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Abstract

The epimorphic hullH(A) of a commutative semiprime ringA is defined to be the smallest von
Neumann regular ring of quotients ofA.

Let X denote a Tychonoff space. In this paper the structure ofH(C(X)) is investigated, where
C(X) denotes the ring of continuous real-valued functions with domainX. SpacesX that have a
regular ring of quotients of the formC(Y ) are characterized, and a “minimum” suchY is found.
Necessary conditions forH(C(X)) to equalC(Y ) for someY are obtained. 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

If R is a commutative ring with identity, there exists a well-developed notion of a
generalized ring of quotients ofR (defined in 2.1(b) below). In particular, each suchR
possesses a “complete ring of quotients” denotedQ(R) (see 2.1(c) below). Also, ifR is
semiprime thenQ(R) is regular in the sense of von Neumann (see 2.1(a) below). Closely
related to rings of quotients and regularity are the notions of an epimorphism of rings, and
the epimorphic hull of a ring. This latter object was defined and studied by Storrer [19]
(see 2.1(e), (f) below). Our goal in this paper is to study these notions in the case of rings
whose origins are topological. Our principal tool in this study will be Storrer’s theorem
that the epimorphic hull ofR is the (unique) smallest regular ring that lies betweenR and
Q(R).
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The ringC(X) of all continuous real-valued functions on a topological spaceX is
commutative and semiprime. Its complete ring of quotients,Q(X), is the subject of a
seminal work by Fine, Gillman, and Lambek [6]. We are interested in the study of the
epimorphic hull ofC(X), which we will denote byH(X). A notable result of [6] is that
Q(X) may be represented as the ring of all continuous real-valued functions on the dense
open subsets ofX (modulo identification of functions that agree on the intersections of
their domains), but we know of no corresponding representation forH(X). As well, Hager
[8] proved thatQ(X) is isomorphic to someC(Y ) if and only if the isolated points of
X form a dense subset ofX (provided no measurable cardinals exist nearby). It was the
quest for an analogous result forH(X) that prompted our study. SinceH(X) is always a
Φ-algebra in the sense of Henriksen and Johnson, one is asking that a particularΦ-algebra
be a ring of functions (see [9, Section 5]).

This problem factors into two parts. First we characterize those realcompact spacesX

for which C(X) has a regular ring of quotients of the formC(Y ). In this case we show
that there is a space that yields a “smallest” suchC(Y ), and we characterize it in terms of
X. We then investigate whenC(Y ) is isomorphic toH(X). Although we do not solve this
problem completely we obtain useful partial results.

A secondary goal, which we do achieve, is to characterize those spacesX for which the
classical ring of quotients,Qcl(X), is isomorphic to aC(Y ). This complements work by
Hager and Martinez [10], who studied Tychonoff spacesX for whichQ(X)=Qcl(X).

By [7, 3.9] we may without loss of generality assume that all spaces are Tychonoff,
i.e., completely regular and Hausdorff. As well, sinceC(X) is ring-isomorphic toC(υX),
whereυX denotes the Hewitt realcompactification ofX [7, 8.1], it will sometimes be
appropriate to assume thatX is realcompact. Undefined notation and terminology will be
as given in [7].

This work is the product of a collaboration between the two authors and Ruth Macoosh,
who has declined to be a co-author. Her enthusiasm and insights were fundamental to the
article, particularly to Sections 2–4 and 7.

2. Preliminaries on the epimorphic hull of a ring

We begin with a summary of some topics in commutative algebra that are needed for
our study. Throughout all hypothesized rings will be assumed to be commutative and
semiprime with identity. The reader is referred to [12] for general algebraic notions.

2.1.(a)Semiprime and regular rings
A ring is semiprimeif it has no nilpotent element except 0. Clearly any family of real-

valued functions (with a common domain) that is closed under the natural operations of
addition and multiplication forms a semiprime ring.

The ringR is (von Neumann)regular if for eachr ∈ R there exists ans ∈ R such that
r = r2s. The elementrs is idempotent, hence so is 1− rs. Sincer(1− rs) = 0, each
element ofR is either a zero-divisor or a unit. Each proper prime ideal ofR is maximal.
If the elementsr ands of R satisfyr = r2s, then the elements2r is the unique element
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r∗ satisfying simultaneouslyr = r2r∗ andr∗ = (r∗)2r [6, 10.1]. We shall call this unique
elementr∗ thequasi-inverseof r.

