Extension to maximal semidefinite invariant subspaces for hyponormal matrices in indefinite inner products

Christian Mehl a,∗, André C.M. Ran b, Leiba Rodman c,1

a Fakultät II, Institut für Mathematik, Technische Universität Berlin, D-10623 Berlin, Germany
b Afdeling Wiskunde, Faculteit der Exacte Wetenschappen, Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

c College of William and Mary, Department of Mathematics, P.O. Box 8795, Williamsburg, VA 23187-8795, United States

Received 30 September 2005; accepted 8 May 2006
Available online 14 July 2006
Submitted by R. Guralnick

Abstract

It is proved that under certain essential additional hypotheses, a nonpositive invariant subspace of a hyponormal matrix admits an extension to a maximal nonpositive subspace which is invariant for both the matrix and its adjoint. Nonpositivity of subspaces and the hyponormal property of the matrix are understood in the sense of a nondegenerate inner product in a finite dimensional complex vector space. The obtained theorem combines and extends several previously known results. A Pontryagin space formulation, with essentially the same proof, is offered as well.

© 2006 Elsevier Inc. All rights reserved.

AMS classification: 15A63; 15A57

Keywords: Indefinite inner products; Semidefinite invariant subspaces; Hyponormal matrices

1. Introduction

On the vector space \(\mathbb{C}^n \), equipped with the standard inner product, we fix an indefinite inner product \([\cdot, \cdot] \) determined by an invertible Hermitian \(n \times n \) matrix \(H \) via the formula

\[
[\cdot, \cdot] = \cdot^* H \cdot
\]
[x, y] = \langle Hx, y \rangle, \quad x, y \in \mathbb{C}^n.

Here, \(\langle \cdot, \cdot \rangle \) denotes the standard inner product.

A subspace \(\mathcal{M} \subseteq \mathbb{C}^n \) is said to be \(H \)-nonnegative if \([x, x] \geq 0 \) for every \(x \in \mathcal{M} \), \(H \)-positive if \([x, x] > 0 \) for every nonzero \(x \in \mathcal{M} \), \(H \)-nonpositive if \([x, x] \leq 0 \) for every \(x \in \mathcal{M} \), \(H \)-negative if \([x, x] < 0 \) for every nonzero \(x \in \mathcal{M} \), and \(H \)-neutral if \([x, x] = 0 \) for every \(x \in \mathcal{M} \). Note that by default the zero subspace is \(H \)-positive as well as \(H \)-negative. An \(H \)-nonnegative subspace is said to be \textit{maximal \(H \)-nonnegative} if it is not properly contained in any larger \(H \)-nonnegative subspace.

It is easy to see that an \(H \)-nonnegative subspace is maximal if and only if its dimension is equal to the number \(i_+(H) \) of positive eigenvalues of \(H \) (counted with multiplicities). Analogously, an \(H \)-nonpositive subspace is maximal if and only its dimension is equal to the number of negative eigenvalues of \(H \).

Let \(X^{[*]} \) denote the adjoint of a matrix \(X \in \mathbb{C}^{n \times n} \) with respect to the indefinite inner product, i.e., \(X^{[*]} \) is the unique matrix satisfying \([x, Xy] = (X^{[*]}x, y) \) for all \(x, y \in \mathbb{C}^n \). One easily sees that \(X^{[*]} = H^{-1}X^*H \). We recall that a matrix \(X \in \mathbb{C}^{n \times n} \) is called \textit{\(H \)-normal} if \(X^{[*]}X = XX^{[*]} \), and \textit{\(H \)-hyponormal} if \(H(X^{[*]}X - XX^{[*]}) \geq 0 \) (positive semidefinite). We note that it is easy to check that if \(X \) is \(H \)-normal, resp., \(H \)-hyponormal, then \(P^{-1}XP \) is \(P^{[*]}HP \)-normal, resp., \(P^{[*]}HP \)-hyponormal, provided that \(P \in \mathbb{C}^{n \times n} \) is nonsingular.

It is well known that several classes of matrices in indefinite inner product spaces allow extensions of invariant \(H \)-nonnegative subspaces to invariant maximal \(H \)-nonnegative subspaces. Those classes are for example the ones of \(H \)-expansive matrices (including \(H \)-unitary matrices), \(H \)-dissipative matrices (including \(H \)-selfadjoints), and \(H \)-skew-adjoint matrices, see, e.g., [5] for a proof. The natural question arises if this extension problem still has a solution for arbitrary \(H \)-normal matrices. A partial answer to this question is contained in the following result.

