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Abstract

The epimorphic hullH (A) of a commutative semiprime ring is defined to be the smallest von
Neumann regular ring of quotients af

Let X denote a Tychonoff space. In this paper the structur® af (X)) is investigated, where
C(X) denotes the ring of continuous real-valued functions with domaifspacesX that have a
regular ring of quotients of the forr@'(Y) are characterized, and a “minimum” suhis found.
Necessary conditions fdif (C (X)) to equalC (Y) for someY are obtainedd 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

If R is a commutative ring with identity, there exists a well-developed notion of a
generalized ring of quotients at (defined in 2.1(b) below). In particular, each sukh
possesses a “complete ring of quotients” denaé®) (see 2.1(c) below). Also, iR is
semiprime therQ (R) is regular in the sense of von Neumann (see 2.1(a) below). Closely
related to rings of quotients and regularity are the notions of an epimorphism of rings, and
the epimorphic hull of a ring. This latter object was defined and studied by Storrer [19]
(see 2.1(e), (f) below). Our goal in this paper is to study these notions in the case of rings
whose origins are topological. Our principal tool in this study will be Storrer’'s theorem
that the epimorphic hull oR is the (unique) smallest regular ring that lies betw&eand

Q(R).
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The ring C(X) of all continuous real-valued functions on a topological spAces
commutative and semiprime. Its complete ring of quotie@§X), is the subject of a
seminal work by Fine, Gillman, and Lambek [6]. We are interested in the study of the
epimorphic hull ofC (X), which we will denote byH (X). A notable result of [6] is that
Q(X) may be represented as the ring of all continuous real-valued functions on the dense
open subsets ok (modulo identification of functions that agree on the intersections of
their domains), but we know of no corresponding representatioH faf). As well, Hager
[8] proved thatQ(X) is isomorphic to som& (Y) if and only if the isolated points of
X form a dense subset of (provided no measurable cardinals exist nearby). It was the
quest for an analogous result fAr(X) that prompted our study. Sindé(X) is always a
@-algebra in the sense of Henriksen and Johnson, one is asking that a padi@ltgebra
be a ring of functions (see [9, Section 5]).

This problem factors into two parts. First we characterize those realcompact spaces
for which C(X) has a regular ring of quotients of the for@i(Y). In this case we show
that there is a space that yields a “smallest” sG¢l), and we characterize it in terms of
X. We then investigate whefi(Y) is isomorphic toH (X). Although we do not solve this
problem completely we obtain useful partial results.

A secondary goal, which we do achieve, is to characterize those sgdoesvhich the
classical ring of quotient3)(X), is isomorphic to aC(Y). This complements work by
Hager and Martinez [10], who studied Tychonoff spa&ef®r which Q(X) = Q¢ (X).

By [7, 3.9] we may without loss of generality assume that all spaces are Tychonoff,
i.e., completely regular and Hausdorff. As well, si€€X) is ring-isomorphic taC (v X),
wherevX denotes the Hewitt realcompactification &f [7, 8.1], it will sometimes be
appropriate to assume thtis realcompact. Undefined notation and terminology will be
as givenin [7].

This work is the product of a collaboration between the two authors and Ruth Macoosh,
who has declined to be a co-author. Her enthusiasm and insights were fundamental to the
article, particularly to Sections 2—4 and 7.

2. Preliminaries on the epimorphic hull of a ring

We begin with a summary of some topics in commutative algebra that are needed for
our study. Throughout all hypothesized rings will be assumed to be commutative and
semiprime with identity. The reader is referred to [12] for general algebraic notions.

2.1.(a) Semiprime and regular rings

A ring is semiprimeif it has no nilpotent element except 0. Clearly any family of real-
valued functions (with a common domain) that is closed under the natural operations of
addition and multiplication forms a semiprime ring.

The ring R is (von Neumannjegular if for eachr € R there exists an € R such that
r = r2s. The elements is idempotent, hence so is-drs. Sincer(1 — rs) =0, each
element ofR is either a zero-divisor or a unit. Each proper prime ideakRas maximal.
If the elements- ands of R satisfyr = r2s, then the element?r is the unique element



R.M. Raphael, R.G. Woods / Topology and its Applications 105 (2000) 65-88 67

r* satisfying simultaneously = r2r* andr* = (r*)%r [6, 10.1]. We shall call this unique
element* thequasi-inversef r.

(b) Rings of quotients

Aring T containing a ringR is aring of quotientof R if and only if foreach G£r € T
there exists an € R such that G£tr € R (see [12, Example 5, p. 46]). One verifies easily
thatif R € S € T thenT is a ring of quotients ok if and only if 7' is a ring of quotients
of S andS$ is a ring of quotients oR.

(c) The complete ring of quotients

The complete ring of quotients of a rin can be constructed from equivalence
classes of module homomorphisms from dense ideal ioto R. Details appear in [12,
Section 2.3]. The definition of addition and multiplication is natural, and the resulting ring,
denotedQ(R), is regular wherR is semiprime [12, p. 42]. Thus eacte R has a quasi-
inverser® in Q(R) . Furthermore, each non-zero-divisor®fis invertible inQ(R). If T
is a ring of quotients oR then [12, Proposition 6, p. 40] there is a monomorphisrf of
into Q(R) that induces the canonical morphismfnto Q(R). Less formally, we have:

if T is aring of quotients oR thenR C T C Q(R).

(d) The classical ring of quotients
The classical ring of quotient®f a ring R, denotedQ¢|(R), is the subring ofQ(R)
consisting of all elements of the form—1, wherer, s € R, s is a non-zero-divisor oR,
ands~1is the inverse of in Q(R). All non-zero-divisors ofR are units inQ¢(R), and
henceR = Q¢(R) if and only if each non-unit oR is a zero-divisor ofR.
(e) Essential and epimorphic extensions
An overringS of a ring R is called aressential extensioof R if each non-zero ideal of
S intersectsk in a non-zero ideal [19, introduction to §9]. Clearly the rings of quotients of
R are essential extensions Bf
A homomorphism of ringsf : R — S is called anepimorphismif for any ring 7 and
any pair of homomorphismg:S — T andh:s — T, we have thatg = h whenever
go f=ho f.Clearly the composition of two epimorphisms is an epimorphism. We shall
use the following facts.
@ If f:R— S andg:S — T are two homomorphisms such thato f is an
epimorphism, theg is an epimorphism.
(ii) If R isregularthen any ring epimorphism with domalns surjective [19, 6.1].
An overringS of aring R is called arepimorphic extensioaf R if the inclusion map is
an epimorphism. An immediate consequence of (ii) is:
(iii) Aregular ring has no proper epimorphic extensions.
() The epimorphic hull of a ring
The epimorphic hullof a ring R, denotedH (R), is a canonical overring oR defined
and studied by Storrer [19]. It can be characterized in each of the following ways:
(i) H(R) is the unique (up to isomorphism ov@&) maximal essential epimorphic
extension ofR; in other words S is an essential epimorphic extensionfff and
only if R C S C H(R) (where we denote monomorphisms by inclusions) [19, 8.3].
ThusR € Q¢ (R) € H(R) € Q(R) [19, 11.3].
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(i) H(R) is the (unique) smallest regular ring lying betweand Q (R).

(iif) H(R) is the unique ring of quotients at that is both regular and an epimorphic
extension ofR.

The following result is part of [18, 1.6].

Lemma 2.2. If the annihilator ofr is principal for eachr € R, thenQ¢(R) is regular.
Lemma 2.3 [19]. If Qc(R) is regular thenH (R) = Qc|(R).

