather conditions (Loubet et al., 2009).
The link between the seasonal variability in NH4

þ and NO3
� and in

nssSO4
2� is likely to be due to NH4NO3 and (NH4)2SO4 in the aerosol

phase.

3.1.5. nssBC ions
The non-sea-salt base cation concentrations

(nssBC ¼ nssCa2þ þ nssMg2þ þ nssKþ) were represented on
average by 84% of the non-sea-salt Ca2þ concentrations, 6% of the
non-sea-salt Mg2þ concentrations and 10% of the non-sea-salt Kþ

concentrations. On average, the annual VWM concentrations of
nssBC were 24 ± 14 meq l�1 (Fig. 2). The highest annual VWM
concentration of nssBC was observed in south-eastern France. A
large amount of nssBC concentrations due to nssCa2þ frequently
originates from local resuspension or long-range sources of wind-
blown mineral dust (Ulrich et al., 1998). The Sahara desert pro-
vides most of the non-local mineral dust in south-western Medi-
terranean regions, including the southern part of France (Avila
et al., 1998; Rogora et al., 2004; Calvo et al., 2010; Izquierdo et al.,
2012; Vincent et al., 2015). Evidence of Ca2þ ions originating from
Saharan events in atmospheric deposition has also been found in
Belgium by Vanderstraeten et al. (2008). Higher concentrations of
nssBC than of NH4

þ in south-eastern France suggest that nssBC ions
were the main contributors to neutralising acidity in rainwater in
this part of France. Deposition fluxes of nssBC showed a strong
north-south gradient, more influenced by concentration (Spearman
coefficient 0.72, p < 0.001) than by precipitation amount
(Spearman coefficient 0.32, p < 0.1).

Seasonal variability in nssBC concentrations highlighted that the
maximumwas recorded in the spring (mean 50 meq l�1) (Fig. 3). The
high concentrations of nssBC, mostly Ca2þ, can be associated with
human activities, local soil erosion and frequent intrusions of
Saharan dust, with specific intense episodes in the spring and
summer (Calvo et al., 2012).

3.1.6. pH and Hþ deposition flux
Natural rainwater acidity (pH from 5.0 to 5.6) can be generated

by atmospheric CO2, NOX, SO2 and others acidifying trace gases
emitted by natural sources and dissolved in cloud droplets
(Galloway and Likens,1976; Galloway et al., 1982). Themean annual
pH for all sampling sites was 5.13 ± 0.19 (Fig. 2). Spatial distribution
of pH values was influenced by air mass origin. The highest value of
5.81was recorded at a southern-eastern sampling site and reflected
the influence of mineral dust, as discussed above. The sampling
sites located in north-eastern France were characterised by acidic
precipitations (the lowest pH value was 4.87). This region of France
has been particularly exposed to acid rain since it is frequently
under the influence of air masses coming from heavily polluted
urban and industrial areas, by long-range transport or medium-
range surroundings (Probst et al., 1990; Charron et al., 2000).
Annual values of the fractional acidity, as defined by
Balasubramanian et al. (2001), varied from 0.03 (BC05CR, alpine
site) to 0.29 (WM67DO, eastern site) with an average of 0.17 ± 0.05,
indicating that about 80% of the acidity was neutralised by alkaline
ions. The highest deposition fluxes of Hþ were also found in north-
eastern France, with the exception of an excess of Hþ deposition
(about 350 eq ha�1 yr�1) at the BC30VA C�evennes site, which is
characterised by very high annual precipitation.

Interactions between SO4
2�, NO3

� and also NH4
þ or mineral dust

controlled seasonal variability in pH. Low values of pH were found
in the winter (min 4.90) and autumn (min 4.80) whereas SO4

2� and
NO3

� concentrations were at their minimum (Fig. 3). The highest pH
was observed during the warm season (spring and summer), sug-
gesting that NH4

þ and Ca2þ were slightly more available than during
the cold season. Indeed, NH3 emissions are at their maximum in the
spring and have a strong seasonal variability, which influences the
neutralisation of rainwater acidity. Primary SO2 and NOX are mainly
emitted in the cold season but clean air masses from the North
Atlantic dilute the air pollutants during winter, leading to lower
concentrations in atmospheric deposition. Frequent temperature
inversions during the spring provide a very stable boundary layer
and an efficient accumulation of pollutants (Lenhart and Friedrich,
1995), which is commonly associated with polluted air masses
coming from eastern Europe.