Theorem 1. Let \(X \in \mathbb{C}^{n \times n} \) be \(H \)-normal, and let \(\mathcal{M}_0 \) be an \(H \)-neutral \(X \)-invariant subspace. Then there exists an \(X \)-invariant subspace \(\mathcal{M} \) which is also maximal \(H \)-nonnegative, i.e., \(H \)-nonnegative of dimension \(i_+(H) \), and such that \(\mathcal{M}_0 \subseteq \mathcal{M} \). Also, there exists an \(X \)-invariant maximal \(H \)-nonpositive subspace containing \(\mathcal{M}_0 \).

Theorem 1 can be obtained from results of [2,3], and it holds also for Pontryagin spaces; see [6] for details. A more general theorem is proved in [5]. The proof of Theorem 1 given in [5] depends essentially on the \(H \)-neutrality of the given invariant subspace \(\mathcal{M}_0 \).

Moreover, it was proven in [6] that if \(\mathcal{M} \) is a maximal \(H \)-nonnegative subspace invariant under an \(H \)-normal \(X \), then it is also invariant under \(X^{[*]} \). Also, the authors proved an extension result in the framework of \(H \)-hyponormal matrices. For sake of convenience, we recall the two main results from that paper.

Theorem 2. Let \(X \in \mathbb{C}^{n \times n} \) be \(H \)-hyponormal. If the spectrum of \(X + X^{[*]} \) is real or if the spectrum of \(X - X^{[*]} \) is purely imaginary (including zero), then there exists an \(X \)-invariant maximal \(H \)-nonnegative subspace that is also invariant for \(X^{[*]} \). Also, there exists an \(X \)-invariant maximal \(H \)-nonpositive subspace that is also invariant for \(X^{[*]} \).

The assumption that either the spectrum of \(X + X^{[*]} \) is real or the spectrum of \(X - X^{[*]} \) is purely imaginary in Theorem 2 was shown in [6] to be essential even for the case of \(H \)-normal matrices.
For a subspace \(\mathcal{M}_0 \subseteq \mathbb{C}^n \), we denote by
\[
\mathcal{M}_0^{\perp} = \{ \mathbf{x} \in \mathbb{C}^n | [\mathbf{x}, \mathbf{y}] = 0 \text{ for every } \mathbf{y} \in \mathcal{M}_0 \}
\]
the \(H \)-orthogonal companion of \(\mathcal{M}_0 \).

Theorem 3. Let \(X \in \mathbb{C}^{n \times n} \) be \(H \)-hyponormal and let \(\mathcal{M}_0 \) be an \(X \)-invariant \(H \)-negative subspace. Define \(X_{22} = X^{[\ast]}|_{\mathcal{M}_0^{\perp}} : \mathcal{M}_0^{\perp} \rightarrow \mathcal{M}_0^{\perp} \). Equip \(\mathcal{M}_0^{\perp} \) with the indefinite inner product induced by \(H \). Assume that at least one of the two inclusions \(\sigma(X_{22}^{[\ast]} + X_{22}) \subseteq \mathbb{R} \) and \(\sigma(X_{22}^{[\ast]} - X_{22}) \subseteq i\mathbb{R} \) holds true. Then there exists an \(X \)-invariant maximal \(H \)-nonpositive subspace that contains \(\mathcal{M}_0 \).

The aim of this note is to unify and complete the theory of extensions of semidefinite subspaces for \(H \)-normal and \(H \)-hyponormal subspaces. In particular, we prove a generalization of Theorem 3, where we start with an \(H \)-nonpositive \(X \)-invariant subspace \(\mathcal{M}_0 \) instead of an \(H \)-negative one. The extension result is then not true without further conditions, as it was already shown in [6].

2. Extension of nonpositive invariant subspaces

We start by generalizing the fact that, for \(H \)-normal matrices \(X \), invariant maximal \(H \)-semidefinite subspaces are also invariant under the adjoint \(X^{[\ast]} \). Indeed, it turns out that this result holds true even for \(H \)-hyponormal matrices if the subspace under consideration is assumed to be \(H \)-nonpositive.