Lemma 2.4. Let R be aring, letB denote the set of all idempotents@tR) of the form
r*r for r € R, and letS denote the subrin®®(B) of Q(R) generated byk and B. Then

Qcl(S) = H(S).

Proof. An element ofS has the forms = )""_; r;e; wherer; € R andei2 =e¢; € B. By

expanding the produ¢f’_; (e; + (1—¢;)) = 1 we can express 1 as a sum bfzthogonal
idempotentsf; in S (some possibly zero). Clearly; f; = f; or e; f; =0 for all i, j.

A simple calculation will now show that

n 2VL 2"[
s:slzz(zmﬁ) =S,
j=1

i=1 \ j=1
with the f; orthogonal and the’; a subsum of the;. Since thef; are orthogonal
Z?’l:l(r})*f/’ is the quasi-inverse* for s in Q(R). Therefore

2}'[
ss = Z(r})*r}fj
j=1

which belongs taf, as does 1 ss".

Now consider the ideahnn(s) = {r € S: ts= 0}, the annihilator ofs in S. Since
s = 52s*, 1 — ss* € Ann(s). Conversely, ifts= 0 thentss" = 0 andt = (1 — ss°). Thus
Ann(s) is principal and Lemmas 2.2 and 2.3 applysto O

The following is an independent proof of a result due to Olivier [16] and Storrer
(unpublished).

Proposition 2.5. The epimorphic hull oR is the subringl’” of Q(R) generated byk and
the quasi-inverses of the elementRah Q(R), i.e.,

n
H(R)= Zris;k: ri,si € R, n a positive intege}.
i=1

Proof. Let S beasinLemma?2.4. ThehC T C H (R) and the proof of Lemma 2.4 shows
thats* € T for eachs € S. It follows that each non-zero-divisor ¢fhas an inverse iff’,
for if s is a non-zero-divisor thegs' = 1. ThereforeR C Q¢ (S) = H(S) C T C H(R),
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and by the remarks in 2.1(f)(ii) we havé(S) = T = H(R). Thus each element df (R)
has the formd_;"_; r;(s}) for somer;,s; e Randn e N. O

Corollary 2.6. If R is aring thenR and H (R) have the same cardinality.

Lemma 2.7 (Isbell, Storrer; see [19, 3.3])et R be a subring of aring. If for eachs € S
there existt € S anda, b € R with s = ar anda = tb, thenS is an epimorphic extension
of R.

We note that the quasi-inversesii(R) of the elements oR satisfy the conditions in
Lemma 2.7 since* = r(r*)2 andr = (r*)2(r3) for eachr € R.

3. The epimorphic hull of C(X)
3.1. Definitions and preliminary remarks

The zero-set of a functioff € C(X), denotedZ(f), is the sef{x € X: f(x) =0}. The
cozero-set off, X\ Z(f), is denoted coz. We write Z(X) to designate the family of all
zero-sets ofX. A point p of X is called aP-point of X if p is in the interior of each
zero-set containing it [7, 4L]. The set of @t-points of X will be denotedP (X). The ring
C(X) is regular if and only ifX is a P-space, i.e., ifP (X) = X [7, 4J and 4L].

If S is a dense subspace af then the homomorphisnf — f|S from C(X) into
C(S) is a monomorphism. As in [6, 2.1] we sometimes abuse notation by identifying
{fIS: f e C(X)} with C(X) and writing C(X) € C(S). The subring of all bounded
functions in C(X) is denotedC*(X). A subspaceS of X is said to beC*-embedded
in X if every function inC*(S) can be extended to a function &*(X). The Stone—
Cech compactification ok, denoteds X, is the unique (up to homeomorphism fixiag
pointwise) compact space in whighis dense and*-embedded.

As in [6], we denote the complete ring of quotients®fX) by Q(X). Elements of
Q(X) can be represented by continuous real-valued functions whose domains are dense
open subsets of (see [6, 2.6 et seq.]). More precisely, let

D(X) ={V: V is a dense open subsetx}

and let

Lx)=[J{cw): veDx)}.

Define a relation~ on L(X) as follows: letV, W € D(X), let f € C(V), andg € C(W).
We say thatf ~ g if f|[VNW =g|VNW.Then~ is an equivalence relation dn X) and
Q(X) is the set of equivalence classes associatedwiite., O (X) = {[f]: f € L(X)}. If
feC(V)andg € C(W), whereV, W € D(X), we defing ]+ [¢g] to be[(f|V N W) +
(glVNW)]. (Observetha N W e D(X) and so( f|V N W)+ (g]lVNW)e L(X).) The
product] f][g] is defined similarly. See [6, 2.6 et seq.] for details.
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If f e C(X)we will often representthe eleménft] of Q(X) by f. In other words, since
X € D(X) we will often identify the ringC (X) with its isomorph, the subrinff f1: f €
C(X)} of Q(X). In this sense we hav€(X) € Q(X). SinceC(X) C H(X) C 0(X),
members off (X) can be represented as equivalence classes of certain memigps)of
In detail, we have the following:

Theorem 3.2. Let X be a Tychonoff space. f € C(X), denote(intZ(G)) U coz(g) by
S(g). Defineg”™: S(g) — R by

g (x) = i if x € coz(g),
g(x)

g (x)=0 if x € Z(g).
Then

(@) S(g) € D(X), g" € C(S(g)), and[g"] € Q(X).

(b) [g”"]is the quasi-inversgg]* of [g] in Q(X).

(c) H(X)={X_i_1[/illg/]: n a positive integer and;, g; € C(X)}.

(d) Members ofH (X) can be represented as continuous real-valued functions whose
domains are dense open sets of the f¢ffh ; S(gi), where{g;: i, ..., n} is afinite
subset of” (X).

Proof. (a) This is straightforward.
(b) A routine computation shows that

(8"15()*(s15(2) =g IS() and (g]5(2))*("15()) = gl S(8).
Consequentlyg”1%[g] = [¢”] and[g]%[¢"\] = [¢] and so[g"] is the quasi-inverse of
[¢]in Q(X).
(c) This follows immediately from (b) and Proposition 2.5.
(d) As indicated in the paragraph preceding Theorem 3.2, we can id@nfify[ f; 11/
with the restriction of the real-valued function;_, fig/ to the elemenf/_, S(g;) of

D(X); clearly
(Zﬁgﬁ) (M Sen e c(ﬂ S(gi)) O
i=1 i=1 i=1
Observe thaf){S(g): g € C(X)} = P(X).
By [6, 2.3 and 3.1]Q(X) = Q(8X), Qua(X) = Qc(BX), and we now show that a
similar result holds foi (X).

Proposition 3.3. If Y is dense andC*-embedded inX then C(Y) is an epimorphic
extension ot” (X) and consequentlff (Y) = H (X).

Proof. By the “abuse of notation” mentioned earlier, we identifyX) with the subring
{f1Y: feC(X)}of C(Y). AsY is C*-embedded irX, if g € C*(Y) theng e {f|Y: f €
C(X)} and so we have

C*Y) S {fIY: feCOfcCm).
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If feC)thenf/(f2+1)=aecC*Y), f/(f2+12=beC*(Y),andf?+1=t¢
C(Y). Thusa, b € C(X). Furthermoref = at anda = tb.

ThereforeC(Y) is an epimorphic extension @f(X) by Lemma 2.7, and evidently it is
a ring of quotients of” (X). It then follows from 2.1(e) and 2.1(f)(i) th&@(Y) € H(X).
ThusH (Y) C H(X) and the opposite inclusion is obvious

Corollary 3.4. Let X be a Tychonoff space. Théh(X) = H(8X), and if X is a P-space
thenC(X) = H(X) = H(B8X).