3.2. Long-term annual and seasonal trends

3.2.1. Precipitation
Not significant trends in annual precipitation were found at 67%

of the sampling sites (Fig. 4). Overall, few significant decreasing
trends were detected in southern France, with slopes ranging from
�15 mm yr�1 to �36 mm yr�1 (p < 0.1, n ¼ 4). These decreasing
trends were difficult to compare to other studies because they often
considered longer periods (Brunetti et al., 2001; Moisselin et al.,
2002; Klein Tank and Konnen, 2003; Buishand et al., 2013).

On a seasonal basis, some significant increasing precipitation
trends were observed in the summer (Fig. 5), particularly in the
northern part of France (þ9.5 ± 0.7 mm yr�1, n ¼ 6). In contrast,
precipitation significantly decreased in the autumn at a few sta-
tions (�16.9 ± 13.4 mmyr�1, n¼ 4). Summertime increasing trends
in precipitation have also been reported by several authors in The
Netherlands (Lenderink et al., 2009; Buishand et al., 2013). Climate
modelling suggests that the changes in precipitation patterns along
the North Sea and Atlantic coasts are influenced by changes in sea
surface temperature, probably due to changes in atmospheric cir-
culation (Haren et al., 2012).

3.2.2. SO4
2� ions

From 1995 to 2007, annual nssSO4
2� concentration and deposi-

tion declined by 30 and 40% (averaged at 37 sampling sites)
respectively. These statistically significant decreases were recorded
at about 70% of the sampling sites (Fig. 4). Significant decreasing
trends in nssSO4

2� concentrations were found with an average of
�0.67 ± 0.31 meq l�1 yr�1 (n ¼ 24). The decrease in annual nssSO4

2�

deposition was also homogenous and reached
�9.2 ± 3.3 eq ha�1 yr�1 (n ¼ 27). These results are consistent with
those of a similar study on rural French sampling sites for the



Fig. 4. Annual trends in volume-weighted mean concentrations and deposition fluxes of non-sea-salt SO4
2�, NO3

�, NH4
þ, non-sea-salt base cation, Hþ, mean pH (from volume-

weighted mean Hþ concentrations), and annual precipitation for the period 1995e2007 in France. The large squares indicate that the trends are significantly different from 0 at
a 0.1 confidence level.



Fig. 5. Seasonal trends in mean precipitation for the period 1995e2007 in France. The large squares indicate that the trends are significantly different from 0 at a 0.1 confidence
level.
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period 1990e2003 (Sicard et al., 2007). To a larger extent, the re-
sults of the present study also agree with those reported for other
European countries (Fowler et al., 2005a,b; Monks et al., 2009;
Avila et al., 2010; Van Der Swaluw et al., 2011; Torseth et al.,
2012) and North American countries (Lehmann et al., 2007;
Zbieranowski and Aherne, 2011). The long-term trend of a reduc-
tion in annual nssSO4

2� concentrations could be linked to that in SO2
emissions, which have decreased by 65% during the period
1990e2009, according to EMEP data (Vestreng et al., 2007; Monks
et al., 2009; EMEP/CEIP, 2012).

The greatest significant absolute reductions in seasonal nssSO4
2�

concentrations occurred in the summer (Fig. 6a) when nssSO4
2�

concentrations were at their seasonal maximum (�1.68 ± 0.7
meq l�1 yr�1, n ¼ 26). However, a significant decline in seasonal
deposition of nssSO4

2� occurred irrespective of the season.
3.2.3. NO3
� ions

Unlike the reductions for SO4
2�, concentrations and depositions

of NO3
� mostly remained steady on an annual basis from 1995 to

2007 (Fig. 4). Moreover, a significant increase in annual concen-
trations was observed for some sampling sites
(þ0.43 ± 0.23 meq l�1 yr�1, n ¼ 3), while significant downward
trends were observed in annual deposition for other sampling sites
(�3.75 ± 1.91 eq ha�1 yr�1, n¼ 4). Rogora et al. (2006) andWaldner
et al. (2014) report that the lack of a significant decrease in NO3

