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Abstract

We construct a class of quadratic gauge invariant actions for extended string fields defined on the ten-
sor product of open superstring state space for multiple open string Neveu–Schwarz (NS) sectors with or 
without one Ramond (R) sector. The basic idea is the same as for the bosonic extended string field theory 
developed by the authors [1]. The theory for NSn sector and NSn−1–R sector contains general n-th rank 
tensor fields and (n−1)-th rank spinor–tensor fields in the massless spectrum respectively. In principle, 
consistent gauge invariant actions for any generic type of 10-dimensional massive or massless tensor or 
spinor–tensor fields can be extracted from the theory. We discuss some simple examples of bosonic and 
fermionic massless actions.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In the previous paper [1], the authors constructed an extended string field theory (ESFT) which 
describes massless higher spin fields accompanied with a tower of massive fields, in hoping 
that it may give a possible ultraviolet completion of the higher spin gauge theory. There the 
key ingredient is a tensor product of open string state space which naturally gives higher spin 
fields at a massless level provided with the proper restriction of the states as an extension of the 
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L0 − L̄0 = 0 condition for the closed string. Although the interaction is still to be studied, both 
the gauge-invariant and the gauge-fixed free actions of the various types of higher rank tensor 
fields are systematically extracted from the quadratic action of ESFT.

In the present paper, we extend the above mentioned construction to include fermionic fields 
i.e. higher rank spinor–tensor fields as well as bosonic pure tensor fields, especially in a super-
symmetric way. Thus we use the NSR formalism with GSO projection to setup building blocks 
of open string state space. For the sake of brevity we only consider the simplest supersymmetric 
case where the tensor product space consists of only two sectors, namely NS ⊗ · · · ⊗ NS and 
NS ⊗ · · · ⊗ NS ⊗ R sectors, so that the resultant theory has N = 1 supersymmetry. If we could 
include interactions, we would have to consider not only these two sectors but also all other 
possible sectors with arbitrary number of R factors. One may also think that the simplest tensor 
product with N = 1 is a heterotic-type construction, namely the theory with (Bosonic)n−1 ⊗ NS
and (Bosonic)n−1 ⊗R sectors. For the heterotic-type case, however, we have to properly treat ex-
tra 16-dimensions and thus we will have many lower-spin massless modes. Therefore we restrict 
ourselves to the above mentioned case with NSn and NSn−1–R sectors and try to understand 
the structure of the free minimal supersymmetric theory with massless higher-rank spinor–tensor 
fields as well as tensor fields.

This paper is organized as follows. In the next section, we briefly review the free covariant 
open superstring field theory for NS and R sectors. We then show that the ‘a-gauges,’ which 
is a class of covariant gauge fixing conditions valid for bosonic string field theory [2,3], can 
be extended to the superstring field theory in both sectors. In the main section 3, we construct 
free extended string field theory for NSn and NSn−1–R sectors and discuss the properties of the 
actions. Massless spectrum of these sectors generally includes higher-spin fields since it is given 
by the n-th rank tensor field and the (n − 1)-th rank spinor–tensor field respectively. We see 
that the basic structure of the actions for NSn and NSn−1–R sectors does not depend on n. We 
then explicitly see the massless part of the actions and give some examples of gauge invariant 
actions for several types of tensor or spinor–tensor fields. We close the section by giving some 
comments. In the final section 4, we give summary and some discussions. In Appendix A, we 
summarize the basic properties of open superstring states and operators.

2. Quadratic action of superstring field theory in NS and R sectors

In this section, we first recall the quadratic action of covariant open superstring field theory 
in NS and R sectors. We then see how the a-gauges [2,3] can be extended to the gauge invariant 
action in NS and R sectors.

2.1. State space and the gauge invariant action

The state spaces for NS and R sectors we use have the form

H(NS) = F̃ (NS) + c0F̃ (NS), H(R) = F̃ (R) + (γ0 + c0G̃0)F̃ (R). (1)

Here the spaces F̃ (NS) and F̃ (R) consist of states with arbitrary number of non-zero modes of 
matter (α, ψ ) and ghost (b, c, β , γ ) oscillators operated respectively on the ghost number 1 
ground states

|0,p;↓;−1〉NS (= |0,p〉 ⊗ | ↓〉 ⊗ | − 1〉 ),

|0,p, a;↓;−1 〉R (= |0,p, a〉 ⊗ | ↓〉 ⊗ | − 1 〉 ). (2)

2 2
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For the R sector, we use the constrained space H(R) following the formulation developed in 
refs. [4–8]. Note that we choose the picture number −1 for the NS sector and − 1

2 for the R 
sector as in ref. [9]. That is, the ground states | − 1〉 and | − 1

2 〉 satisfy

βr | − 1〉 = γr | − 1〉 = 0 (for r > 0), (3)

βn| − 1

2
〉 = 0 (for n ≥ 0), γn| − 1

2
〉 = 0 (for n > 0). (4)

The number of independent matter ground states |0, p, a〉 (a = 1, · · · , 32) for the R sector is 
2D/2 = 32 which is equivalent to the dimension of 10-dimensional spinor. We regard the opera-
tion of the fermion zero mode ψ̃0

μ (= √
2ψ0

μ) on |0, p, a〉 as

ψ̃0
μ|0,p, a〉 = |0,p, b〉�μ

ba (5)

where �μ
ba denotes the 10-dimensional gamma matrix. In particular, for the operator γ̃ 11 defined 

by the product of all the ψ̃0
μ’s as γ̃ 11 ≡ ψ̃0

9 · · · ψ̃0
0, the relation

γ̃ 11|0,p, a〉 = |0,p, b〉�11
ba (6)

holds for �11 = �0 · · ·�9. We set that |0, p, a〉 is Grassmann even (or odd) if γ̃ 11 = 1 (or γ̃ 11 =
−1). We introduce the projection operators

PL = 1

2

(
1 + γ̃ 11

)
, PR = 1

2

(
1 − γ̃ 11

)
(7)

which respectively extract the γ̃ 11 = ±1 component from the ground states {|0, p, a〉}. We often 
use the notation representing the ground state with γ̃ 11 = ±1 as

|0,p, a : L〉 ≡ PL|0,p, a;↓;−1

2
〉, |0,p, a : R〉 ≡ PR|0,p, a;↓;−1

2
〉. (8)

Note that |0, p, a : L〉 and |0, p, a : R〉 are Grassmann odd and even respectively.
On the spaces H(NS) and H(R), BRST operators QNS and QR are defined respectively. They 

are divided by ghost zero modes as

QNS = Q̃ + c0L0 + b0M, (9)

QR = Q̃ + c0L0 + b0M + γ0G̃0 + β0N − γ0
2b0. (10)

The definition of G̃0, Q̃, M , and N with other details of the matter and ghost operators are given 
in Appendix A.