Corollary 3.5. If X is an extremally disconnected space theaX) = Q(X).

Proof. Let f € Q(X). Thenf € C(V) for some dense open subgdétof X. SinceX is
extremally disconnected] is C*-embedded inX (see [7, 1H.6]). The argument used in
the proof of Proposition 3.3 above then shows tfiat H(X). ThusQ(X) € H(X), and
the reverse inclusion always holdst

Corollary 3.6 [8]. If X is extremally disconnected and of non-measurable cardinal, then
H(X) is isomorphic to som& (Y) if and only if the isolated points of form a dense
subset ofX.

Definition 3.7 [9]. A &®-algebraA is an Archimedean lattice-ordered algebra over the
field of real numbers which has an identity element 1 that is a weak order unit.

Each lattice-ordered algebra of real-valued functions that contains the constant functions
is a®-algebra. In particula@ (X) is a®-algebra [8, p. 9]. IfA is a®-algebra thenV (A)
will denote the space of maximéatideals (absolutely convex ideals) afwith the Stone
topology (which hagM € M(A): a € M} for a € A as a base for its closed sets; see [9,
p. 79]). The subspace of real maximal ideRl&A) consists of thos&/ in M (A) for which
A/M is isomorphic to the real fieltk. Note thatA is called a®-algebra of real-valued
functions if R(A) is dense inM(A).

Proposition 3.8. H(X) is a®-algebra.

Proof. Let R be C(X) and letS be as in Lemma 2.4. Eache S may be written as
s=Y 14 fie; wheref; € C(X) ande; = el-2 € Q(X), so that the idempotents are pairwise
orthogonal and the cozero sets of thie; are therefore pairwise disjoint. Singy X) is a
@-algebra, we need only show thdt( X) is a lattice, and this is equivalent to showing that
the elements of (X) have absolute values i (X) [7, p. 11]. SinceC (X) is a®-algebra
and since the; are pairwise orthogonal, we have

n n n
> fieil = Ifilleil=>_|filei €.
i=1 i=1 i=1

ThusS is a®-algebra.
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As observed in Lemma 2.4/ (X) = Qq(S). Thus if f € H(X), then f = gh~1 where
g,h € S. Evidently |g|, |h| € S as S is a ®-algebra. Sincé: is a non-zero divisor irf,
it is invertible in the®-algebraQ (X). Thus|h| is invertible in Q(X), and therefore it is
a non-zero-divisor ir, whose inverse lies it (X). Hence| f| = |g||k|~, which is an
element ofH (X). ThusH (X) is a®-algebra. O

The space of maximal ideals @f(X) and that of H (X) are denoted respectively by
M(X) and M (H (X)); their subspaces of real maximal ideals®yX) andR(H (X)).

Lemma 3.9. If M e M(X) thenM H(X) e M(H (X)) or M(H (X)) = H(X).

Proof. AssumeM H(X) =1 # H(X). ThenI N C(X) = M by the maximality ofM. We

now claim that the induced embeddidg X)/M — H(X)/I is an isomorphism. First
observe that the map'(X) - H(X) — H(X)/I is an epimorphism because it is the
composition of two epimorphisms (see 2.1(e)). This composition can also be written as
C(X)— C(X)/M — H(X)/I and since it is an epimorphism so(%X)/M — H(X)/I

by 2.1(e)(i). ButC(X)/M, being a field, and hence regular, has no proper epimorphic
extensions (see 2.1(e)(iii)).0

Definition 3.10 [14]. A spaceX is called an almosP-space if every non-empty zero-set
has non-empty interior.

By [14, 1.1] X is an almostP-space if and only if every zero-set is the closureXin
of its interior. EvidentlyX is an almostP-space if and only if no cozero-set is dense, or
equivalently if each non-unit i€ (X) is a zero-divisor. Thu¥ is an almostP-space if
and only if C(X) = Q¢ (X). Almost P-spaces were studied systematically in [14], and in
[5]itis shown that ifX is a locally compact realcompact Tychonoff space th&h X is a
compact almosP-space. Sincé-spaces are characterized by the fact that their zero-sets
are clopen (i.e., open-and-closed), obviouBkgpaces are almogt-spaces.

It is pointed out in [14, p. 285], and follows immediately from the algebraic characteri-
zation above, thaX is an almostP-space if and only if its Hewitt realcompactificatioX
is.

Corollary 3.11. If X is an almostP-space thenM H(X) € M(H (X)) for eachM €
M(X).

Proof. Let) " _; fim; € MH(X) wherem; € M and f; € H(X). Then|m;| € M for each
i becauseV is absolutely convex. Since each non-unit@®fX) is a zero-divisor, there
exists anon-zerg € C(X) suchthag(}_"_; |m;|) = 0. Theng|m;| = O for each because
all |m;| are non-negative and therefqr€ ", fim;) = 0. ThusM H (X) consists of zero-
divisors of H (X) and hence is a proper maximal idealfi(X). O

Corollary 3.12. If X is an almostP-space thenH (X) is a @-algebra of real-valued
functions.
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Proof. It follows from the proof of Lemma 3.9 tha/ H (X) € R(H (X)) for eachM ¢
R(X). If 0#£ f € (\R(H(X)) then there existg € C(X) such that0 # gf € (R(X),
which is a contradiction sinc€ (X) is an algebra of real functions [9].0

Remark 3.13. In view of the importance of almogt-spaces in connection with this work
we note here that:

(1) A basically disconnected almoBtspace is &-space.

(2) An extremally disconnected almaBtspace of non-measurable cardinal is discrete.

The first statement follows from Definition 3.10 and the fact that the interiors of zero-sets
in X are closed [7, 1H]. Since an extremally disconnected space is basically disconnected,
the second statement follows from [7, 12H].

4. Regular rings of quotients ofC (X) of the form C(Y)

Definitions and preliminary remarks 4.1. An ideal 7 in C(X) is said to be fixed if
({Z(f): f €I} is non-empty. The spack is called realcompact if every real maximal
ideal in C(X) is fixed. Realcompact spaces are discussed in detail in [7, Chapter 8]. We
say a subspacg of X is C-embedded inX if every function inC(S) can be extended to

a function inC(X). For eachX there exists a unique realcompact spaéein which X

is dense and’-embedded; thus X is a realcompact space such tigv X) is isomorphic

to C(X). Consequently we shall henceforth assume that all hypothesized spaces are
realcompact Tychonoff spaces. Of course, when we consider specific examples, we shall
have to check that they are realcompact and Tychonoff.

The following is a modification of [7, 10.8 and 10.9(a)].

Theorem 4.2. Let X andY be realcompact Tychonoff spaces.
@ If t:C(X) — C(Y) is a ring embedding for which(1) = 1, then there is a
continuous function* : Y — X such that
(i) t*[Y]isdenseinX.
(i) If feC(X)thent(f)=(f|*[Y]) ot™.
(b) If o:Y — X is a continuous function such tha{Y] is dense inX, then the map
o’ :C(X) — C(Y) defined by

o'(f)=(flol¥Y])oo
is a ring embedding of (X) into C(Y) for whicho’(1) = 1.
(c) *) =rand(c)*=o0.

Theorem 4.2 tells us that any ring embedd®gX) — C(Y) that preserves 1 can be
viewed as arising from a continuous mappinffom Y onto a dense subspaceXfin such
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situations we can (and will) identif¢ (X) with its isomorphic copy{(flo[Y])oco: f €
C(X)}, which is a subring o’ (Y).