Proposition 4. Let \(X \in \mathbb{C}^{n \times n} \) be \(H \)-hyponormal and let \(\mathcal{M} \) be an \(X \)-invariant maximal \(H \)-nonpositive subspace. Then \(\mathcal{M} \) is invariant also for \(X^{[\ast]} \).

Proof. The proof is essentially the same as the corresponding proof for the case that \(X \) is \(H \)-normal (see [6]). Nevertheless we provide the proof here to keep the paper self-contained. Applying otherwise a suitable transformation \(X \mapsto P^{-1}XP, H \mapsto P^{\ast}HP \), where \(P \) is invertible, we may assume that \(\mathcal{M} \) is spanned by the first (say) \(m \) unit vectors and that \(X \) and \(H \) have the forms
\[
X = \begin{bmatrix} X_{11} & X_{12} & X_{13} & X_{14} \\ X_{21} & X_{22} & X_{23} & X_{24} \\ 0 & 0 & X_{33} & X_{34} \\ 0 & 0 & X_{43} & X_{44} \end{bmatrix}, \quad H = \begin{bmatrix} -I & 0 & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & 0 & I \end{bmatrix}.
\]

Indeed, this follows easily by decomposing \(\mathcal{M} = \mathcal{M}_p \oplus \mathcal{M}_0 \) into an \(H \)-neutral subspace \(\mathcal{M}_0 \) and its orthogonal complement \(\mathcal{M}_p \) (in \(\mathcal{M} \)), and choosing an \(H \)-neutral subspace \(\mathcal{M}_sl \) that is skewly linked to \(\mathcal{M}_0 \) (see [1,4], for the definition and properties of skewly linked subspaces). Note that the \(H \)-orthogonal complement to \(\mathcal{M} + \mathcal{M}_sl \) is necessarily an \(H \)-positive subspace due to the maximality of \(\mathcal{M} \). Then, selecting appropriate bases in all subspaces constructed above, and putting the bases as the consecutive columns of a matrix \(P \), we get a transformation that yields the desired result. From (1), we then obtain that
\[
X^{[\ast]} = \begin{bmatrix} X_{11}^{[\ast]} & 0 & -X_{21}^{[\ast]} & 0 \\ -X_{13}^{[\ast]} & X_{33}^{[\ast]} & X_{23}^{[\ast]} & X_{43}^{[\ast]} \\ -X_{12}^{[\ast]} & 0 & X_{22}^{[\ast]} & 0 \\ -X_{14}^{[\ast]} & X_{34}^{[\ast]} & X_{24}^{[\ast]} & X_{44}^{[\ast]} \end{bmatrix}
\]
and
\[H\left(X^{[*]}X - XX^{[*]}\right) = \begin{bmatrix}
* & * & * & * \\
* - X_1^{[*]}X_1 - X_{34}X_{34}^{[*]} & * & * \\
* & * & * \\
* & * & X_{44}^{[*]}X_{44} - X_{14}^{[*]}X_{14} + X_{24}^{[*]}X_{34} + X_{34}^{[*]}X_{24} - X_{44}X_{44}^{[*]} & *
\end{bmatrix}. \] (3)

Since \(X\) is \(H\)-hyponormal, i.e., \(H\left(X^{[*]}X - XX^{[*]}\right) \succeq 0\), we obtain from the block \((2, 2)\)-entry in (3) that \(X_{12} = 0\) and \(X_{34} = 0\). But then the inequality for the block \((4, 4)\)-entry of (3) becomes
\[X_{44}^{[*]}X_{44} - X_{14}^{[*]}X_{14} \succeq 0 \] (4)
which is easily seen to imply (by taking traces of both sides in (4)) that \(X_{44}\) is normal and that \(X_{14} = 0\). Thus, we obtain from (2) that \(\mathcal{M}\) is also invariant for \(X^{[*]}\). \(\Box\)

The following example illustrates Proposition 4 and shows that we cannot replace \(H\)-nonpositivity in the hypothesis of the proposition by \(H\)-nonnegativity.