String fields �NS and �̂R are expanded by the ghost number 1 string states within the spaces 
H(NS) and H(R). For each state, we assign a tensor or spinor–tensor field of appropriate Grass-
mann property so that the string fields become Grassmann even in total, that is, all fields within 
�NS are Grassmann even and those within �̂R are Grassmann odd. For future convenience, we 
separate those string fields into two parts and represent

�NS = φ + c0ω, �̂R = ψ + (γ0 + c0G̃0)χ (11)

where φ, ω ∈ F̃ (NS) and ψ, χ ∈ F̃ (R). We also have to take into account the GSO projection [10]
which is defined by the G-parity operators

GNS = (−1)FNS , GR = γ̃ 11(−1)FR (12)

where
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FNS =
∑
r≥ 1

2

(ψ−r · ψr + β−rγr − γ−rβr ) − 1, (13)

FR =
∞∑

n=1

(ψ−n · ψn + β−nγn − γ−nβn) + γ0β0. (14)

After performing the GSO projection and truncating the string fields to satisfy GNS,R = 1, the 
gauge invariant action for each sector is written as

SNS = 1

2
〈�NS|QNS�NS〉 , SR = 1

2

〈
�̂R|c0δ

′(γ0)QR�̂R

〉
(15)

where 〈�| = (|�〉)† and 〈�̂R| = 〈�̂R|ψ̃0
0 and δ′(γ0) = [δ(γ0), β0]. Details of Hermitian conju-

gation and inner products are given in Appendix A. If we use the notation |·〉 〉 instead of |·〉 as 
in eq. (A.40), in terms of the inner product notation 〈 〈·|| · ||·〉 〉 given by eqs. (A.34)–(A.37), the 
gauge invariant action for each sector is rewritten as

SNS = −1

2

(〈〈
φ||L0||φ

〉〉 − 〈〈
φ||Q̃||ω〉〉 − 〈〈

ω||Q̃||φ〉〉 − 〈〈
ω||M||ω〉〉)

, (16)

SR = 1

2

(〈〈
ψ̄ ||G̃0||ψ

〉〉 + 〈〈
ψ̄ ||Q̃||χ 〉〉 + 〈〈

χ̄ ||Q̃||ψ 〉〉 + 1

2

〈〈
χ̄ ||(G̃0M + MG̃0)||χ

〉〉)
. (17)

Here we have used the decomposition of QNS,R:

QNS = Q̃ + c0L0 + b0M, (18)

QR = Q̃ + c0L0 + b0M + γ0G̃0 + β0N − γ0
2b0. (19)

Each action SNS or SR is invariant under the gauge transformation

δ�NS = QNS
, δ�̂R = QR
̂. (20)

Here 
 ∈HNS and 
̂ ∈HR are ghost number 0 string fields with GNS,R = 1. Note that the gauge 
transformation is consistent with the GSO projection since [GNS,R, QNS,R] = 0 is satisfied. By 
expressing the gauge parameter fields as 
 = λ + c0ρ and 
̂ = λ + (γ0 + c0G̃0)ξ , the gauge 
transformation is also rewritten as

NS: δφ = Q̃λ + Mρ, δω = L0λ − Q̃ρ, (21)

R: δψ = Q̃λ + 1

2
(G̃0M + MG̃0)ξ, δχ = G̃0λ + Q̃ξ. (22)

Note that the NS action is divided into two local gauge invariant parts SNS = Smin
NS + S

auxiliary
NS

consistently as in the case of bosonic theory [2,3] whereas the action SR does not have such 
decomposition. Note also that the sum SNS + SR has N = 1 supersymmetry in D = 10 [11,12]
and the explicit form of the supersymmetry transformation is given e.g., in [4]. We will see the 
explicit form of the transformation for the massless part of the action in the next subsection.

2.2. Massless action and the supersymmetry transformation

We now explicitly see the properties of massless part of the action for later convenience. From 
now on, we fix α′ = 1. Massless fields are given by string states of level Nlevel = 1 for NS sector 
2
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and Nlevel = 0 for R sector. Thus the corresponding string fields in the form of eq. (11) after GSO 
projection are

φm2=0 =
∫

dDp

(2π)D
ψ

μ

− 1
2
|0,p;↓;−1〉Aμ(p), (23)

ωm2=0 =
∫

dDp

(2π)D

−1√
2
β− 1

2
|0,p;↓;−1〉iC(p) (24)

for NS sector and

ψm2=0 =
∫

dDp

(2π)D
PL|0,p, a;↓;−1

2
〉 ζa(p), (25)

for R sector. Here the two fields Aμ and C in the NS sector are Grassmann even real fields while 
ζa in the R sector is Grassmann odd left-handed real spinor field. The action for each sector can 
be given by substituting the above φm2=0 and ωm2=0 into SNS, and ψm2=0 (with χm2=0 = 0) into 
SR. The result in the space-time representation is obtained after replacing ipμ → ∂μ as

Sm2=0
NS =

∫
dDxLm2=0

NS , Sm2=0
R =

∫
dDxLm2=0

R

where

Lm2=0
NS = 1

2
Aμ�Aμ − 1

2
C2 + C∂μAμ

= −1

4
FμνF

μν − 1

2
(C − ∂μAμ)2, (26)

Lm2=0
R = −1

2
iζ̄ ∂/ζ (27)

with ζ̄ = ζ †�0(= ζT�0). The NS action Sm2=0
NS is invariant under the gauge transformation

δAμ = ∂μλ, δC = �λ (28)

which is read by substituting

λm2=0 =
∫

dDp

(2π)D

1√
2
β− 1

2
|0,p;↓;−1〉iλ(p) (29)

into eq. (21). Note that the NS part is divided into minimal physical part and the auxiliary field 

part as Lm2=0
NS = Lm2=0,min

NS +Lauxiliary
NS with

Lm2=0,min
NS = −1

4
FμνF

μν, Lauxiliary
NS = −1

2
(C − ∂μAμ)2. (30)

The sum of the action Sm2=0
NS + Sm2=0

R naturally represents the N = 1 supersymmetric gauge 
theory in D = 10. The supersymmetric transformation for massless string fields is explicitly 
calculated by using the relation given by eqs. (A.49)–(A.52) as

δεAμ = ε̄�μζ, δεC = 0, δεζ = i∂/Aμ�με − iCε. (31)

where ε is a left-handed real spinor field.
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2.3. Gauge fixing: extension of the a-gauges

We briefly comment on the gauge fixing problems for each sector by concentrating on the 
possible extension of a-gauge conditions, a class of covariant gauges, introduced by the present 
authors for the bosonic string field theory in refs. [2,3].

In the NS sector, since the structure of the state space and the BRST operator with respect to 
ghost zero modes is similar to that of bosonic string theory, the a-gauge conditions [2,3] for the 
bosonic string field theory can be applied to the action SNS straightforwardly. That is, the gauge 
invariance of the action SNS is fixed by the condition

aQ̃φ + Mω = 0 (32)

for an arbitrary real parameter a (�= 1). For a = 0 and a = ∞, the condition respectively cor-
responds to the Feynman–Siegel gauge and the Landau gauge. The gauge-fixed action can be 
constructed by introducing the string fields with all the ghost numbers as in the case of bosonic 
string field theory.

In the R sector, on the other hand, direct extension of the a-gauges for bosonic theory to the 
action SR cannot be performed since the contributions from the superghost zero modes γ0 and β0
should be taken into account. For example, the condition such as aQ̃ψ + MG̃0χ = 0 does not 
completely fix the gauge invariance of SR. We can however show that the modified condition

a(Q̃ψ − Nχ) + MG̃0χ = 0 (33)

for arbitrary a (�= 1) completely fixes the gauge invariance for SR. We regard this class of gauge 
conditions as the (modified) a-gauge for the R-sector. For a = 0, the condition is reduced to 
χ = 0 and it coincides with the Feynman–Siegel gauge. For a = ∞, unlike the bosonic or NS 
case, the condition does not have a particular property.