Lemma4.3. Let X andY be spaces and suppose tligtr) is a ring of quotients of (X).
If o:Y — X is the induced continuous map fromonto a dense subsé&tof X, and if D
is a dense subset @f, theno <[ D] is dense irnY.

Proof. As above, we identifyC (X) with the subring{(f|T) co: f € C(X)} of C(Y).
Suppose the lemma fails, and thatis a dense subset @f for whicho <[ D] is not dense
in Y. As Y is Tychonoff andY\cly (o [D]) # @, there is anf € C(Y)\{0} such that
flo <[ D]] = {0}. By hypothesis there exigt & € C(X) such that

f-(@IT)oo)=(hIT) oo #0.
AsolY]=T,ifde Dthend+#o(d).Letp € o (d). Then

0= f(p)=f(p)-g(a(p)) =h(o(p)) =h(d)

and soh[D] = {0}. As D is dense inT, and hence inX, it follows thatz = 0, a
contradiction. The lemma follows. O

Recall thatP-spaces were defined in Definition 3.1.

Theorem 4.4 [17, 1W].Let X be a space. Then
(1) Z(X) is an open base for a Tychondftspace topology oiX. The Gs-sets ofX
form an open base for the same topology.
(2) Let X5 denoteX equipped with thisP-space topology and let: Xs — X denote
the identity map on the underlying setf Then ifY is a TychonoffP-space and if
f Y — X is any continuous map, then there is a continuous iap — X5 such
thatjok = f.

The spaceX; is called theP-space coreflection of. By [17, 5F(7)],X is realcompact
if Xis.
Recall that almosP-spaces were defined in Definition 3.10.

Theorem 4.5. The following are equivalent for a realcompact Tychonoff spgce
(1) C(Xs) is aring of quotients of (X).
(2) X is an almostP-space.
(3) If Disdense inX thenj [D] (see Theorem.4)is dense inX;.

Proof. (1) = (3) This follows from Lemma 4.3.
(3) = (2) Let¥ #£ Z € Z(X). Then(inty Z) U (X\Z) is dense inX, and hence by
hypothesis dense ik;. But Z is a nonempty open subset ¥§, and hence

ZN((intxy 2) U (X\Z)) # 0.

Thus inty Z # ¢, and X is an almostP-space.
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(2) = (1) Supposd £ f € C(Xs). Then there exists € R\{0} such thatf < (r) # @.
As f<(r) € Z(Xs), there existsS € Z(X) such thatd £ S C f<(r). As X is an almost
P-space, there exisgse C(X) andp € inty S such thag(p) = 1 andg[X\ inty S]={0}.
A straightforward calculation shows that

0#f-(goj)=(rg)o.

SinceC (X) is identified with the subrinfko j: k € C(X)} of C(X5), it follows thatC (X )
is aring of quotients o€ (X). O

Corollary 4.6. If C(Y) isaregularring of quotients of (X) and if T = t*[Y] is the image
of Y under the induced mapping — X, thenC(Y) is a ring of quotients o (T;s), and
C(Ts) is aregular ring of quotients of (7).

Proof. By Theorem 4.4 there is a mappirgY — Ts which is onto becausg — T is
onto (4.2). The induced homomorphisfig7T) — C(Ts) — C(Y) are then embeddings
and rings of quotients of their domains becads&) — C(Y) is. (See 2.1(b).) O

Lemma 4.7. Let T be a dense subspace ¥f If T is an almostP-space therC(T) is a
ring of quotients ofC (X).

Proof. As before, we identifyC(X) with {f|T: f € C(X)}. Let0# f € C(T). Then
/< (r) is a nonempty zero-set @f for somer £ 0. By assumption there is an open subset
V of X suchtha) A VNT C f<(r). Choosep € VNT andg € C(X) suchthag(p) =1
andg[X\V]={0}. ThenO=# f - (g|T)=(rg)|T e C(X). O

[We remark that it is not always true that1f is dense inX, thenC(7T) is a ring of
quotients of{ f|T: f € C(X)}. For example, letX = [0, 1] and letT be the irrational
points of X. Itis well known that there existg € C(T') such thatf cannot be continuously
extended to any point ok\7. A modification of [6, 3.12] (which is the source of this
example) shows that there do not exgsh € C(X) suchthaOD## f - (g|T) = h|T.]

Definition 4.8. The intersection of all dense cozero setsxoWill be denoted by X. By
[7, 8.9, 8.14],¢ X will be realcompact ifX is. We note as well thatX contains the set of
all P-points ofX.

Lemma 4.9. The following are equivalent for a spaée
(1) gX isdenseinX.
(2) X has a dense subspace that is an alm@stpace.
(3) gX is an almostP-space, it is dense iX, and it contains every almogt-space
that is dense irX.

Proof. (1)= (2) LetZ € Z(gX) and letp € Z. As Z is aGs-set ofgX [7, 1.10] there is
a countable familyV (n): n € N} of open subsets of suchthatZ =("\{V(n) NgX: n e
N}. By [7, 3.11(b)] there exist§” € Z(X) such thatp € F € ({V(n): n € N}. Since
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F N gX #0, it follows from the definition ofg X that inty F # (. As gX is dense inX
andF N X C Z, it follows that int,x Z # ¢J. HencegX is an almostP-space.

(2) = (3) Let T be a dense subspace ¥fand an almosP-space. IfV is any dense
cozero-set ofX thenV N T is a dense cozero-set Gf and thusVNT =T C V.
Consequenthyl’ C gX. ThusgX is dense inX and is therefore an almogt-space by
the preceding argument.

(3) = (1) This is obvious. O

Corollary 4.10. If X has a dense almogt-subspace, then it has a largest dense almPst-
subspace, namejyX .

Theorem 4.11.
(1) The following are equivalent for a spaée
(a) C(X) has aregular ring of quotients of the for@xY).
(b) gX isdenseinX.
(2) If the equivalent conditions iflL) hold then there is a canonical copy 61(gX)s)
betweerC (X) andC(Y).

Proof. (a)= (b) Leto : Y — X be the continuous mapping fromonto a dense subsgt
of X induced by the embedding @6f(X) into C(Y) (see Theorem 4.2). By Corollary 4.6
we have the ring embeddings

C(X)— C(T)— C(Ts) — C(Y),

wheref € C(X) is taken to(f|T) oo € C(Y). By 2.1(b),C(T}) is a ring of quotients of
C(T) because& (Y) is a ring of quotients o€’ (X). It follows from Theorem 4.5 thdf is
an almostP-space. Sinc# is dense inX, it then follows thatg X is dense inX.

(b) = (a) By Lemma 4.% X is an almostP-space. By Lemma 4.C(gX) is a ring of
quotients ofC (X) (via the embedding — f|gX). By Theorem 4.5C((gX)s) is a ring
of quotients ofC(gX), and is regular aggX); is a P-space. Thus by 2.1(bJ;((gX)s) is
aring of quotients o (X).

(2) By Corollary 4.6 and the above we have embeddings

C(X) =5 C(gx) -5 C((gX)5) -1 cv),

where f € C(X) is taken tof|gX € C((gX)s) by i ok, and to(f|gX) ok € C(Y) by
joiok (wherex is asin Corollary 4.6). O

Corollary 4.12. If H(X) is isomorphic to aC(Y) thenY = (gX)s and furthermore
H(X)=H(gX).