�

concentrations can be related to the slow general decrease in
anthropogenic emissions of NOX in Europe. The decrease in Euro-
pean NOX emissions has been estimated to be 31% over the period
1990e2009 (Monks et al., 2009; EMEP/CEIP, 2012). However,
although the principal continental emission sector of NOX is road
transport (Vestreng et al., 2009), atmospheric emissions of NOx
from international shipping dramatically increased between 1995
and 2007 (Derwent et al., 2005; Endresen et al., 2007; Eyring et al.,
2010). This additional source could have an impact on NO3

� con-
centrations. Moreover, Marchetto et al. (2013) suggest that the non-
linearity with emission trends can be multifactorial: i) changes in
emissions (new or unknown emission sources not included in
emission inventories); ii) evolutions in wet and dry partitioning of
sulphur and nitrogen content (increasing dry deposition velocity of
SO2 due to the deposition of NH3 (Fowler et al., 2007) and increase
in NO3

� deposition due to an increase in nitrate aerosol and greater
transport (Irwin et al., 2002)); and iii) modification in the rate of
atmospheric oxidation (changes in the limiting reagent for the
formation of nitrate aerosol (Pun and Seigneur, 2001)).
When considering seasonal trend results, NO3

� concentrations
showed a tendency to be higher in the winter, spring and autumn
(Fig. 6b). Only a few southern sites showed a significant trend in the
spring, with an average of þ0.67 ± 0.24 meq l�1 yr�1 (n ¼ 6). In
contrast, NO3

� concentrations significantly declined in the summer
by on average�0.84 ± 0.24 meq l�1 yr�1 (n¼ 8, p < 0.1), especially at
the northern sites. Estimated atmospheric emissions of NOX did not
show strong seasonality since the major source of NOx pollution is
road transport. The major factor affecting the seasonal trends of
NO3

� concentrations can be linked to atmospheric oxidising con-
ditions due to the enhancement of the oxidation rate by OH radicals
in the summer (Calvert and Stockwell, 1984). The cause of the dif-
ferentiation in the trends of NO3

� concentrations between northern
and southern sites is still unclear, but the decrease observed in the
summer for the northern sites can partly be related to a dilution
process by the precipitation amount. Indeed, as previously
mentioned, the summer precipitation showed a tendency to be
higher in northern regions, and the higher the amount of precipi-
tation, the more diluted the concentrations due to the higher
contribution of the rainout of clouds which is less concentrated
than the washout (Jaffrezo et al., 1990; Alastuey et al., 2001; Aikawa
and Hiraki, 2009). However, a multi-factor cause can also be
evoked, such as changes in temperature, photochemical rate or
equilibrium towards more particulate ammonium nitrate.

Major decreasing trends in NO3
� depositionwere recorded in the

summer and autumn. Seasonal changes in NO3
� deposition were

influenced by seasonal changes in precipitation, as with the
southern sites in the summer. As a result, these seasonal changes
were not always in agreement with seasonal changes in NO3

�

concentrations.
3.2.4. NH4
þ ions

In terms of NH4
þ concentration in precipitation, only nine bulk

sampling sites showed a statistically significant decrease
(�0.75 ± 0.6 meq l�1 yr�1 on average) (Fig. 4). This small changewas
observed mostly in the western and northern areas of France. As
NH3 emissions only decreased by 29% for the period 1990e2009 in
Europe (Monks et al., 2009; EMEP/CEIP, 2012), which is much lower
than the decrease in SO2 emissions (65%), the annual NH4

þ con-
centrations in precipitation were not expected to change signifi-
cantly. Fagerli and Aas (2008) report that trends inmodelled annual
concentrations of NH4

þ at sampling sites in Europe can be



Fig. 6. Seasonal trends in volume-weighted mean concentrations and deposition fluxes for the period 1995e2007 in France: (a) non-sea-salt SO4
2�, (b) NO3. The large squares

indicate that the trends are significantly different from 0 at a 0.1 confidence level, (c) NH4
þ, (d) non-sea-salt base cation. The large squares indicate that the trends are significantly

different from 0 at a 0.1 confidence level, (e) mean pH, (f) Hþ. The large squares indicate that the trends are significantly different from 0 at a 0.1 confidence level.
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influenced by trends in atmospheric emissions of SO2. In Sweden, a
strong decrease in particulate ammonium concentration has been
linked to a decrease in particulate nssSO4