3. Construction of extended superstring field theory

3.1. NSn sector

We construct the quadratic action of the extended string field theory for NSn sector. This can 
be accomplished by applying the similar procedure used for constructing the extended bosonic 
string field theory [1] since the state spaces for both theories have the same structure with respect 
to the ghost zero modes. We first provide the direct product space of n distinct open string state 
spaces for NS sector as

HNSn(p) =H(1)
(NS)(p) ⊗ · · · ⊗H(n)

(NS)(p) (34)

and impose the condition on |f 〉NSn ∈HNSn(p) as

(b
(i)
0 − b

(j)

0 )|f 〉NSn = 0, (L
(i)
0 − L

(j)

0 )|f 〉NSn = 0 (35)

for i, j = 1, · · · , n. The latter equation of (35) is equivalent to the level matching condition 
N

(i)
level − N

(j)

level = 0 since the operator L(i)
0 is written by using the level counting operator N(i)

level

as L(i)
0 = �2p2/2 + N

(i)
level − 1

2 . Here, � is introduced as a scale factor instead of α′ of the case of 
string theory n = 1 or 2. In the following, we fix � = √

2 and αμ
0 = √

2pμ.
We can construct the consistent extended string field theory on the restricted space H′

NSn

(⊂ HNSn) which is spanned by states satisfying the condition (35). This space can be divided 
into two parts
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H′
NSn = F̃NSn + c̃0F̃NSn (36)

where c̃0 = ∑n
i=1 c

(i)
0 and F̃NSn(⊂ F̃ (1)

(NS) ⊗ · · · ⊗ F̃ (n)
(NS)) does not include ghost zero modes. 

Note that each F̃ (i)
(NS)(⊂ H(i)

(NS)) is a copy of F̃ (NS) given in (1). A state |f̃ 〉NSn ∈ F̃NSn can be 
represented by the form

|f̃ 〉NSn =O
f̃
|0,p;↓1 · · · ↓n〉NSn (37)

where O
f̃

is an operator consisting of non-zero mode matter and ghost oscillators and

|0,p;↓1 · · · ↓n〉NSn = |0,p;↓;−1〉(1)
NS ⊗ · · · ⊗ |0,p;↓;−1〉(n)

NS (= c
(1)
1 · · · c(n)

1 |0,p〉NSn)

(38)

is the ground state. On the restricted space H′
NSn , the operators b(i)

0 , L(i)
0 and N(i)

level do not depend 
on i and we often omit the index i. We also choose the GSO projection for every part i as 
G

(i)
NS = +1. We denote by H′ (+,··· ,+)

NSn such GSO projected space.

On the space H′
NSn , we define the extended BRST operator QNSn as the sum of Q(i)

NS for all 

i’s: QNSn = ∑n
i=1 Q

(i)
NS. This operator can be divided by the ghost zero modes as

QNSn = Q̃+ c̃0L0 + b0M (39)

where

Q̃=
n∑

i=1

Q̃
(i)
NS, M =

n∑
i=1

M(i). (40)

For D = 10, Q2
NSn = 0 holds. As in the case of bosonic theory, M, M− (= ∑n

i=1 M−(i)), and 

Mz (= ∑n
i=1 M

(i)
z ) constitute the SU(1, 1) algebra (A.26) for any n. Also, the relation

Q̃2 + L0M = 0 (41)

holds and the projection operators like Pk , Wk and Sk defined for the bosonic extended string 
field theory [1] can also be defined for our NSn sector theory. These operators play an important 
role in constructing the gauge fixed action for the a-gauges.

The inner product on the space H′
NSn is defined by

NSn〈0,p′; ↓1 · · · ↓n |c(1)
0 · · · c(n)

0 |0,p;↓1 · · · ↓n〉NSn = (−i)n(n−1)/2(2π)Dδ(D)(p − p′)
(42)

where

(|0,p;↓1 · · · ↓n〉NSn)† = NSn〈0,p′; ↓1 · · · ↓n | = NSn〈0,p′|c(n)
−1 · · · c(1)

−1. (43)

The left-hand side of eq. (42) can be written as NSn〈0, p′|c(n)
−1 · · · c(1)

−1c
(1)
0 · · · c(n)

0 c
(1)
1 · · ·

c
(n)
1 |0, p〉NSn . For convenience, we introduce the product NSn 〈 〈0, p|| · ||0, p〉 〉NSn as

in(n−1)/2
NSn〈0,p′; ↓1 · · · ↓n |Oc

(1)
0 · · · c(n)

0 |0,p;↓1 · · · ↓n〉NSn ≡ NSn〈〈0,p′||O||0,p〉〉NSn

(44)

with
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NSn〈〈0,p′||1||0,p〉〉NSn = (2π)Dδ(D)(p − p′) (45)

where O is an arbitrary operator consisting of matter and ghost oscillators without b0 and c̃0. 
Note that we can assume (−1)|O| = 1 since the left-hand side of eq. (44) vanishes otherwise.

The extended string field �NSn for NSn sector is expanded by all states |f k(p)〉 ∈ H′ (+,··· ,+)

NSn

of ghost number Ng = n associated with the corresponding fields φf k (p) as

�NSn =
∫

dDp

(2π)D

∑
k

|f k(p)〉φf k (p) (46)

where the Grassmann parity of �NSn (and thus that for each field φf k (p)) should be even. The 
quadratic action is given by

SNSn = 1

2
(−1)n−1in(n−1)/2

〈
�NSn

∣∣c(1)
0 · · · c(n−1)

0

∣∣QNSn�NSn

〉
. (47)

If we divide the extended string field as

�NSn = φ + c̃0ω (48)

according to the division eq. (36) and use the notation given in eq. (44) by replacing |φ〉 → |φ〉 〉
and |ω〉 → |ω〉 〉 as in the case of n = 1 open string case, the action is represented by

SNSn = −1

2

(〈〈
φ||L0||φ

〉〉 − 〈〈
φ||Q̃||ω〉〉 − 〈〈

ω||Q̃||φ〉〉 − 〈〈
ω||M||ω〉〉)

(49)

which is exactly the same form as the action for open NS sector eq. (16). Note that we regard 
that the Grassmann parity of |φ〉 〉 and |ω〉 〉 is (−1)n and (−1)n−1 respectively.

For D = 10, this action is invariant under the gauge transformation

δ�NSn =QNSn
NSn (50)

where 
NSn is the ghost number Ng = n −1 string field which is expanded by fields in H′ (+,··· ,+)

NSn

with Ng = n − 1. The transformation can be rewritten in terms of φ and χ as

δφ = Q̃λ +Mρ, δω = L0λ − Q̃ρ, (51)

where 
NSn = λ + c̃0ρ. We see that the structure of the action and the gauge invariance is parallel 
to that of bosonic string field theory in NS sector. Thus, gauge-fixing procedures effective for 
open string field theory for NS sector can also be applied to our theory.

As in the case of bosonic theory, the action can be divided into two gauge invariant part:

SNSn = Smin
NSn + S

auxiliary
NSn (52)

where

Smin
NSn = −1

2

〈〈
φ||L0(1 −P0)||φ

〉〉
, (53)

S
auxiliary
NSn = 1

2

〈〈
ω +W1Q̃φ||M||ω +W1Q̃φ

〉〉
. (54)

Here P0 = − 1
L0
Q̃W1Q̃ and W1, which plays a role of inverse of M on F̃ N̂g=1

NSn , is defined in 

the same way as for the bosonic theory [1]. The auxiliary field part Sauxiliary
NSn can be decoupled 

from the physical action Smin
n if we only deal with the quadratic action. However, if we consider 
NS
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the supersymmetric action by combining with the fermionic action SNSn−1–R given in the next 

subsection, the auxiliary fields in Sauxiliary
NSn are necessary for representing the supersymmetry 

transformation in a simple manner as in the case of n = 1 given in eq. (31).