Proof. In what follows the maps, j, andk are as in the proof of Theorem 4.11(2) above.
By 2.1(f)(ii) H (X) is the smallest regular ring of quotients@fX). If H(X) isisomorphic
toaC(Y), thenasC((gX)s) is regular (aggX)s is a P-space) and a ring of quotients of
C(X) (by 2.1(b)), it follows thatj must be an isomorphism. By the realcompactness of
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(gX)s andY, this implies thatr is homeomorphic tgg X);s. But as the embeddinigo &

is then the canonical embedding@tX) in H(X) and as this canonical embedding is an
epimorphism (see 2.1(f)(i)), theris an epimorphism (see 2.1(e)(i)). BHt(X) is a ring of
quotients ofC(gX) (by 2.1(b)) and an epimorphic extension®@fg X) (as noted above),
so by 2.1(f)(iii), C((¢X)s) = H(g(X)). O

Corollary 4.13. If X has a dense subspace that is an almBstpace thenH (X) is a
@-algebra of real-valued functions.

Proof. By 2.1(b) and Theorem 4.11(2),((gX)s) is a regular ring of quotients af (X)

(as noted in the preceding proof). Hence by 2.1(f)(ii) there is an embeddiAqX§ into
C((gX)s). It is standard that any fixed maximal ideal 61(gX)s) contracts to a real
maximal ideal of the subring/ (X). Furthermore, the intersection of these contractions to
H(X) is clearly the zero ideal. Sincl (X) is also ad-algebra (see Proposition 3.8), the
conclusion follows. O

5. WhenisH(X)aC(Y)?

As yet we do not have a complete answer to this question. However, we do have
considerable information about several classes of special cases. We begin by recapitulating
the relationship among (X), C(gX), C((gX)s) andH (X).

Suppose that there is a (realcompact Tychonoff) spasech thatC (Y) is a regular ring
of quotients of (an embedded copy @fj X). Then by Theorem 4.1€((gX)s) is such a
ring, gX is dense inX, and we have

CX)Z{flgX: feCX)} S C(gX) < C((gX)s)-
SinceH (X) is the smallest regular ring of quotients@¢X), it follows that
CX)={flgX: feCX)} S H(X) S C((gX)s). (+)

By Corollary 4.12 we know that/ (X) is aC(Y) for someY iff gX is dense inX and
H(X)=C((gX)s), i.e., iff the second inclusion above is in fact an equality. In general it
is not immediately obvious under what conditions we would h@ygX) € H(X). The
minimality of H(X) among regular rings of quotients 6f(X) does mean thall (X) is
naturally embedded i (g X). Note that Example 6.4 shows th@igX) need not be
included in H(X) and thatH (X) can be a proper subring @f (¢X). However, H (X)
andH (gX) can coincide without being @(Y). This will happen ifX is a compact, non-
scattered almosk space (such g8N\N).

One consequence @k) is that sincegX and (gX)s; have the same underlying set,
each member o (X) would be representable as a real-valued function with domain
gX. In particular, if f € C(X) then (f|gX)* would be representable in this fashion.
A straightforward computation shows th&tf |¢ X) is a dense subset 6§ X)s, and hence
by Theorem 3.2 there is a uniqgue memb@&r € C((gX)s) such thatf"|S(f|gX) =
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(flgX)*, namely:f"(x) =1/f(x)if x e (cozf)NgX,andf"(x)=0ifx € Z(f)NgX.
We will (again) abuse notation slightly and identify|g X)* with f*. Thus we have:

Lemma5.1. LetgX be dense in the Tychonoff spaxe
(@) If feC(X)then(f|gX)*(x) =1/f(x) if x € gX Ncozf and (f|gX)*(x) =0 if
xegXNZ(f).
(b) TheringH (X) ={Y_"_1(filgX)(hilgX)*: fi,hi € C(X), andn € N}.

Proof. Part (a) follows from the previous discussion. Part (b) follows from (a) and
Theorem 3.2. O

We briefly digress from our considerationf( X) to consider a more general algebra of
real-valued functions. LeX be a Tychonoff space. f € C(X), let usdefineg": X — R

by
g (x)=1/g(x) if x ecozxg),
g (x)=0 if x € Z(g).

We then defing (X) to be the subring of the ring of all real-valued functions with domain
X generated by (X) U {g": g € C(X)}. Since(fg)" = f"g", itis immediate that

G(X)=1) fighneN. fi.gieCX).
n=1

By Lemma 5.1(b), ifX is an almostP-space (i.e., ifgX = X), then G(X) is the
epimorphic hullH (X) of C(X). However, we warn the reader that in general this is not the
case. More specifically, leX be a Tychonoff space and consider the mafpom the set
CX)U{f": feCX)ontoC(X)U{f*: feC(X)}definedbyr(g)=gif g C(X),
andi(f) = f*if f € C(X). This map cannot, in general, be “extended by linearity” to a
ring isomorphism fronG (X) onto H (X). If X is an almostP-space, however, the obvious
linear extension of is indeed a ring isomorphism.

Denote the subring of bounded membergxfX) by G*(X). ThenG*(X) carries the
usual “sup norm” defined by:

Ikl =sup{lk()|: x € X} if ke G*(X),

and this norm induces a metric 6 (X). As usual, we say thai*(X) is uniformly closed
if it is complete with respect to this “sup norm” metric.

If X is an almostP-space and i (X) = C(X;), thenG*(X) = H*(X) = C*(Xs), and
S0 G*(X) would be uniformly closed a§*(Xs) is. Consequently it becomes of interest to
know what conditionst must satisfy ifG*(X) is to be uniformly closed.

Lemma 5.2. Let X be a Tychonoff space. }';_, fi(g/") = h € G(X), thenZ(h) has the
form Uf.‘:l S; N'V;, where eacts; € Z(X) and eachV; € coz X).

Proof. For each subset of {1, ..., n}, let

T(A) = [ﬂ{coz(gi): ie A}] N [ﬂ [Z(gi): i e .. ..,n}\A}].
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Clearly{T'(A): A C{1,...,n}} partitionsX and eachl’ (A) has the formS NV, where
S eZ(X) andV € cozX). If x e T(A) thenh(x) =0 iff Y, 4 fi(x)/gi(x) =0 iff

Yiea [iCOM T jea 851 =0. But 34 fillljen i) &1 = ka € C(X), so evidently
Z(h)y=U{T(A)NZ(ka): AC{L,...,n}} which is the required form. O

Corollary 5.3. If h € G(X) thenZ(h) is an F,,-set ofX.

Proof. Each cozero-set of is a union of countably many closed subsetxdfi.e., is an
F,-set of X), and the intersection of a closed set andrgrset is clearly anf,-set. The
result now follows from Lemma 5.2.0

Theorem 5.4. Let X be a Tychonoff space for whi@h*(X) is uniformly closed. Then the
union of any countable family of zero-sets¥fs a Gs-set ofX.

Proof. Let {Z(i): i € N} be a countable family of zero-sets &f. Let g; be the
characteristic function oZ(i). Theng; =1 — f; f/, whereZ(i) = Z(f;), and sog; €
G*(X) for eachi. Let h, = Z;‘zl(%)igi. Then eachr, € G*(X). Clearly (h,) is a
Cauchy sequence of functions @*(X) with respect to the “sup norm” metric. Thus as
G*(X) is assumed to be uniformly closed, the limit of this sequence, wh@‘.ﬁl(%)igi
(henceforth denoted by) is in G*(X). Clearly cozh) = | ;. Z(fi). By Corollary 5.3
Z(h) is an F,-set so its complement c@z) is aGs-set of X. The theorem follows. O

Corollary 5.5. LetX be an almosP-space. IfH (X) = C(Xs) then the union of countably
many zero-sets of must be aGs-set ofX.