2� concentration since the
1990s, while ammonia concentration has increased (Ferm and
Hellsten, 2012). Indeed, more NH3 may be available to form long-
range transported secondary particles. An increase in the forma-
tion of NH4NO3 by neutralising HNO3 can therefore explain the lack
of trends in annual concentrations of NO3

� and NH4
þ. Trends in

deposition of NH4
þ showed a slight general decrease for the period

1995e2007 at 28 sampling sites, but the decrease was significant



Fig. 6. (continued).
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only at nine sampling sites (on average �12 ± 6.7 eq ha�1 yr�1).
On a seasonal basis, significant decreases in NH4

þ concentrations
mostly occurred during the summer in both wet-only and bulk
sampling sites (Fig. 6c) with an average of �2.3 ± 1.1 eq l�1 yr�1

(n ¼ 14). Decreases in concentrations of NH4
þ and nssSO4

2� were
observed during the summer, while significant increases in con-
centrations of NH4

þ and NO3
� occurred in the spring. These results

suggest an evolution in temporal variability in (NH4)2SO4 and
NH4NO3 particles. Seasonal deposition of NH4
þ decreased in the

autumn, spring and summer, partly due to decreasing trends in
precipitation.

3.2.5. nssBC ions
No homogeneous changes were observed in annual nssBC

concentrations (Fig. 4), with annual nssBC concentrations signifi-
cantly decreasing and increasing at only five and three sites



Fig. 6. (continued).
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respectively (�0.33 ± 1.31 meq l�1 yr�1, n ¼ 8). Trends in annual
nssBC concentrations were driven by the main base cation nssCa2þ.
Increasing trends in nssBC concentrations concerned stations
located in south-eastern France. This might mean that Saharan dust
influence increased at these sampling sites for the period
1995e2007, as suggested by Rogora et al. (2006) in Italy for the last
15e20 years. As with NH4

þ, decreasing annual trends in the annual
nssBC deposition were related to decreasing precipitation trends
(�13 ± 17 eq ha�1 yr�1, n ¼ 8).

Trends in seasonal nssBC concentrations exhibited stronger re-
ductions in the summer than in the winter (Fig. 6d), by
�2.3 ± 1.1 meq l�1 yr�1 at eight sites and �1.0 ± 0.6 meq l�1 at 12
sites (p < 0.1) respectively. The significant decreasing trends in
concentrations were mostly observed at north-western sampling
sites, where precipitation had increased, as a result of the dilution
process (Aikawa and Hiraki, 2009). In contrast, seasonal increasing
trends in nssBC concentrations were found in the autumn (statis-
tically significant at two bulk Alpine sampling sites), while seasonal
precipitation showed decreasing trends at one of those sampling
sites. A lower precipitation amount implies higher concentrations
in the sample due to an increase in the contribution of washout
(Aikawa and Hiraki, 2009). Additionally, Moulin et al. (1998)
demonstrate that Saharan dust transport is constrained by
intense precipitation events during the winter and autumn in the
Mediterranean andMaghreb regions. Although the main seasons of
Saharan dust production are the spring and summer, an increase in
autumn nssBC concentrations might be explained by greater dust
transport over Europe during the cold season due to possible
modifications in atmospheric circulation patterns (Chiapello and
Moulin, 2002).
3.2.6. pH and Hþ deposition flux
Changes in annual pH were fairly similar among the sampling

sites (Fig. 4). Annual pH increased at many sampling sites by
0.3 ± 0.1 pH unit over the period 1995e2007; this increase was
significant at 16 sampling sites. The main factors governing the
trends of pH were the nssBC, NH4

þ, nssSO4
2� and NO3

� trends. For the
northern acidic sites near the Belgian border, not significant trend
in annual pH was observed, suggesting that decreases in concen-
trations of nssSO4

2� and NO3
� were not enough to induce a greater

increase in annual pH. Moreover concomitant decreases in NH4
þ

concentrations provided not significant changes in annual pH.
These results were consistent with recent research reporting that
deposition fluxes of Hþ decrease on an annual basis in European
precipitation (Torseth et al., 2012; Marchetto et al., 2013; Vet et al.,
2014). As deposition is linked to concentration by precipitation, a
significant Hþ trend was therefore influenced by the changes in
annual precipitation (�5.77 ± 4.34 eq ha�1 yr�1, n ¼ 17).