3.2. NSn−1–R sector

We now construct the extended string field theory for NSn−1–R sector. We provide the n−1
copies of the state space of NS sector and a state space of R sector and take the direct product as

HNSn−1–R(p) =H(1)
(NS)(p) ⊗ · · · ⊗H(n−1)

(NS) (p) ⊗H(R)(p). (55)

Then, we impose the condition on |f 〉 NSn−1–R ∈H NSn−1–R(p) as

(b
(i)
0 − b

(j)

0 )|f 〉 NSn−1–R = 0, (L
(i)
0 − L

(j)

0 )|f 〉 NSn−1–R = 0 (56)

for i, j = 1, · · · , n where we assign n the space for R sector and consider H(R) = H(n)
(R). The 

latter equation restricts the level of each i part as N(1)
level = · · · = N

(n−1)
level = N

(n)
level + 1

2 . We define 
the restricted space H′

NSn−1–R
by imposing the condition (56) on H NSn−1–R. The space can be 

represented as

H′
NSn−1–R

= F̃ NSn−1–R +
(
γ0 + c̃0G̃0

)
F̃ NSn−1–R (57)

where c̃0 = ∑n
i=1 c

(i)
0 and F̃ NSn−1–R is a space of states without ghost and superghost zero modes 

in H′
NSn−1–R

: F̃ NSn−1–R = H′
NSn−1–R

∩ (F̃ (1)
(NS) ⊗ · · · ⊗ F̃ (n−1)

(NS) ⊗ F̃(R)). As in the NSn sector, 

note that the operation of b(i)
0 and L(i)

0 on states in H′
NSn−1–R

does not depend on i. Also, we 

choose the GSO projection for all n parts as G(i)
NS = GR = +1 (i = 1, · · · , n−1) and denote by 

H′ (+,··· ,+;+)

NSn−1–R
(⊂H′

NSn−1–R
) the GSO projected space.

On the space H′
NSn−1–R

, we define the extended BRST operator Q NSn−1–R as

Q NSn−1–R =
n−1∑
i=1

Q
(i)
NS + QR. (58)

This is decomposed by ghost zero modes as

Q NSn−1–R = Q̃+ c̃0L0 + b0M+ γ0G̃0 + β0N − γ0
2b0. (59)

Here Q̃ and M̃ is the sum of all the corresponding operators in n parts:

Q̃=
n−1∑
i=1

Q̃
(i)
NS + Q̃R

(
=

n∑
i=1

Q̃(i)

)
, M =

n−1∑
i=1

M
(i)
NS + MR

(
=

n∑
i=1

M(i)

)
. (60)

We see that the structure of Q NSn−1–R with respect to ghost zero modes is similar to that for open 
superstring theory in R sector. In fact, the relation

Q̃2 + L0M+ G̃0N = 0 (61)

holds and the algebraic structure among the operators Q̃ and M̃ along with M− = ∑n
i=1 M(i) −

and Mz = ∑n
M

(i)
z is the same as that for the n = 1 open superstring case.
i=1
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The inner product on the space H′
NSn−1–R

we use is given by

(n−1,1)〈0,p′; ↓1 · · · ↓n, a′ : L(R)|c(1)
0 · · · c(n)

0 δ(γ0)γ̃
n
11|0,p;↓1 · · · ↓n, a : L(R)〉(n−1,1)

= (−i)n(n−1)/2(2π)Dδ(D)(p − p′)δa,a′ (62)

where

|0,p;↓1 · · · ↓n: L(R)〉(n−1,1) = |0,p;↓1 · · · ↓n−1〉NSn−1 ⊗ |0,p, a : L(R)〉. (63)

Note that γ̃ n
11|0, p, a : L〉 = |0, p, a : L〉 and γ̃ n

11|0, p, a : R〉 = (−1)n|0, p, a : R〉. We introduce 
another notation of inner product as before:

in(n−1)/2
(n−1,1)〈0,p′; ↓1 · · · ↓n, a′ : L(R)|Oc

(1)
0 · · · c(n)

0 δ(γ0)γ̃
n
11|0,p;

↓1 · · · ↓n, a : L(R)〉(n−1,1) ≡ 〈〈0,p′, a′||O||0,p, a〉〉 (64)

with

〈〈0,p′, a′||1||0,p, a〉〉 = (2π)Dδ(D)(p − p′)δa,a′ , (65)

where O is a Grassmann even operator consisting only of non-zero mode oscillators as in the 
n = 1 open superstring case. Note that the new notation of inner product is to be applied to the 
GSO projected space H′ (+,··· ,+;+)

NSn−1–R
.

The extended string field �̂(n−1,1) for the NSn−1–R sector has ghost number Ng = n and 
expanded by states |f k(p)〉 in H′ (+,··· ,+;+)

NSn−1–R
associated with Grassmann odd fields ψf k (p) as

�̂(n−1,1) =
∫

dDp

(2π)D

∑
k

|f k(p)〉ψf k (p). (66)

Note that �̂(n−1,1) is Grassmann even. The action is given by

S NSn−1–R = 1

2
(−1)n−1in(n−1)/2

〈
�̂(n−1,1)

∣∣c(1)
0 · · · c(n)

0 δ′(γ0)Q NSn−1–R�̂(n−1,1)

〉
. (67)

If we divide �̂(n−1,1) by ghost zero modes as

�̂(n−1,1) = ψ +
(
γ0 + c̃0G̃0

)
χ, (68)

and use the notation given by the right-hand side of eq. (62) after replacing |ψ〉 → |ψ〉 〉 and 
|χ〉 → |χ〉 〉, the action can be rewritten in a convenient form:

S NSn−1–R = 1

2

(〈〈
ψ̄ ||G̃0||ψ

〉〉 + 〈〈
ψ̄ ||Q̃||χ 〉〉 + 〈〈

χ̄ ||Q̃||ψ 〉〉 + 1

2

〈〈
χ̄ ||(G̃0M+MG̃0)||χ

〉〉)
(69)

where 〈 〈ψ̄ | = 〈 〈ψ |ψ̃0
0 . This action is invariant under the gauge transformation

δ�̂(n−1,1) =Q NSn−1–R
̂(n−1,1) (70)

where 
̂(n−1,1) is ghost number Ng = n − 1. This transformation is also expressed as

δψ = Q̃λ + 1
(G̃0M+MG̃0)ξ, δχ = G̃0λ + Q̃ξ (71)
2
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if we write 
̂(n−1,1) = λ + (γ0 + c̃0G̃0)ξ . We see that the structure of the above gauge invariant 
action S NSn−1–R is parallel to that of open superstring field theory in the R sector. Thus we can 
straightforwardly apply the modified a-gauge condition eq. (33) for the theory in R sector to our 
action S NSn−1–R for general n.

3.3. Massless part of SNSn and S NSn−1–R

We now see the structure of the massless part of the action for NSn or NSn−1–R sector given in 
the previous subsections. The action for massless fields includes only a few kinds of oscillators: 
ψ

μ

− 1
2
, γ− 1

2
and β− 1

2
for NS part and ψμ

0 for R part. Thus, the operators Q̃ and M on general 

massless extended string states are reduced to

Q̃m2=0
NSn =

n∑
i=1

√
2pμ

(
γ

(i)

− 1
2
ψ

μ (i)
1
2

+ ψ
μ (i)

− 1
2

γ
(i)
1
2

)
, Mm2=0

NSn = −2
n∑

i=1

γ
(i)

− 1
2
γ

(i)
1
2

(72)

for NSn sector and

Q̃m2=0
(n−1,1) =

n−1∑
i=1

√
2pμ

(
γ

(i)

− 1
2
ψ

μ (i)
1
2

+ ψ
μ (i)

− 1
2

γ
(i)
1
2

)
, Mm2=0

(n−1,1) = −2
n−1∑
i=1

γ
(i)

− 1
2
γ

(i)
1
2

(73)

and

Nm2=0 = 0, G̃m2=0
0 = pμψ̃0

μ (74)

for NSn−1–R sector. Note that (Qm2=0
NSn )2 = (Qm2=0

(n−1,1))
2 = 0 is satisfied not only for D = 10 but 

also for arbitrary space-time dimension D. Furthermore, for the R sector, since Nm2=0 = 0, the 
relation

(Q̃m2=0
(n−1,1))

2 = −L0Mm2=0
(n−1,1) = −p2Mm2=0

(n−1,1)

holds instead of general eq. (61), and the modified a-gauge condition given by eq. (33) is reduced 
to the form of the original a-gauge condition eq. (32) for bosonic or NSn sector theory.