Definition 5.6. A Tychonoff topological spac¥ is calledscatteredf every subspace of
X contains isolated points.

Spaces of ordinal numbers are examples of scattered spaces, as are one-point compact-
ifications of discrete spaces. The property of being scattered is preserved by subspaces
(obviously) and the formation of products with finitely many factors (but not infinitely
many). It is easy to verify that a space is scattered space if and only if each of its subspaces
contains a dense set of isolated points. See [11, 89 VI] for more information.

Theorem 5.7. If G*(X) is uniformly closed then every compact subspacé isfscattered.

Proof. By Theorem 5.4 it suffices to prove thatif has a compact subspafehat is not
scattered, then there is a countable farfily: n € N} of zero-sets such thaf{Z,: n € N}
is not aGs-set of X.

In the first part of the proof of [15, 3.1] it is shown thatZifis a non-scattered compact
space, then there is a compact subspgaoé L and a continuous surjection fromonto the
Cantor setC. So, there is a compact subgebf T and a continuous surjectign F — C.
As g is a perfect surjection there is a compact subspaas F such that the restriction
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¢|K of g is a perfect continuous irreducible surjection (see [17, 6.1(b) and 6.5(c)]. By [17,
6.1(b)],K is separable and has no isolated points.

Let {p,: n € N} be a faithfully indexed countable dense subsetkof Fix n € N.
BecauseX is Tychonoff, for eachj € N\{n} there exists a zero-set(n, j) of X such
thatp, € Z(n, j) andp; ¢ Z(n, j). Let Z(n) = ({Z(n, j): j € N\{n}}. ThenZ(n) is a
zero-set ofX. SinceK has no isolated points, the dgt;: j € N\{n}} is dense ink and
soZ(n) N K is a closed nowhere dense zero-sekof

Now suppose thdt){Z(n): n € N}is aGs-setofX, i.e., is of the fornf \{W(j): j € N}
where eactW (j) isopeninX. Then[X\W (j)]N K, which we denote by (), is a closed
subset ofK, and as it is disjoint from the dense subggt: n € N} of K, it is nowhere
denseink. Thus

k=(J{zmynk:neN}ju [U{M(j): jeN}],

and so we have expressed the compact spaes the union of countably many closed
nowhere dense subsets, which contradicts the Baire category theoreny JTH@s): n €
N} is not aGs-set of X, and our theorem follows. O

Theorem 5.8. Let X be Tychonoff. If there is a spagesuch thatH (X) = C(Y) thengX
is dense inX and each compact subspacegdf is scattered.

Proof. By Corollary 4.12 our hypotheses imply thak is dense inX, thatY = (gX)s,
and thatH (X) = H(gX). As H(X) = C((gX)s), it follows from the representation of
H(X) giveninLemmab.1thaf(¢gX) C H(X) = H(gX) = C((gX)s). By the discussion
following the proof of Lemma 5.2, it follows tha&*(gX) = H*(gX) = C*((gX)s). As
C*((gX)s) is uniformly closed, it follows thaG*(gX) is, and so by Theorem 5.7 every
compact subset gf X is scattered. O

For example, ifD is an infinite discrete space then its StoBeeh outgrowthg D\ D
is a compact almose space without isolated points (see [5]) and hence by Theorem 5.8,
H(BD\D) is notaC(Y); itis not even uniformly closed.

Theorem 5.9. Let X be a realcompact almogt-space. IfH (X) andC(X;) have the same
idempotents and iff (X) is uniformly closed the/ (X) = C(X;s) and consequentl§f (X)
is a ring of continuous functions.

Proof. One has the monomorphisty(X) — H(X) — C(Xs). Since bothH (X) and
C(X;s) are regular and have the same idempotents, contraction and extension of ideals
establish a homeomorphism between SH¢&) and Spe@C(Xs)) = 8(Xs). By [9] (see
p. 89 lines before 5.1, and p. 90 lines before 5.2), the following are equivalent for the
@-algebraH (X).

(i) H(X) isisomorphic to a ring of continuous functions,

(i) H(X) isisomorphic toC(R(H (X))),
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(i) M(H (X)) = B(R(H (X)),

(iv) H(X)=C(Xs).

Thus it suffices to show that(H (X)) = B(R(H (X))), which we now do. It is clear
that contraction of maximal ideals frof{R(H (X))) to M(H (X)) when restricted to real
maximal ideals, defines a one-to-one continuous map &gro R(H (X)). If this map is
onto, it will be a homeomorphism becay$eXs) and Sped? (X) are homeomorphic. Let
M be a real maximal ideal i/ (X). ThenM N C(X) is real maximal inC(X); say it is
N, for some pointp € X.

Let NIQ denote the corresponding real maximal idealifX ;). Both NIQ N H(X) and
M are real maximal ideals off (X) that contract taV,, in C(X). But contraction defines
maps

SpedC(Xs)) — Speq H (X)) — SpecX).

The firstis one-to-one and onto as noted above, and the second is one-to-one Bgcause
is an epimorphic extension @f(X) (see [13, Proposition 1.6]). Thug = N} N H(X),
and the contraction map from the real maximal ideal€ @X) is onto. O

Definition 5.10 [15]. A Tychonoff topological space is callgdnctionally countabléf
| f1X1] < Rg foreachf € C(X).

Lemma 5.11. Let X be a Tychonoff space that either contains a compact subspace with
no isolated points, or else is not totally disconnected. TXiesinot functionally countable.

Proof. SupposeK is a compact subspace of without isolated points. Then as
demonstrated in the proof of 3.1 of [15], there exists a continuous surjegtioom K
onto the Cantor set (viewed as a subspacR)oBy 3.11(c) of [7] there existg € C(X)
such thatf|K = g. Clearly| f[X]| > |g[K]| = ¢ S0 X is not functionally countable.

Secondly, letC be a connected component &f with more than one point. AX is
Tychonoff there existgy” € C(X) such that f[C]| > 1. As f[C] is a connected subset of
R, it follows that| f[X]| > | f[C]| = c¢. ThusX is not functionally countable. O

Theorem 5.12.Let X be a realcompact Tychonoff space for whichigX)| =c¢. If gX

is not functionally countable theHd (X) # C((gX)s), and henceHd (X) is notaC(Y). In
particular if eitherg X is not totally disconnected, or elgeX contains a compact subspace
without isolated points, theH (X) is not aC(Y).

Proof. If H(X) = C((gX)s) then by Theorem 4.1%X is dense inX. Thus by
Corollary 2.6/ H(X)| = |C(X)| =|C(gX)| = ¢. Sinceg X is not functionally countable, by
the proof of 3.1 of [15] there exists afie C(gX) for which | f[gX]| = ¢. Denotef[gX]
by S. Thus{f < (r): r € S} partitions(gX)s into ¢ pairwise disjoint clopen subsets. If
A C S then the characteristic function of the $gf f  (r): r € A} belongs toC((gX)s),
and so|C((gX)s)| = 2°. ThusH(X) # C((gX)s). The rest of the theorem follows from
Lemma5.11 and Corollary 4.12.0
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We now consider some situations in whigh(X) is a C(Y). We begin by analyzing
whatg X is in several situations.

Lemma 5.13. Let T be a realcompact almost-space, and lef" be a dense subspace of
aspaceX. If T is C*-embedded irX thengX =T.