(b) Rings of quotients
A ring T containing a ringR is aring of quotientsof R if and only if for each 06= t ∈ T

there exists anr ∈R such that 06= tr ∈ R (see [12, Example 5, p. 46]). One verifies easily
that if R ⊆ S ⊆ T thenT is a ring of quotients ofR if and only if T is a ring of quotients
of S andS is a ring of quotients ofR.

(c) The complete ring of quotients
The complete ring of quotients of a ringR can be constructed from equivalence

classes of module homomorphisms from dense ideals ofR into R. Details appear in [12,
Section 2.3]. The definition of addition and multiplication is natural, and the resulting ring,
denotedQ(R), is regular whenR is semiprime [12, p. 42]. Thus eachr ∈ R has a quasi-
inverser∗ in Q(R) . Furthermore, each non-zero-divisor ofR is invertible inQ(R). If T
is a ring of quotients ofR then [12, Proposition 6, p. 40] there is a monomorphism ofT

intoQ(R) that induces the canonical morphism ofR intoQ(R). Less formally, we have:

if T is a ring of quotients ofR thenR ⊆ T ⊆Q(R).
(d) The classical ring of quotients
The classical ring of quotientsof a ringR, denotedQcl(R), is the subring ofQ(R)

consisting of all elements of the formrs−1, wherer, s ∈ R, s is a non-zero-divisor ofR,
ands−1 is the inverse ofs in Q(R). All non-zero-divisors ofR are units inQcl(R), and
henceR =Qcl(R) if and only if each non-unit ofR is a zero-divisor ofR.

(e)Essential and epimorphic extensions
An overringS of a ringR is called anessential extensionof R if each non-zero ideal of

S intersectsR in a non-zero ideal [19, introduction to §9]. Clearly the rings of quotients of
R are essential extensions ofR.

A homomorphism of ringsf :R→ S is called anepimorphismif for any ring T and
any pair of homomorphismsg :S → T and h : s → T , we have thatg = h whenever
g ◦ f = h ◦ f . Clearly the composition of two epimorphisms is an epimorphism. We shall
use the following facts.

(i) If f :R → S and g :S → T are two homomorphisms such thatg ◦ f is an
epimorphism, theng is an epimorphism.

(ii) If R is regular then any ring epimorphism with domainR is surjective [19, 6.1].
An overringS of a ringR is called anepimorphic extensionof R if the inclusion map is

an epimorphism. An immediate consequence of (ii) is:
(iii) A regular ring has no proper epimorphic extensions.
(f) The epimorphic hull of a ring
Theepimorphic hullof a ringR, denotedH(R), is a canonical overring ofR defined

and studied by Storrer [19]. It can be characterized in each of the following ways:
(i) H(R) is the unique (up to isomorphism overR) maximal essential epimorphic

extension ofR; in other words,S is an essential epimorphic extension ofR if and
only if R ⊆ S ⊆H(R) (where we denote monomorphisms by inclusions) [19, 8.3].
ThusR ⊆Qcl(R)⊆H(R)⊆Q(R) [19, 11.3].
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(ii) H(R) is the (unique) smallest regular ring lying betweenR andQ(R).
(iii) H(R) is the unique ring of quotients ofR that is both regular and an epimorphic

extension ofR.
The following result is part of [18, 1.6].

Lemma 2.2. If the annihilator ofr is principal for eachr ∈R, thenQcl(R) is regular.

Lemma 2.3 [19]. If Qcl(R) is regular thenH(R)=Qcl(R).

Lemma 2.4. LetR be a ring, letB denote the set of all idempotents ofQ(R) of the form
r∗r for r ∈ R, and letS denote the subringR(B) of Q(R) generated byR andB. Then
Qcl(S)=H(S).

Proof. An element ofS has the forms =∑n
i=1 riei whereri ∈ R ande2

i = ei ∈ B. By
expanding the product

∏n
i=1(ei + (1− ei))= 1 we can express 1 as a sum of 2n orthogonal

idempotentsfj in S (some possibly zero). Clearlyeifj = fj or eifj = 0 for all i, j .
A simple calculation will now show that

s = s1=
n∑
i=1

(
2n∑
j=1

rieifj

)
=

2n∑
j=1

r ′j fj ,

with the fj orthogonal and ther ′j a subsum of theri . Since thefj are orthogonal∑2n
j=1(r

′
j )
∗fj is the quasi-inverses∗ for s in Q(R). Therefore

ss∗ =
2n∑
j=1

(r ′j )∗r ′j fj

which belongs toS, as does 1− ss∗.
Now consider the idealAnn(s) = {t ∈ S: ts= 0}, the annihilator ofs in S. Since

s = s2s∗, 1− ss∗ ∈ Ann(s). Conversely, ifts= 0 thentss∗ = 0 andt = t (1− ss∗). Thus
Ann(s) is principal and Lemmas 2.2 and 2.3 apply toS. 2

The following is an independent proof of a result due to Olivier [16] and Storrer
(unpublished).