We give some examples of gauge invariant actions for simple bosonic n-th rank tensor fields 
and fermionic (n − 1)-th rank spinor–tensor fields extracted from Sm2=0

NSn and Sm2=0
NSn−1–R

.

From the massless part of the action Sm2=0
NSn for the NSn sector, as in the case of bosonic 

extended string field theory [1], we can extract consistent gauge invariant actions for n-th rank 
tensor fields of arbitrary symmetry classified by the Young diagrams of n boxes. For example, 
for totally symmetric field Aμ1···μn = A(μ1···μn), in order to obtain the corresponding action, we 
provide the extended string states of the form

|φm2=0
NSn,sym〉〉 =

∫
dDp

(2π)D
ψ

(μ1
(1) ψ

μ2
(2) · · ·ψμn)

(n) |0,p〉〉NSn A(μ1μ2···μn)(p)

+
∑
i<j

(−1)i+jψ
(μ1
(k1)

ψ
μ2
(k2)

· · ·ψμn−2)

(kn−2)
(γ(i)β(j) − β(i)γ(j))|0,p〉〉NSn D(μ1···μn−2)(p),

(75)

|ωm2=0
NSn,sym〉〉 =

∫
dDp

(2π)D

n∑
j=1

(−1)j√
2

ψ
(μ1
(k1)

ψ
μ2
(k2)

· · ·ψμn−1)

(kn−1)
β(j)|0,p〉〉NSn iC(μ1μ2···μn−1)(p)

(76)
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where we have omitted the subscripts − 1
2 for oscillators and wrote e.g., ψμ

(i) instead of ψ(i) μ

− 1
2

. 

Also, n − 2 indices kr ’s are chosen so that {kr, i, j} = {1, 2, · · · , n} and kr < ks for r < s in 
eq. (75), and n − 1 kr ′ ’s in eq. (76) are chosen similarly: {kr ′, j} = {1, 2, · · · , n} as in ref. [1]. By 
substituting eqs. (75) and (76) in eq. (49), we obtain

Sm2=0
NSn sym =

∫
dDxLn,sym (77)

in the x-representation after replacing ipμ → ∂μ with

Ln,sym = 1

2
Aμ1···μn�Aμ1···μn − 1

2
n(n − 1)Dμ1···μn−2�Dμ1···μn−2 − n

2
Cμ1···μn−1C

μ1···μn−1

+ nCμ1···μn−1∂μAμμ1···μn−1 − n(n − 1)Cμ1···μn−1∂
(μ1Dμ2···μn−1) (78)

as expected. This is divided into the minimal action part and the auxiliary field part: Ln,sym =
Lmin

n,sym +Lauxiliary
n,sym. as

Lmin
n,sym = 1

2
Aμ1···μn�Aμ1···μn − n(n − 1)Dμ1···μn−2�Dμ1···μn−2

+ n

2
∂μAμμ1···μn−1∂νAνμ1···μn−1 + n(n − 1)Dμ1···μn−2∂μ∂νA

μνμ1···μn−2

+ n(n − 1)(n − 2)

2
∂μDμμ1···μn−3∂νDνμ1···μn−3, (79)

Lauxiliary
n,sym. = −n

2

(
Cμ1···μn−1 − ∂μAμμ1···μn−1 + (n − 1)∂(μ1Dμ2···μn−1)

)2
. (80)

These Lagrangians are respectively invariant under the gauge transformation

δAμ1···μn = ∂(μ1λμ2···μn), δDμ1···μn−1 = 1

n
∂μλμμ1···μn−2, δCμ1···μn−1 = �λμ1···μn−1 .

(81)

Here, λμ1···μn−1 = λ(μ1···μn−1) which is given by the extended string field

|λm2=0
NSn,sym〉 =

∫
dDp

(2π)D

n∑
j=1

(−1)j−1

√
2

ψ
(μ1
(k1)

ψ
μ2
(k2)

· · ·ψμn−1)

(kn−1)
β(j)|0,p〉NSn iλ(μ1μ2···μn−1)(p).

(82)

Similarly, gauge invariant action for other mixed symmetric n-th rank tensor fields can be ex-
tracted from SNSn . The result is parallel to the one obtained from the bosonic extended string 
field theory [1] and we do not go into detail here.

On the other hand, from the action Sm2=0
NSn−1–R

for NSn−1–R sector, we can extract gauge invari-
ant actions for various (n−1)-th rank left-handed real spinor–tensor fields. The simplest one is 
for the totally symmetric spinor–tensor field φ(μ1···μn−1), for which the corresponding extended 
string field is given by
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|ψm2=0
(n−1,1),sym〉〉 =

∫
dDp

(2π)D
ψ

(μ1
(1) · · ·ψμn−1)

(n−1) |0,p, a〉〉 φa
(μ1···μn−1)

(p)

+
∑
i<j

(−1)i+jψ
(μ1
(k1)

ψ
μ2
(k2)

· · ·ψμn−3)

(kn−3)
(γ(i)β(j) − β(i)γ(j))|0,p, a〉〉 ωa

(μ1···μn−3)
(p),

(83)

|χm2=0
(n−1,1),sym〉〉 =

∫
dDp

(2π)D

n−1∑
j=1

(−1)j−n−1

√
2(n−1)

ψ
(μ1
(k1)

· · ·ψμn−2)

(kn−2)
β(j)|0,p, a〉〉 χa

(μ1···μn−2)
(p)

(84)

where �11φ = +φ, �11ω = +ω, �11χ = −χ and the tensor indices for φ, ω, and χ fields are 
restricted to be totally symmetric. We have omitted the subscripts − 1

2 for oscillators as before. 
Also, n − 3 indices kr ’s are chosen so that {kr , i, j} = {1, 2, · · ·n−1} and kr < ks for r < s in 
eq. (83), and n −2 kr ′ ’s in eq. (84) are chosen similarly: {kr ′, j} = {1, 2, · · ·n−1}. By substituting 
eqs. (83) and (84) into eq. (69), we obtain

Sm2=0
NSn−1–R

=
∫

dDx
i

2

{
− φ̄μ1···μn−1/∂φμ1···μn−1 + (n − 1)(n − 2)ω̄μ1···μn−3/∂ωμ1···μn−3

− (n − 2)ω̄μ1···μn−3∂μχμ
μ1···μn−3

+ (n − 2)χ̄μ1···μn−2∂(μ1ωμ2···μn−2)

+ φ̄μ1···μn−1∂(μ1χμ2···μn−1) − χ̄μ1···μn−2∂μφμμ1···μn−2 + 1

n − 1
χ̄μ1···μn−2/∂χμ1···μn−2

}
.