Proof. By [7, 6.7] we know thal" € X C BT. Letp € X\T. By [17, 5.11(c)] there exists
C(p) € cozBX such thatT € C(p) C BT\{p}. As X N C(p) € cozX, it follows that
gXCT.ByLemmad4. X =T. O

Recall (see problem 3P of [17], for example) that a Tychonoff spacecalledweakly
Lindelof if each open cover ok has a countable subfamily whose union is dens¥.in
Lindel6f spaces and spaces of countable cellularity are weakly Lindelof; see the cited
reference.

Lemma 5.14. The following are equivalent for a realcompact almd@siFychonoff space
T:

(1) T is weakly Lindelof.

(2) T is Lindelof.

(3) If T is dense in the realcompact spakehengX = T.

Proof. Clearly (2) implies (1). For the converse, suppdsés a weakly Lindel6f space
and letC be an open cover df. Each member o€ can be written as a union of cozero
sets of7 asT is Tychonoff. By hypothesis there are countably many of these cozero sets
whose union is dense ifi. As T is almostP, this union must in fact be all df. So, the
countable subcollection af whose members contain the countably many cozero sets in
guestion must be a countable subcove€ofhusT is Lindeldf. Hence (1) implies (2).
Suppose (2) holds. By Lemma 4.9 in order to prove (3) it suffices to provgthat 7.
So, letp € X\T. As X is Tychonoff there exists a famil§ (p) of cozero sets ok such
that  C(p) = X\{p}. As T is Lindeldf, there is a countable subfamilg (i): i € N} of
C(p) suchthatl C |J{C(i): i e N} = V(p). ClearlyV (p) is a dense cozero set &fthat
containsT and notp, sop ¢ gX. Consequently’ = ¢gX.
To prove that (3) implies (2), suppose that (2) fails.#& is Tychonoff, there is a family
C of cozero sets oBT such thatl’ C | JC, but no countable subfamily @ coversT.
Let K denote the one-point compactification of the subspgee of ST, with p being the
“point atinfinity”. ThenT is a dense subspace®f If W were a dense cozero setifthen
asT isalmostP, T C W.If p¢ W thenW C | JC, and asW is Lindeldf (being a cozero
set of a compact space and heaceompact), there would be a countable subfamilyof
that coversW and hencd’, in contradiction to the choice &. Thusp € gK\T. Hence
(3) fails and (2) implies (3). O

Lemma 5.15. Let X be a realcompact space and IeK (n): n € N} be a sequence of
compact open almost- subspaces whose direct sy@{K (n): n € N} =T is a dense
subspace oK. ThengX =T andC(T) € H(X) (and soH (T) = H(X)).
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Proof. As T is ao-compact free union of compact almaBtspaces, it is Lindel6f and
almostP. Hence by Lemma 5.14X = T. By the remarks preceding Lemma 5.1,
CX)Z{fIT: feC(X)} S H(X) S C(Ty).

So by Lemma 5.1(b) it suffices to show thaki& C(T') there existf, h € C(X) such that
k= (f|T)(h|T)*. Define f andh as follows:

0 =[k@][rUk@I+ D] ifxe K,

h(x) = [k + D] if x € K(n),
h(x)=0 if x e X\T.

Since, for eacla > 0, f < [R\(—a, a)] andh " [R\(—a, a)] are compact, one easily shows
that f andh belong toC (X). A routine computation shows that= (f|T)(h|T)*. O

Theorem 5.16. Let X be a realcompact space with a countable denseset{d(i): i €
N} of isolated points. Ther (X) = C(N).

Proof. By Lemma5.14 X = D = Ds so by the remarks preceding Lemma 5.1,
CX)Z|{fID: feC(X)} CH(X)CC(D)=CN).

But by the preceding lemma (with in the role of7) C(D) C H(X). ThusH (X) = C(N)
as claimed. O

Theorem 5.17.1f T is a realcompactP-space and iff" is dense and’*-embedded in the
realcompact spac& thenH (X) = C(T).

Proof. By Lemma5.1% X =T = Ts so arguing as in the proof of Lemma 5.15, we need
only show that ifk € C(D) there existf, h € C(X) such thatt = (f|P)(h|P)*. Clearly
the functionst/ (k| + 1) and1/(|k| 4+ 1) belong toC*(T) and hence by hypothesis can be
continuously extended tp andi in C(X), respectively. A routine computation shows that
k= (fID)(h|D)*. O

Example 5.18. The C*-embedding hypothesis cannot be dropped from Theorem 5.17; in
many models of set theoryN\N has a dense set éf-points, and this set is realcompact

if the continuum hypothesis is assumed, yet as noted after Theoreid §8{\N) cannot

be aC(Y).

6. Some further examples

In the previous section all our examples of spa&efor which H(X) is aC(Y) had
the property thag X was aP-space. We now present some examples where this is not the
case. The first example is mentioned in [19], but no details are provided there.
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Example 6.1. Let D be an uncountable discrete space andklet D U {p} be its one-
point compactification. We claim thaf (K) = C(K;). First observe thak is an almost
P-space since any dense cozeroGeif K will be Lindeldf (as it is a union of countably
many closed sets af) and containD; consequentlyp € C as otherwisg{d}: d € D}
would be an open cover @ with no countable subcover. Thgk = K and so by the
remarks preceding Lemma 5.1 we have

C(K) € H(K) S C(Ks).

Hence we must show thaf (K) = C(Ks). By Lemma 5.1(b) it suffices to show that if
k € C(Kjs) then there exisy andh in C(K), ands € R, such thak = (f)(h)* +s.

DenoteKs by L. It is routine to verify that each point ab is isolated inL, and if
p €S CLthenS isopeninL iff L\S is countable. (This immediately implies thatis
Lindel®f.) Supposé(p) =r. ThenL\k“ [r —1/n,r 4+ 1/n)] is countable for each € N,
S0 L\k“ (r) is a countable subsét of L. ClearlyC is clopeninL; let C = {a(n): n € N}.
Letg =k —r and observe that(x) = 0if x € K\C. Define functionsf andh with domain
K as follows.

flam) =g(am)/n[lglam)|+1] ifneN,

f(x)=0 if x € K\C;
h(a(n)):l/n[|g(a(n))|+l] if neN,
h(x)=0 if x e K\C.

It is easy to verify thatf andi belong toC(K), and a routine computation shows that
k= (f)(h)* + r. Consequently7 (K) = C(Ks) and we are done.

Example 6.2. Let H{K (n): n € N} be denoted by’, where eacltX (n) is a copy of the
spacek of the previous example. Lét be any realcompact space containings a dense
subspace. By Lemma 5.18X = T andC(T) € H(X) € C(Ts); consequenthyd (X) =
H(T) (see Corollary 4.12). It is well-known (and easily proved) that if a Tychonoff space
S can be written as a direct suB{Y (n): n € N} thenC(S) =Z[[{C(Y(n)): n € N}.
Although formation of the epimorphic hull may not commute with direct products of rings,
because of the simplicity of the expression #(K) derived in Example 6.1 above, and
because each summandfs K, it follows that

H([T{ckm: nen) =[T{HEKm): neN).
Hence by Lemma 5.15
HOO=HT) = H([[{cKm): neN}) =[T{HEm): neN)
=TT{cwm): neN}=c(PILm: neN})=cy),

where eachL(n) is homeomorphic to the spagedescribed in the previous example. Thus
if X containsT” as a dense subspace (for examplé& i 8T) thenH (X) is aC(Y), even
thoughgX # X andgX is not aP-space.
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Example 6.3. Let W denote the space of countable ordinals with the order topology, and
let W* denote its one-point compactification (see Chapter 5 of [7]). It is a routine exercise
to show, with the aid of Lemma 5.14, thatW*) = W*\{«: « is a countable limit ordind
which is homeomorphic to (and hence will be identified with) the spaakescribed in
Example 6.1. Ad. is a P-space, if we can show that(L) € H(W*) then it will follow
thatC(L) = H(W™). As before, by Lemma 5.1(b) it suffices to show that & C (L) then
there exist- € R and f, h € C(W*) such thatt = (f|L)(h|L)* + r. As seen above, there
existsa € W such thak[L\[0, «]] = {r}. By applying Theorem 5.16 to the compact open
subspacg0, «] of W*, we see thaH ([0, «]) = C(L N[0, «]) = C(N) and so there exist
functions;j andm in C([0, «]) suchthatk —r)|L N[0, a] = (j|L N[O, «])(m|L N[O, a])*.
Extend; to f € C(W*) by decreeing thaf[W*\[0, «]] = {0}, and extena@: to 2 € C(W*)
similarly. One then easily checks that= (f|L)(k|L)* + r, and sok € H(W*). Thus
H(W*)= C(L) as claimed.