Proposition 2.5. The epimorphic hull ofR is the subringT ofQ(R) generated byR and
the quasi-inverses of the elements ofR in Q(R), i.e.,

H(R)=
{

n∑
i=1

ris
∗
i : ri , si ∈R, n a positive integer

}
.

Proof. Let S be as in Lemma 2.4. ThenS ⊆ T ⊆H(R) and the proof of Lemma 2.4 shows
thats∗ ∈ T for eachs ∈ S. It follows that each non-zero-divisor ofS has an inverse inT ,
for if s is a non-zero-divisor thenss∗ = 1. ThereforeR ⊆Qcl(S) = H(S) ⊆ T ⊆ H(R),
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and by the remarks in 2.1(f)(ii) we haveH(S)= T =H(R). Thus each element ofH(R)
has the form

∑n
i=1 ri(s

∗
i ) for someri, si ∈ R andn ∈N. 2

Corollary 2.6. If R is a ring thenR andH(R) have the same cardinality.

Lemma 2.7 (Isbell, Storrer; see [19, 3.3]).LetR be a subring of a ringS. If for eachs ∈ S
there existt ∈ S anda, b ∈ R with s = at anda = tb, thenS is an epimorphic extension
ofR.

We note that the quasi-inverses inH(R) of the elements ofR satisfy the conditions in
Lemma 2.7 sincer∗ = r(r∗)2 andr = (r∗)2(r3) for eachr ∈ R.

3. The epimorphic hull of C(X)

3.1. Definitions and preliminary remarks

The zero-set of a functionf ∈ C(X), denotedZ(f ), is the set{x ∈X: f (x)= 0}. The
cozero-set off , X\Z(f ), is denoted cozf . We writeZ(X) to designate the family of all
zero-sets ofX. A point p of X is called aP -point of X if p is in the interior of each
zero-set containing it [7, 4L]. The set of allP -points ofX will be denotedP(X). The ring
C(X) is regular if and only ifX is aP -space, i.e., ifP(X)=X [7, 4J and 4L].

If S is a dense subspace ofX then the homomorphismf → f |S from C(X) into
C(S) is a monomorphism. As in [6, 2.1] we sometimes abuse notation by identifying
{f |S: f ∈ C(X)} with C(X) and writingC(X) ⊆ C(S). The subring of all bounded
functions inC(X) is denotedC∗(X). A subspaceS of X is said to beC∗-embedded
in X if every function inC∗(S) can be extended to a function inC∗(X). The Stone–
Čech compactification ofX, denotedβX, is the unique (up to homeomorphism fixingX
pointwise) compact space in whichX is dense andC∗-embedded.

As in [6], we denote the complete ring of quotients ofC(X) by Q(X). Elements of
Q(X) can be represented by continuous real-valued functions whose domains are dense
open subsets ofX (see [6, 2.6 et seq.]). More precisely, let

D(X)= {V : V is a dense open subset ofX
}

and let

L(X)=
⋃{

C(V ): V ∈D(X)}.
Define a relation∼ onL(X) as follows: letV , W ∈D(X), let f ∈ C(V ), andg ∈ C(W).
We say thatf ∼ g if f |V ∩W = g|V ∩W . Then∼ is an equivalence relation onL(X) and
Q(X) is the set of equivalence classes associated with∼, i.e.,Q(X)= {[f ]: f ∈ L(X)}. If
f ∈ C(V ) andg ∈ C(W), whereV , W ∈D(X), we define[f ] + [g] to be[(f |V ∩W)+
(g|V ∩W)]. (Observe thatV ∩W ∈D(X) and so(f |V ∩W)+ (g|V ∩W) ∈ L(X).) The
product[f ][g] is defined similarly. See [6, 2.6 et seq.] for details.
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If f ∈ C(X) we will often represent the element[f ] ofQ(X) byf . In other words, since
X ∈ D(X) we will often identify the ringC(X) with its isomorph, the subring{[f ]: f ∈
C(X)} of Q(X). In this sense we haveC(X) ⊆ Q(X). SinceC(X) ⊆ H(X) ⊆ Q(X),
members ofH(X) can be represented as equivalence classes of certain members ofL(X).
In detail, we have the following:

Theorem 3.2. Let X be a Tychonoff space. Ifg ∈ C(X), denote(intZ(G)) ∪ coz(g) by
S(g). Defineg∧ :S(g)→R by:

g∧(x)= 1

g(x)
if x ∈ coz(g),

g∧(x)= 0 if x ∈ Z(g).
Then:

(a) S(g) ∈D(X), g∧ ∈C(S(g)), and[g∧] ∈Q(X).
(b) [g∧] is the quasi-inverse[g]∗ of [g] in Q(X).
(c) H(X)= {∑n

i=1[fi][g∧i ]: n a positive integer andfi, gi ∈ C(X)}.
(d) Members ofH(X) can be represented as continuous real-valued functions whose

domains are dense open sets of the form
⋂n
i=1S(gi), where{gi : i, . . . , n} is a finite

subset ofC(X).

Proof. (a) This is straightforward.
(b) A routine computation shows that(

g∧|S(g))2(g|S(g))= g∧|S(g) and
(
g|S(g))2(g∧|S(g))= g|S(g).

Consequently[g∧]2[g] = [g∧] and [g]2[g∧] = [g] and so[g∧] is the quasi-inverse of
[g] in Q(X).

(c) This follows immediately from (b) and Proposition 2.5.
(d) As indicated in the paragraph preceding Theorem 3.2, we can identify

∑n
i=1[fi ][g∧i ]

with the restriction of the real-valued function
∑n
i=1fig

∧
i to the element

⋂n
i=1S(gi) of

D(X); clearly(
n∑
i=1

fig
∧
i

)∣∣∣∣ n⋂
i=1

S(gi) ∈ C
(

n⋂
i=1

S(gi)

)
. 2

Observe that
⋂{S(g): g ∈C(X)} = P(X).

By [6, 2.3 and 3.1]Q(X) = Q(βX), Qcl(X) = Qcl(βX), and we now show that a
similar result holds forH(X).

Proposition 3.3. If Y is dense andC∗-embedded inX then C(Y ) is an epimorphic
extension ofC(X) and consequentlyH(Y)=H(X).

Proof. By the “abuse of notation” mentioned earlier, we identifyC(X) with the subring
{f |Y : f ∈ C(X)} of C(Y ). As Y isC∗-embedded inX, if g ∈ C∗(Y ) theng ∈ {f |Y : f ∈
C(X)} and so we have

C∗(Y )⊆ {f |Y : f ∈ C(X)}⊆ C(Y ).
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If f ∈ C(Y ) thenf/(f 2+ 1)= a ∈ C∗(Y ), f/(f 2+ 1)2= b ∈ C∗(Y ), andf 2+ 1= t ∈
C(Y ). Thusa, b ∈ C(X). Furthermoref = at anda = tb.

ThereforeC(Y ) is an epimorphic extension ofC(X) by Lemma 2.7, and evidently it is
a ring of quotients ofC(X). It then follows from 2.1(e) and 2.1(f)(i) thatC(Y ) ⊆H(X).
ThusH(Y)⊆H(X) and the opposite inclusion is obvious.2
Corollary 3.4. LetX be a Tychonoff space. ThenH(X)=H(βX), and ifX is aP -space
thenC(X)=H(X)=H(βX).

Corollary 3.5. If X is an extremally disconnected space thenH(X)=Q(X).

Proof. Let f ∈Q(X). Thenf ∈ C(V ) for some dense open subsetV of X. SinceX is
extremally disconnected,V is C∗-embedded inX (see [7, 1H.6]). The argument used in
the proof of Proposition 3.3 above then shows thatf ∈H(X). ThusQ(X) ⊆H(X), and
the reverse inclusion always holds.2
Corollary 3.6 [8]. If X is extremally disconnected and of non-measurable cardinal, then
H(X) is isomorphic to someC(Y ) if and only if the isolated points ofX form a dense
subset ofX.

Definition 3.7 [9]. A Φ-algebraA is an Archimedean lattice-ordered algebra over the
field of real numbers which has an identity element 1 that is a weak order unit.