Example 5. Let
\[X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad H = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}. \] (5)

Then one easily computes
\[X^{[*]} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \quad H\left(X^{[*]}X - XX^{[*]}\right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad X + X^{[*]} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ -1 & 0 & 2 \end{bmatrix} \]
that is, \(X\) is \(H\)-hyponormal and the spectrum of \(\sigma(X + X^{[*]}) = \{2\}\) is real. Then the only \(X\)-invariant subspace that is maximal \(H\)-nonpositive is given by \(\mathcal{M}_- = \text{Span}(e_2, e_3)\). Obviously, \(\mathcal{M}_-\) is also invariant under \(X^{[*]}\). On the other hand, \(\mathcal{M}_+ = \text{Span}(e_1)\) is a maximal \(H\)-nonnegative subspace that is invariant under \(X\), but \(\mathcal{M}_+\) is not invariant under \(X^{[*]}\). However, Theorem 2 implies that \(X\) has a maximal \(H\)-nonnegative subspace that is also invariant under \(X^{[*]}\). Such a subspace is given by \(\tilde{\mathcal{M}}_+ = \text{Span}(e_2)\).

The main results of this note is the following. It combines elements of Theorems 1–3.

Theorem 6. Let \(X\) be \(H\)-hyponormal, and let \(\mathcal{M}\) be an \(H\)-nonpositive subspace that is invariant under \(X\). Let \(\mathcal{M}_0\) be the isotropic part of \(\mathcal{M}\) and decompose \(\mathcal{M}^{(\bot)}\) as
\[\mathcal{M}^{(\bot)} = \mathcal{M}_0 \oplus \mathcal{M}_{\text{nd}} \] (6)
for an \(H\)-nondegenerate subspace \(\mathcal{M}_{\text{nd}}\). Denote by \(X_{44}\) and \(H_4\) the compressions of \(X\) and \(H\) to \(\mathcal{M}_{\text{nd}}\), respectively. Assume that \(\mathcal{M}_0\) is invariant under \(X^{[*]}\) and that, in addition, one of the three following conditions holds:
(a) \(\sigma(X_{44} + X_{44}^*) \subset \mathbb{R} \),
(b) \(\sigma(X_{44} - X_{44}^*) \subset i\mathbb{R} \),
(c) \(X_{44} \) is \(H_4 \)-normal.

Then \(\mathcal{M} \) can be extended to a maximal \(H \)-nonpositive subspace \(\mathcal{M} \) that is invariant under both \(X \) and \(X^* \).

The conditions (a)–(c) are independent of the particular choice of a nondegenerate subspace \(\mathcal{M}_{nd} \) subject to (6).

Proof. A decomposition similar to (1) will be used. Since \(\mathcal{M}_0 = \mathcal{M} \cap \mathcal{M}^{[\perp]} \). Let \(\mathcal{M}_{sl} \) be a subspace skewly linked to \(\mathcal{M}_0 \), let \(\mathcal{M}_2 \) be a nondegenerate subspace of \(\mathcal{M} \) which is \(H \)-orthogonal to both \(\mathcal{M}_0 \) and \(\mathcal{M}_{sl} \), and finally, let \(\mathcal{M}_4 \) be the \(H \)-orthogonal complement of \(\mathcal{M}_0 + \mathcal{M}_2 + \mathcal{M}_{sl} \). Observe that \(\mathcal{M}_2 \) is a \(H \)-negative subspace in \(\mathcal{M} \) while \(\mathcal{M}_4 \) is a nondegenerate subspace in \(\mathcal{M}^{[\perp]} \). With respect to the decomposition

\[
\mathbb{C}^n = (\mathcal{M}_0 + \mathcal{M}_2 + \mathcal{M}_{sl})[\perp] \mathcal{M}_4,
\]

where \([\perp]\) stands for an \(H \)-orthogonal sum, and with respect to an appropriate choice of basis in each of the components we write

\[
H = \begin{bmatrix}
0 & 0 & I & 0 \\
0 & -I & 0 & 0 \\
I & 0 & 0 & 0 \\
0 & 0 & 0 & H_4
\end{bmatrix}, \quad X = \begin{bmatrix}
X_{11} & X_{12} & X_{13} & X_{14} \\
X_{21} & X_{22} & X_{23} & X_{24} \\
0 & 0 & X_{33} & X_{34} \\
0 & 0 & X_{43} & X_{44}
\end{bmatrix}.
\]

Using this we easily see that \(X^* \) is given by

\[
X^* = \begin{bmatrix}
X_{33}^* & -X_{23}^* & X_{13}^* & X_{43}^*H_4 \\
0 & X_{22}^* & -X_{12}^* & 0 \\
0 & -X_{31}^* & X_{11}^* & 0 \\
H_4^{-1}X_{34}^* & -H_4^{-1}X_{24}^* & H_4^{-1}X_{14}^* & H_4^{-1}X_{44}^*H_4
\end{bmatrix}.
\]