Example 6.4.Let M denote a compact metric space without isolated points. Its
Alexandroff doubledenotedA (M), is constructed as follows. If € M and j € N let
S(x, j) denote the open sphere M with centerx and radius 1j. The underlying set of
A(M)is M x {0, 1}, andA(M) is topologized as follows. Each point of the foim 1) is
isolated, and a neighborhood baséa®) is {T'(x, j): j € N} whereT (x, j) =[S(x, j) x
{0, 1}1\{(x, 1)}. ThenA(M) is a first countable compact Hausdorff space of weigdd
the setM x {1} is a dense subsd? of isolated points ofA(M) of cardinalityc. (The
reader is referred to [4, 3.1.26] for a detailed analysis in the case wiesethe circle.)

It follows from [2, 2.2] that|C(A(M))| = ¢. SinceA(M) is compact and first countable,
each singleton subset is a zero-set (see [7, 3.11(b)]L(86)\{p} is a dense cozero-set
of A(M) for eachp € M x {0}. Itimmediately follows thafg(A(M))]s = g(A(M)) = D.
Thus|H(A(M))| = |C(A(M))| = ¢ while |C(g(A(M)))| = 2¢; consequently, in contrast
to our earlier exampleg/ (X) is a proper subring of (g X) whenX is taken to beA (M),
even thougly X is a P-space and it is dense .. HenceH (X) is not aC(Y) in this case.
This example also illustrates thigtjg X: k € H(X)} # H(gX) in general.

7. Observations onQ¢(X)

We begin by asking under what conditio@g(X) will be isomorphic to aC(Y). This
question is more easily answered than the analogous question Ali@)tbecause we
have at our disposal the following

Theorem 7.1 [6, 2.6]. Qc(X) is the ring of all continuous functions on the dense cozero-
sets ofX, modulo the relation which identifies functions that agree on the intersections of
their domains.

We note here that i (X) = C(Y), thenQ¢(X) is uniformly closed [9, 3.1, 5.2],and is
therefore isomorphic to the ring of all continuous functions on the countable intersections
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of dense cozero-sets X [3, 3.4]. As well,Y is then an almosR-space since non-zero-
divisors inQ¢(X) are units.
In view of the Remarks 4.1 we assume in what follows tkias realcompact.

Theorem 7.2. The following are equivalent for a space
(1) Qa(X)=C(Y) for some Tychonoff spadé
(2) Qu(X)=C(gX).
(3) (a)gX is dense inX, and
(b) Every function inC (g X) has a continuous extension to a dense cozero-skt of

Proof. (1) = (2) As in Theorem 4.2 and Lemma 4.3 there is a mappingy — X such
thato[Y] =T is dense inX and preimages of dense subsetg'cére dense irY. Since
Qc(X) = C(Y), Y is an almostP-space. Sinc& (Y) is a ring of quotients ofC (X),
Lemma 4.3 is applicable and shows that the inverse image of a proper dense cozef®-set of
is a proper dense cozero-sefrtofBut Y, being almostP, has no such subset. Hence neither
doesT, and soT is an almostP-space. It follows that” € ¢X. Thus Q¢ (X) € C(gX)

and we have

Qci(X) € C(gX) € C(T) € C(Y) = Qa(X).

(2) = (3) EvidentlygX is dense inX. We then have a monomorphism @¢(X) onto
C(gX) defined byf — f|gX, wheref € C(V) for some dense cozero-sétof X.
The third implication being obvious, the result follows

In general we know that for any Tychonoff spa&e one has the natural inclusions
C(X) C Qu(X) C H(X) C Q(X). We next discuss circumstances under which some or
all of these inclusions are equalities. We also consider conditiods mmder which some
of Qa(X), H(X), andQ(X) are isomorphic to rings of the fori@(Y) while at the same
time others are not.

Remark 7.3 (Equalities among rings of quotients

(@) It is possible forQ(X) to be isomorphic to aC(Y) without either Q¢ (X) or
H (X) being isomorphic to a(T). A class of spaces of this sort is described in
Example 6.4. Note that these spaces satisfy 3(a) but not 3(b) of Theorem 7.2.

(b) It is possible forQ¢(X) and H(X) to coincide; this happens X is basically
disconnected (see [7, 1H, 6M.1] and Lemma 2.2 above)X lis extremally
disconnected therQq(X) = H(X) = Q(X) (see Corollary 3.5). IfX is a P-
space therC(X) = Q¢ (X) = H(X) (Corollary 3.4). Thus ifX is an extremally
disconnected-space theit (X) has no proper ring of quotients and hete) =
Qc(BX) = H(BX) = Q(BX) (Corollary 3.5). It is known that an extremally
disconnected-space of non-measurable cardinal is discrete [7, 12H].

(c) There are spacesandT such thatH (X) andQ¢(X) coincide and are isomorphic
to C(T). By Theorem 7.2, Lemma 5.13 and the remarks preceding Lemma 5.1, this
will happen ifT is a realcompacP-space an& = ST.
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(d) It is possible forC(X), H(X) and Q¢(X) to be distinct, and for each to be
isomorphic to aC(Y). For example, ifX and T are as defined in Example 6.2,
then it follows from Theorem 7.2 thadq(X) = C(T) and from Example 6.2 that
H(X) = C(Ty).

(e) It is possible forQ¢(X) to be isomorphic to aC(T) but for H(X) not to be
isomorphic to aC(Y). As an example, leT = @5{B(n): n € N}, where eaclB(n)
is a copy of BN\N, and letX be any realcompact Tychonoff space that contains
T properly as a dense subspace (eXj+ BT). By Theorem 7.2 it follows that
Qc(X) = C(T) but asgX = T and not every compact subset®fis scattered (as
BN\N is not), then it follows from Theorem 5.8 that(X) is not aC(Y).

8. Open questions
Several interesting and obvious questions remain unresolved. The most fundamental is:

Question 8.1. Characterize those realcompact Tychonoff spate®r which H(X) =
C((gX)s)-

Questions pertaining to special cases of Question 8.1 are the following:
Question 8.2.If H(X) = C((gX)s) does it follow thatX has a dense set éf-points?

Despite persistent efforts we have been unable to answer Question 8.2 in the general
case. However, observe that the answer is “ye¥’ i§ basically disconnected, for in that
caseg X = P(X); we leave verification of this as an exercise for the reader.

Question 8.3.If X is a compact scattered almaBtspace, does it follow that/ (X) =
C((X)s)? (cf. Theorem 5.8).

Note added in proof

The authors have recently answered this question in the negative.
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