Most of the sampling sites were characterised by an increase in
pH in the summer (n ¼ 28), rising by 0.6 ± 0.3 for the significant
increases (n ¼ 9) over the period 1995e2007 (Fig. 6e). During this
season, concentrations of nssSO4

2� and NO3
� showed the strongest

decreasing trends. Moderate changes in pH were observed in the
winter due to insignificant changes in nssSO4

2� concentrations, no



A. Pascaud et al. / Atmospheric Environment 146 (2016) 28e43 41
changes in NO3
� concentrations, and decreases in NH4

þ and Ca2þ

concentrations. Deposition of Hþ also decreased on a seasonal basis
(Fig. 6f), especially in the autumn by�1.4 ± 1.2 eq ha�1 yr�1 (n¼ 33,
p < 0.1), due to a larger decreasing trend in precipitation.

4. Conclusions

This study compared the chemical composition of atmospheric
deposition in France and investigated long-term annual and sea-
sonal evolutions during the period from 1995 to 2007. Data were
combined from three different networks, all of which continuously
monitor atmospheric deposition chemistry. Despite some meth-
odological differences (e.g. type of collector, frequency of sampling
and analysis), converging results were found in spatial variations
and seasonal patterns. This comparative study has provided evi-
dence that common trends can be detected for inorganic compo-
sition in the wet-only and bulk deposition data from the three
networks.

Sites with similar chemical characteristics were identified ac-
cording to the acidity and presence of anthropogenic pollutants or
marine and terrigenous ions while the main factors governing
temporal and spatial variations in chemical composition and pre-
cipitation were highlighted. Climatology, particularly precipitation
amount, the origin of air masses (polluted continental, clear oceanic
and dusty southern air masses), the presence of aerosols and
gaseous compounds as precursors of particles, and anthropogenic
and natural emissions strongly influenced the chemical composi-
tion of the atmospheric deposition.

The investigations of long-term trends established links be-
tween evolutions in the chemical composition of atmospheric
deposition and their determinants. Some significant decreases in
precipitation were determined on an annual basis. In the summer,
precipitation significantly increased in northern France. The same
trend analysis was performed on the concentrations and deposition
of major components over the 1995e2007 period. The increase in
annual pH was homogeneous except for the central western part of
France (þ0.3 ± 0.1 pH units over 13 years). This significant decrease
in acidity was mainly due to the reduction in SO2 emissions, as
evidenced by the decrease in nssSO4

2� concentrations
(�115 ± 43 eq ha�1 over 13 years), suggesting that changes in the
amount of sulphur emitted by European countries have accompa-
nied changes in the chemical composition of atmospheric deposi-
tion. This study highlights the lack of any relationship between the
reduction in NOX emissions and the changes in NO3

� concentrations.
Regulations to reduce NH3 emissions seem to bemoderately related
to trends in NH4

þ concentrations. However, a significant decrease
was observed in the annual NH4

þ concentrations in the western,
northern and north-eastern parts of France. In addition to the
decline in others components, the decrease in base cation deposi-
tion resulted in moderate changes in pH values. Decreases in
nssSO4

2� and NH4
þ concentrations on an annual basis were strongly

controlled by decreases in the summer. Changes in particle speci-
ation could be partly responsible for these trends. Complementary
studies are required to describe those source-receptor links fully by
applying multivariate methods to identify the sources of the ionic
concentrations observed.

Qualitative and quantitative assessments of atmospheric depo-
sition are essential for understanding regional variations and
demonstrating the effectiveness of policies to reduce emissions.
They are also very helpful in determining whether ecosystems are
being affected by acidification or eutrophication, which could be
undertaken using the critical load approach (Nilsson and Grennfelt,
1988; Hettelingh et al., 2007; Moncoulon et al., 2007; Henry and
Aherne, 2014). Indeed, long-term trends in sulphur and nitrogen
depositions (NO3

� þ NH4
þ) could have non-negligible consequences
due to their impacts on ecosystems, soil solution chemistry and
nutrient pools. Further studies are required to characterise the in-
fluence of the observed trends on the estimation of critical loads
and their exceedances.
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