(85)

This action is equivalent to the so-called fermionic triplet action [14,15] and the physical degrees 
of freedom include those for fields with spin less than or equal to n − 1

2 . It is invariant under the 
gauge transformation

δφμ1···μn−1 = ∂(μ1λμ2···μn−1), δωμ1···μn−3 = 1

n−1
∂μλμμ1···μn−3 ,

δχμ1···μn−2 = /∂λμ1···μn−2 (86)

where �11λ = +λ and λμ1···μn−2 = λ(μ1···μn−2). This gauge transformation is calculated by sub-
stituting

|λm2=0
(n−1,1),sym〉〉 =

∫
dDp

(2π)D

n−1∑
j=1

(−1)j−1

√
2(n−1)

ψ
(μ1
(k1)

· · ·ψμn−2)

(kn−2)
β(j)|0,p, a〉〉 iλa

(μ1···μn−2)
(p)

(87)

into eq. (71).
For the spinor field with totally anti-symmetric tensor indices φ[μ1···μn−1], the gauge invari-

ant action is not simple enough compared to that for bosonic totally antisymmetric tensor field 
B[μ1···μn] whose minimal Lagrangian is given by the form L ∼ Hμ1···μn+1H

μ1···μn+1 by the field 
strength H of B . In fact, gauge invariant action for φ[μ1···μn−1] should contain the sequence 

of lower rank spinor–tensor fields φ′[μ1···μn−3], φ
′′[μ1···μn−5], · · · from the |ψm2=0

(n−1,1)〉 〉 part, and 

χ[μ1···μn−2], χ ′[μ1···μn−4], · · · from the |χm2=0
(n−1,1)〉 〉 part. Thus, the corresponding action includes 

n − 2 kinds of lower rank fermionic fields other than the original φ[μ1···μn−1] field in total. This 
difference of properties between bosonic and fermionic actions results from the fact that the 



M. Asano, M. Kato / Nuclear Physics B 910 (2016) 178–198 191
bosonic action can be divided into two gauge invariant parts as eq. (52) while the fermionic ac-
tion does not have such a consistent decomposition. For example, the action for the 2nd rank 
spinor–tensor field φ[μν] includes two more fields φ′ and χμ. It can be calculated from NS2–R 

action Sm2=0
NS2–R

and the result is

Sm2=0
NS2–R,asym

=
∫

dDx
{

− i

2
φ̄[μν]/∂φ[μν] − iφ̄′/∂φ′ + iχ̄μ/∂χμ

− iφ̄μν∂[μχν] − iφ̄′∂μχμ + iχ̄[μ∂ν]φνμ + 2χ̄μ∂μφ′}. (88)

Note that φμν and φ′ are the left-handed (�11 = 1) and χ is the right-handed (�11 = −1) real 

fermionic fields. Similarly, in Sm2=0
NSn−1–R

, all the fields belonging to |ψm2=0〉 〉 and |χm2=0〉 〉 are 

left-handed and right-handed respectively. The above action Sm2=0
NS2–R,asym

is invariant under the 
gauge transformation

δφμν = 2∂[μλν], δφ′ = ∂μλμ − /∂ξ, δχμ = −/∂λμ + ∂μξ. (89)

For any other general (n−1)-th rank mixed-symmetric spinor–tensor field, we can similarly 
extract the consistent gauge invariant action from the total action Sm2=0

NSn−1–R
. Note that such gauge 

invariant actions are classified by Young diagrams of n−1 boxes as in the case of tensor fields in 
the bosonic extended string field theory [1].

3.4. Some comments

We give some comments on the actions SNSn and SNSn−1–R we have constructed above. The 
basic structure of these actions does not depend on n and the properties of these actions are 
parallel to those for n = 1 open superstring actions in NS and R sectors. For example, all the 
fields in SNSn and SNSn−1–R are respectively bosonic and fermionic fields, and the action SNSn

can be divided into two consistent gauge invariant parts, minimal action part and auxiliary fields 
part, while SNSn−1–R cannot. Also, no-ghost theorem is trivial from the structure of the BRST 
operator in D = 10 and the physical degrees of freedom can be easily obtained by counting the 
right-cone degrees of freedom.

On the other hand, concrete physical spectrum depends on n. For example, the number of 
physical degrees of freedom of massless spectrum for both NSn and NSn−1–R sectors is 8n which 
is respectively described by the n-th rank tensor field Aμ̂1···μ̂n

and the n-th rank left-handed real 
spinor–tensor field φâ

μ̂1···μ̂n−1
where μ̂i represents the D − 2(= 8) transverse degrees of freedom 

and â the physical 8 degrees of freedom for the spinor index. Note that the equations of motion 
for NSn−1–R sector reduce the number of spinor indices by half and thus the number of massless 
degrees of freedom for both sectors coincides with each other. There is also the infinite tower 
of massive fields for both sectors and the number of physical degrees of freedom also coincides 
with each other. This is natural since the total action Sn = SNSn + SNSn−1–R should have N = 1
spacetime supersymmetry in D = 10. For n = 1, this is reduced to the usual supersymmetry for 
open superstring theory. For n = 2, this symmetry between NS–NS and NS–R sectors is a part 
of N = 2 supersymmetry of closed superstring theory which is realized by including R–NS and 
R–R sectors in addition to the two sectors. For general n, if we include all 2n sectors consisting of 
totally n NS and R parts in addition to NSn and NSn−1–R sectors, we might be able to construct 
the theory with N = n supersymmetry.
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As to the construction of general sectors including more than two R parts, it is difficult to 
obtain an appropriate gauge invariant action in a straightforward way. For example, even for the 
R–R sector, it is known that we cannot construct the consistent gauge invariant action from the 
string field on the tensor product of two state spaces H(R)⊗H(R) with (or without) simple restric-
tion such as L0 − L̄0 = 0 used for NS–NS or NS–R [5,13]. In general, it is possible to construct 
a consistent action by choosing a state space other than H(R) ⊗ H(R). One example is given in 
ref. [13] where a certain gauge invariant action is constructed based on an asymmetrically chosen 
state space of the form H′

(R) ⊗H′′
(R).

We comment on the extension to general spacetime dimensions D �= 10. As we have seen 
above, since the BRST operator is nilpotent on general massless states for any D, the massless 
part of the action is consistently applied for general D. For fermionic massless part of the action 
Sm2=0

NSn−1–R
, however, we have to be careful about the type of spinors when we apply the action to 

a particular spacetime dimensions other than D = 10. For example, for D = 4, the left-handed 
real spinor–tensor fields (φ, ω and χ ) appearing in the action eq. (85) should be interpreted as 
general Weyl (or Majorana) spinors. The similar reinterpretation is needed when we apply the 
actions to general D.

4. Summary and discussion

We have constructed the consistent quadratic gauge invariant actions for extended superstring 
field theory for NSn and NSn−1–R sectors. The corresponding actions SNSn and SNSn−1–R are 
extensions of those for NS and R sectors of open superstring field theory. The massless spec-
trum of the theories for NSn and NSn−1–R sectors in general includes higher-spin gauge fields 
represented by general n-th rank tensor fields and spinor–tensor fields respectively. From the ac-
tions, we are able to extract general quadratic gauge invariant actions for any type of tensor or 
spinor–tensor fields.

For massless fields, the actions for n-th rank tensor fields or spinor–tensor fields are clas-
sified by Young diagrams of n boxes. The simplest examples are the actions eqs. (77) and (85)
which are respectively for totally symmetric tensor and spinor–tensor fields. For a general mixed-
symmetric tensor or spinor–tensor field represented by a certain Young diagram, we can obtain 
the explicit form of the action by extracting the corresponding part from SNSn or SNSn−1–R and 
calculating the inner products of extended string states. The actions for bosonic fields are the 
same as the ones obtained from the bosonic extended string field theory given in ref. [3] except 
for the space-time dimensions. For fermionic fields, the structure of the actions are more com-
plicated than that for bosonic fields as we have seen in the example of massless anti-symmetric 
field in the previous section.