Partitioning \(Y := H(X^*X - XX^*) \) conformably with respect to the decomposition (7), we obtain that the \((4,4)\)-block \(Y_{44} \) takes the form

\[
Y_{44} = X_{34}^*X_{14} - X_{24}^*X_{24} + X_{14}^*X_{34} + H_4 \left(X_{44}^*X_{44} - X_{44}X_{44}^* \right),
\]

where \(X_{44}^* \) denotes the \(H_{44} \)-adjoint \(H_{44}^{-1}X_{44}^*H_{44} \) of \(X_{44} \). By assumption, the isotropic part \(\mathcal{M}_0 \) of \(\mathcal{M} \) is invariant under \(X^* \) which implies \(X_{34} = 0 \). But then, we obtain that \(X_{44} \) is \(H_4 \)-hyponormal, because we get from (8) that

\[
H_4 \left(X_{44}^*X_{44} - X_{44}X_{44}^* \right) = Y_{44} + X_{24}^*X_{24} \geq Y_{44} \geq 0,
\]

since \(X \) is \(H \)-hyponormal and, therefore, \(Y \) and \(Y_{44} \) are positive semidefinite.

Next, we show that the conditions (a)–(c) are independent of the particular choice of a nondegenerate subspace \(\mathcal{M}_{nd} \) subject to (6), i.e., we may assume without loss of generality that \(\mathcal{M}_{nd} = \mathcal{M}_4 \). Indeed, choosing another nondegenerate subspace \(\mathcal{M}_{nd} \) in \(\mathcal{M}^{[\perp]} \) in place of \(\mathcal{M}_4 \) amounts to a change of basis in \(\mathcal{M}^{[\perp]} \) given by a matrix of the form

\[
S = \begin{bmatrix}
I & 0 & 0 & S_{14} \\
0 & I & 0 & S_{24} \\
0 & 0 & I & S_{34} \\
0 & 0 & 0 & S_{44}
\end{bmatrix}
\]
with S_{44} invertible. Thus, we obtain that with respect to the new decomposition
\[C^n = (\mathcal{H}_0 + \mathcal{H}_2 + \mathcal{H}_3) + \mathcal{H}_{nd} \]
and the new basis, X and H take the forms
\[
\tilde{X} = S^{-1}XS = \begin{bmatrix}
X_{11} & X_{12} & * & * \\
X_{21} & X_{22} & * & * \\
0 & 0 & * & * \\
0 & 0 & S^{-1}_{44}X_{44}S_{44} + S^{-1}_{44}X_{43}S_{34}
\end{bmatrix},
\]
\[
\tilde{H} = S^*HS = \begin{bmatrix}
0 & 0 & I & S_{34} \\
0 & -I & 0 & -S_{24} \\
I & 0 & 0 & S_{14} \\
S_{34} & -S^*_{24} & S^*_{14} & (S_{44} - S^*_{14}S_{14} + S^*_{24}S_{24} - S^*_{24}S_{24})
\end{bmatrix}.
\]
Since \mathcal{H}_{nd} is assumed to be a subspace in $\mathcal{H}^{[\perp]}$, we must have
\[
0 = \begin{bmatrix} I & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & I & 0 \\
0 & 0 & 0 & I
\end{bmatrix} (S^* - 1)(S^*HS) \begin{bmatrix} 0 \\
0 \\
0 \\
I
\end{bmatrix} = \begin{bmatrix} I & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & I & 0 \\
0 & 0 & 0 & I
\end{bmatrix} \begin{bmatrix} S_{14} \\
S_{24} \\
S_{34} \\
S_{44}
\end{bmatrix} = \begin{bmatrix} S_{34} \\
-S_{24}
\end{bmatrix}
\]
which implies $S_{24} = 0$ and $S_{34} = 0$. Thus, the compressions \tilde{X}_{44} and \tilde{H}_{44} of \tilde{X} resp. \tilde{H} to \mathcal{H}_{nd} are
\[
\tilde{X}_{44} = S^{-1}_{44}X_{44}S_{44}, \quad \tilde{H}_{44} = S^*_{44}X_{44}S_{44}.
\]
Clearly it follows from this that if each of the three conditions (a)–(c) holds for \tilde{X}_{44} and \tilde{H}_{44}, then it holds also for X_{44} and H_{44}. In particular, the conditions (a)–(c) are independent of the choice of \mathcal{H}_{nd}.

Consequently, assuming $\mathcal{H}_{nd} = \mathcal{H}_4$ and that we have either $\sigma\left(X_{44} + X_{44}^{[*]}\right) \subset \mathbb{R}$ or $\sigma\left(X_{44} - X_{44}^{[*]}\right) \subset i\mathbb{R}$ or that X_{44} is H_4-normal, we obtain from Theorems 1 and 2 and Proposition 4 that there exists an X_{44}-invariant maximal H_4-nonpositive subspace \mathcal{N}_4 that is also invariant under $X_{44}^{[*]}$. In that case $\mathcal{H}_+ := \mathcal{H}_+ + \mathcal{N}_4$ is maximal H-nonpositive, X-invariant, and thus, by Proposition 4 also $X^{[*]}$-invariant. \Box

The following example, adapted from [6], shows that the conditions (a)–(c) are essential in Theorem 6.

Example 7. Let
\[
H = \begin{bmatrix} 0 & 1 \\
1 & 0 \end{bmatrix}, \quad X = \begin{bmatrix} i & -i \\
i & -i \end{bmatrix}.
\]
Then one easily calculates
\[
X^{[*]} = \begin{bmatrix} i & i \\
-i & -i \end{bmatrix}, \quad A := \frac{1}{2} (X + X^{[*]}) = \begin{bmatrix} i & 0 \\
0 & -i \end{bmatrix}, \quad S := \frac{1}{2} (X - X^{[*]}) = \begin{bmatrix} 0 & -i \\
i & 0 \end{bmatrix}
\]
and $H(X^{[*]}X - XX^{[*]}) = 4 \cdot I$. Hence X is H-hyponormal but not H-normal. Moreover, the spectrum of A is not real, and neither is the spectrum of S purely imaginary. Clearly, the zero space $\{0\}$ is H-neutral, invariant both under X and $X^{[*]}$, and coincides with its isotropic subspace. Now the only nontrivial invariant subspace for X is
\[\mathcal{M}_+ = \text{Span} \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) \]

which is easily seen to be maximal \(H \)-nonnegative, but it is not invariant under \(X^{[*]} \), because otherwise it would also be invariant for \(A \) and \(S \) which is obviously not the case. Thus, \(\{0\} \) cannot be extended neither to a maximal \(H \)-nonnegative nor to a maximal \(H \)-nonpositive subspace that is invariant for both \(X \) and \(X^{[*]} \).

On the other hand, Example 5 shows that also the hypothesis in Theorem 6 that the isotropic subspace \(\mathcal{M}_0 \) of \(\mathcal{M} \) is \(X^{[*]} \)-invariant is essential. Thus, the question arises under which conditions the isotropic subspace \(\mathcal{M}_0 \) of an \(X \)-invariant \(H \)-nonpositive subspace \(\mathcal{M} \) (where \(X \) is an \(H \)-hyponormal matrix) is \(X^{[*]} \)-invariant. One immediate answer is given in the following remark that can be verified in a straightforward manner.

Remark 8. If \(X \) is \(H \)-hyponormal and \(\mathcal{M} \) is a maximal \(H \)-nonpositive subspace that is invariant under both \(X \) and \(X^{[*]} \), then its isotropic part \(\mathcal{M}_0 = \mathcal{M} \cap \mathcal{M}^{[\perp]} \) is also invariant under both \(X \) and \(X^{[*]} \).

Remark 9. Theorem 6 contains Theorem 3 as a special case, because clearly, the isotropic part of an \(H \)-negative subspace is the zero space which is always invariant under \(X^{[*]} \).

We conclude the note with an observation that Proposition 4 and Theorem 6 are valid also for Pontryagin space operators, where \(H \) is an invertible self-adjoint operator on a Hilbert space with only finite dimensional invariant subspace corresponding to the positive part of the spectrum of \(H \). In the case of Theorem 6 an additional hypothesis that the codimension of \(\mathcal{M} \) is finite has to be imposed; this hypothesis would guarantee that \(\mathcal{M}_{nd} \) is finite dimensional. The proofs remain essentially the same.

References