Note that there have been various attempts of constructing consistent actions or field equa-
tions for general higher-spin fields in flat spacetime (e.g., [14–20]). From the perspective of 
constructing a consistent gauge invariant action for general higher-spin field represented by an 
unconstrained (spinor–)tensor field in flat spacetime, our method has certain advantages since 
the gauge invariance and the no-ghost theorem are trivial and covariant gauge fixing is straight-
forward. Note also that the actions for massless fields can also be obtained from the tensionless 
limit of open superstring field theory for NS or R sector.

Since we have successfully constructed the free extended superstring field theories as well as 
the bosonic ones, our next task is to see whether we could also construct the consistent interaction 
terms. For this purpose, we would like to analyze the structure of the known interaction terms for 
open and closed string field theory and study whether it is possible to extend them to the n > 2
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case. This should be a challenging task since we do not even know what is the physical objects 
represented by the theories for n > 2. On the contrary, we may take more algebraic approach 
such as A∞/L∞. We would like to tackle the problem for the simpler bosonic extended string 
field theory by using the gauge invariance structure as a hint.
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Appendix A. Useful relations for open superstring states and operators

Matter and ghost oscillators The (anti-)commutation relations of the matter and ghost oscilla-
tors for NS and R sectors are summarized as [αμ

m, αν
n] = mημνδm,−n, {bm, cn} = δm,−n,

NS: {ψμ
r ,ψν

s } = ημνδr,−s , R: {ψμ
m,ψν

n } = ημνδm,−n (A.1)

with ημν = diag(−1, +1, · · · , +1) and

NS: [γr ,βs] = δr,−s , R: [γm,βn] = δm,−n (A.2)

where m, n ∈ Z and r, s ∈ Z + 1
2 . Hermitian properties are given by

(αμ
m)† = α

μ
−m, b†

m = b−m, c†
m = c−m, (A.3)

β†
r = −β−r , γ †

r = γ−r , β†
m = −β−m, γ †

m = γ−m, (A.4)

(ψμ
r )† = ψ

μ
−r , (ψμ

m)† = ψ
μ
−m (m �= 0), (A.5)

(ψ
μ
0 )† = ημνψ

ν
0 (= 2ψ0

0 ψ
μ
0 ψ0

0 ). (A.6)

We often use ψ̃μ
0 (≡ √

2ψ
μ
0 ) instead of ψμ

0 since the commutation relation for ψ̃μ
0 is the same as 

for Gamma matrices [�μ, �ν] = 2ημν .

Super Virasoro generators Matter part of super Virasoro generators is given by

L(m)
n =

∞∑
m=−∞

1

2
: α−m · αn+m : +

∑
q+ 1

2 ∈Z (NS)

q∈Z (R)

1

2

(
1

2
n + q

)
: ψ−q · ψq+n : −κ1δn,0 (A.7)

with κ1 = 0 for NS and κ1 = − 5
8 for R and

NS: G(m)
s =

∑
m∈Z

α−m · ψs+m, R: G(m)
n =

∑
m∈Z

α−m · ψn+m. (A.8)

Ghost part is

L
(g)
n =

∞∑
m=−∞

(m − n) : b−mcn+m : +
∑

q+ 1
2 ∈Z (NS)

q∈Z (R)

(
3

2
n − q

)
: γn−qβq : −κ2δn,0, (A.9)

with κ2 = 1 for NS and κ2 = 5 for R, and
2 8
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NS: G
(g)
s =

∑
m∈Z

(
1

2
m − s

)
c−mβm+s − 2

∑
r+ 1

2 ∈Z
γ−rβs+r , (A.10)

R: G
(g)
n =

∑
m∈Z

(
1

2
m − n

)
c−mβm+n − 2

∑
m∈Z

γ−mβm+n. (A.11)

In total, Ln = L
(m)
n + L

(g)
n and Gq = G

(m)
q + G

(g)
q (q + 1

2 ∈ Z for NS and q ∈ Z for R) and the 
total super Virasoro algebra in D = 10 is given by

[Ln,Lm] = (n−m)Ln+m, [Ln,Gq ] =
(

1

2
n − q

)
Gn+q, {Gq,Gp} = 2Lq+p. (A.12)

BRST operators BRST operators QNS and QR, which are nilpotent (Q2
NS = Q2

R = 0) in 
10-dimensional spacetime, are written as the form eqs. (9) and (10). The definitions of M and Q̃
in (9) and (10) are given by

M = −
∞∑

m=1

2mc−mcm −
∑

q+ 1
2 ∈Z>0 (NS)

q∈Z>0 (R)

2γ−qγq, (A.13)

Q̃ =
∑
m �=0

c−mL(m)
m −1

2

∑
mn�=0

m+n�=0

(m − n) : c−mc−nbn+m : +
∑

q+ 1
2 ∈Z (NS)

q∈Z�=0 (R)

γ−qG(m)
q

−
∑

p+q∈Z�=0 (NS)

pq,p+q∈Z�=0 (R)

γ−pγ−qbp+q +
∑

m∈Z�=0,q+ 1
2 ∈Z(NS)

qm,q+m∈Z�=0 (R)

(
1

2
m − q

)
c−mγ−qβm+q (A.14)

where Z>0 and Z �=0 denote the sets of positive integers and non-zero integers respectively. The 
operators N and G̃0 are defined only for the R sector as

N =
∑
m∈Z

3

2
mc−mγm, (A.15)

G̃0 =
∑
m∈Z

α−m · ψm −
∑

m∈Z�=0

(m

2
β−mcm + 2bmγ−m

)
. (A.16)

Note that G̃0 is the non-zero mode part of G0 = G
(m)
0 + G

(g)

0 and G̃0 = G0 + 2b0c0 holds. The 
relation between G̃0 and L0 is given by G̃0

2(= G0
2) = L0. Also, L0 is written by the level 

counting operator Nlevel as

NS: L0 = α′p2 + Nlevel − 1

2
, R: L0 = α′p2 + Nlevel (A.17)

where αμ
0 = √

2α′pμ and Nlevel is explicitly given by

Nlevel =
∑

n∈Z>0

(α−n · αn + n(c−nbn + b−ncn))

+
∑

q+ 1
2 ∈Z>0 (NS)

(
qψ−q · ψq + q(−γ−qβq + β−qγq)

)
. (A.18)
q∈Z>0 (R)
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Commutation relations for these operators are

[Q̃,M] = [M,N ] = {Q̃, G̃0} = {Q̃,N} = {G̃0,N} = 0, [M,G̃0] = 2N. (A.19)

Also, N2 = 0. Nilpotent property of Q is rewritten as

NS: Q̃2 + ML0 = 0, R: Q̃2 + ML0 + G̃0N = 0. (A.20)

Hermitian property of the above operators is given by

NS: Q̃† = Q̃, M† = M, (A.21)

R: Q̃† = ψ̃0
0 Q̃ψ̃0

0 , M† = M, G̃0
† = ψ̃0

0 G̃0ψ̃
0
0 , N† = −N. (A.22)

Ghost number operator and the SU(1, 1) algebra Ghost number operator Ng defined on H(NS)

and H(R) is given by Ng = N̂g + c0b0 − γ0β0 + 1 with

N̂g =
∑

m∈Z>0

(c−mbm − b−mcm) −
∑

q+ 1
2 ∈Z>0 (NS)

q∈Z>0 (R)

(γ−qβq + β−qγq). (A.23)

Thus the ground states given by eqs. (2) have ghost number Ng = 1. The operator N̂g counts the 
ghost number of the ghost non-zero mode part. We can check the relations

[N̂g, Q̃] = Q̃, [N̂g,M] = 2M, [N̂g,N ] = 2N. (A.24)

Note also that if we define

M− = −
∞∑

m=1

1

2m
b−mbm +

∑
q+ 1

2 ∈Z>0 (NS)

q∈Z>0 (R)

1

2
β−qβq (A.25)

and Mz = 1
2 N̂g, M , M− and Mz constitute the SU(1, 1) algebra

[M,M−] = 2Mz, [Mz,M] = M, [Mz,M
−] = −M− (A.26)

as in the case of bosonic string theory.

Inner products Inner product for spaces H(NS) and H(R) we use is given by the following rules:

〈0,p′|0,p〉 = (2π)Dδ(D)(p − p′), 〈↓ |c0| ↓〉 = 〈0|c−1c0c1|0〉 = 1, (A.27)

NS: 〈−1| − 1〉 = 1, R: 〈−1

2
|δ(γ0)| − 1

2
〉 = 1. (A.28)

Thus,

NS〈0,p′; ↓;−1|c0|0,p;↓;−1〉NS = (2π)Dδ(D)(p − p′) (A.29)

for NS and

〈0,p′, a′ : L|c0δ(γ0)|0,p, a : L〉 = (2π)Dδ(D)(p − p′)δaa′ (A.30)

〈0,p′, a′ : R|c0δ(γ0)|0,p, a : R〉 = −(2π)Dδ(D)(p − p′)δaa′ (A.31)

for R. Here |0, p, a : L〉 = PL|0, p, a; ↓; − 1
2 〉 and |0, p, a : R〉 = PR|0, p, a; ↓; − 1

2 〉 as is de-
fined in eq. (8). Note that the minus sign of the right-hand side of (A.31) is due to the fact that 
PR|0, p, a〉 is Grassmann odd.
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For two states |f (p)〉(= Of |0, p; ↓; −1〉NS) and |g(p′)〉(= Og|0, p; ↓; −1〉NS) in the NS 
sector, we define the inner product as

〈g(p′)|f (p)〉 = NS〈0,p′; ↓;−1|Og
†Of |0,p;↓;−1〉NS, (A.32)

which can be calculated by commutation relations for operators and the definition of inner prod-
uct for ground state (A.29). We can define the inner product for any two states in the R sector 
in a similar manner. Note that in the R sector, when constructing the quadratic action, we use 
〈f | ≡ 〈f |ψ̃0

0 instead of just taking the Hermitian conjugate as 〈f |. For a string field which is 
given by the infinite sum of string states with the corresponding fields, the relation between |�〉
and 〈�| is

|�〉(= �) =
∫

dDp

(2π)D

∑
i

|fi(p)〉φfi
(p), 〈�| =

∫
dDp

(2π)D

∑
i

φ∗
fi

(−p)〈fi(p)|.

(A.33)

For convenience, we often use another notation of inner product which does not include c0,±1
nor γ0 given by the right-hand side of the following equations:

NS〈0,p′; ↓;−1|Oc0|0,p;↓;−1〉NS ≡ 〈〈0,p′||O||0,p〉〉, (A.34)

〈0,p′, a′ : L|Oc0δ(γ0)|0,p, a : L〉 ≡ 〈〈0,p′a′||O||0,p, a〉〉, (A.35)

〈0,p′, a′ : R|Oc0δ(γ0)|0,p, a : R〉 ≡ −〈〈0,p′, a′||O||0,p, a〉〉 (A.36)

where O is an arbitrary operator consisting only of matter and ghost oscillators without ghost 
zero modes and

〈〈0,p′||1||0,p〉〉 = (2π)Dδ(D)(p − p′),
〈〈0,p′, a′||1||0,p, a〉〉 = (2π)Dδ(D)(p − p′)δa,a′ . (A.37)

The right-hand sides of above three equations (A.34)–(A.36) vanish when (−1)|O| = −1 if O
consists only if matter and ghost oscillators. For the R sector, eqs. (A.35) and (A.36) can be 
rewritten as a united form

〈0,p′, a′ : L(R)|Oc0δ(γ0)γ̃
11|0,p, a : L(R)〉 ≡ 〈〈0,p′a′||O||0,p, a〉〉 (A.38)

and we use this new notation only for the GSO projected state space. Note also that the essence 
of the above relations for both sectors is the relation 〈0, p′|c−1Oc0c1|0, p〉 ≡ 〈 〈0, p′||O||0, p〉 〉, 
i.e., the new notation of inner product corresponds to defining another state space spanned by 
states |f (p)〉 〉 instead of original |f (p)〉. In concrete, for a state

|f (p)〉 = Of |0,p;↓;−1〉NS or |f (p)〉 = Of |0,p, a : L(R)〉, (A.39)

|f (p)〉 〉 is defined as

|f (p)〉〉 = (−1)|Of |Of |0,p〉〉 or |f (p)〉〉 = (−1)|Of |Of |0,p, a〉〉 (A.40)

where |0, p〉 〉 (or |0, p, a〉 〉) is regarded as a new ground state satisfying bn|0, p〉 〉 = cn|0, p〉 〉 = 0
for n > 0. For example, the NS string field �NS = φ + c0ω can be expanded by

φ (= |φ〉) =
∫

dDp

(2π)D

∑
i

Ofi
|0,p;↓;−1〉NSφfi

(p), (A.41)

ω (= |ω〉) =
∫

dDp

(2π)D

∑
O′

gi
|0,p;↓;−1〉NSωgi

(p) (A.42)

i
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where (−1)|Ofi
| = −1 and (−1)

|O′
gi

| = 1. Then, if we write

|φ〉〉 = −
∫

dDp

(2π)D

∑
i

Ofi
|0,p〉〉φfi

(p), (A.43)

|ω〉〉 =
∫

dDp

(2π)D

∑
i

O′
gi

|0,p〉〉ωgi
(p), (A.44)

then the inner product can be expressed as

〈φ|c0 · |φ〉 = −〈〈φ|| · ||φ〉〉 (A.45)

〈ω|c0M · |ω〉 = 〈〈ω|| · ||ω〉〉. (A.46)

Note that we apply the new notation of inner product in the right-hand side of eqs. (A.45) and 
(A.46). The minus sign in the right-hand side of the former equation (A.45) comes from the 
relation

〈0,p′|c−1O†
f ′c0Of c1|0,p〉 = −〈0,p′|c−1O†

f ′Of c0c1|0,p〉 = −〈〈0,p′||O†
f ′Of ||0,p〉〉

(A.47)

since (−1)|Of | = (−1)
|Of ′ | = −1.

Supersymmetry transformation for massless fields Supersymmetry transformation can be con-
structed by the fermion emission vertex W(z) [11,12]. The explicit form of the transformation 
for the action SNS + SR is given in ref. [4] as{

δεφ = W̄εψ + W̄ ′
εχ

δεω = W̄εG̃0χ
,

{
δεψ = −G̃0Wεφ + W ′

εω

δεχ = Wεω
(A.48)

where Wε and W ′
ε are operators converting NS states into R states. For massless (Nlevel = 1

2 for 
NS and Nlevel = 0 for R) string states, the transformation is given by

Wεψ− 1
2
|0,p;↓;−1〉NS = |0,p, a : R〉(�με)a, (A.49)

W ′
εβ− 1

2
|0,p;↓;−1〉NS = √

2|0,p, a : L〉εa, (A.50)

W̄ε |0,p, a : L〉 = ψ− 1
2
|0,p;↓;−1〉NS(ε̄�μ)a, (A.51)

W̄ ′
ε |0,p, a : R〉 = √

2γ− 1
2
|0,p;↓;−1〉NSε̄a. (A.52)

Here ε is a Grassmann odd parameter real spinor field which satisfies �11ε = ε and ε∗ = ε.
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