Each lattice-ordered algebra of real-valued functions that contains the constant functions
is aΦ-algebra. In particularQ(X) is aΦ-algebra [8, p. 9]. IfA is aΦ-algebra thenM(A)

will denote the space of maximal`-ideals (absolutely convex ideals) ofA with the Stone
topology (which has{M ∈M(A): a ∈M} for a ∈ A as a base for its closed sets; see [9,
p. 79]). The subspace of real maximal idealsR(A) consists of thoseM inM(A) for which
A/M is isomorphic to the real fieldR. Note thatA is called aΦ-algebra of real-valued
functions ifR(A) is dense inM(A).

Proposition 3.8. H(X) is aΦ-algebra.

Proof. Let R be C(X) and letS be as in Lemma 2.4. Eachs ∈ S may be written as
s =∑n

i=1fiei wherefi ∈C(X) andei = e2
i ∈Q(X), so that the idempotents are pairwise

orthogonal and the cozero sets of thefiei are therefore pairwise disjoint. SinceQ(X) is a
Φ-algebra, we need only show thatH(X) is a lattice, and this is equivalent to showing that
the elements ofH(X) have absolute values inH(X) [7, p. 11]. SinceC(X) is aΦ-algebra
and since theei are pairwise orthogonal, we have∣∣∣∣∣

n∑
i=1

fiei

∣∣∣∣∣=
n∑
i=1

|fi ||ei | =
n∑
i=1

|fi |ei ∈ S.

ThusS is aΦ-algebra.
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As observed in Lemma 2.4,H(X)=Qcl(S). Thus iff ∈H(X), thenf = gh−1 where
g,h ∈ S. Evidently |g|, |h| ∈ S asS is aΦ-algebra. Sinceh is a non-zero divisor inS,
it is invertible in theΦ-algebraQ(X). Thus|h| is invertible inQ(X), and therefore it is
a non-zero-divisor inS, whose inverse lies inH(X). Hence|f | = |g||h|−1, which is an
element ofH(X). ThusH(X) is aΦ-algebra. 2

The space of maximal ideals ofC(X) and that ofH(X) are denoted respectively by
M(X) andM(H(X)); their subspaces of real maximal ideals byR(X) andR(H(X)).

Lemma 3.9. If M ∈M(X) thenMH(X) ∈M(H(X)) orM(H(X))=H(X).

Proof. AssumeMH(X)= I 6=H(X). ThenI ∩C(X)=M by the maximality ofM. We
now claim that the induced embeddingC(X)/M → H(X)/I is an isomorphism. First
observe that the mapC(X)→ H(X)→ H(X)/I is an epimorphism because it is the
composition of two epimorphisms (see 2.1(e)). This composition can also be written as
C(X)→C(X)/M→H(X)/I and since it is an epimorphism so isC(X)/M→H(X)/I

by 2.1(e)(i). ButC(X)/M, being a field, and hence regular, has no proper epimorphic
extensions (see 2.1(e)(iii)).2
Definition 3.10 [14]. A spaceX is called an almostP -space if every non-empty zero-set
has non-empty interior.

By [14, 1.1]X is an almostP -space if and only if every zero-set is the closure (inX)
of its interior. EvidentlyX is an almostP -space if and only if no cozero-set is dense, or
equivalently if each non-unit inC(X) is a zero-divisor. ThusX is an almostP -space if
and only ifC(X)=Qcl(X). AlmostP -spaces were studied systematically in [14], and in
[5] it is shown that ifX is a locally compact realcompact Tychonoff space thenβX\X is a
compact almostP -space. SinceP -spaces are characterized by the fact that their zero-sets
are clopen (i.e., open-and-closed), obviouslyP -spaces are almostP -spaces.

It is pointed out in [14, p. 285], and follows immediately from the algebraic characteri-
zation above, thatX is an almostP -space if and only if its Hewitt realcompactificationυX
is.

Corollary 3.11. If X is an almostP -space thenMH(X) ∈M(H(X)) for eachM ∈
M(X).

Proof. Let
∑n
i=1fimi ∈MH(X) wheremi ∈M andfi ∈H(X). Then|mi | ∈M for each

i becauseM is absolutely convex. Since each non-unit ofC(X) is a zero-divisor, there
exists a non-zerog ∈C(X) such thatg(

∑n
i=1 |mi |)= 0. Theng|mi | = 0 for eachi because

all |mi | are non-negative and thereforeg(
∑n
i=1fimi)= 0. ThusMH(X) consists of zero-

divisors ofH(X) and hence is a proper maximal ideal inH(X). 2
Corollary 3.12. If X is an almostP -space thenH(X) is a Φ-algebra of real-valued
functions.
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Proof. It follows from the proof of Lemma 3.9 thatMH(X) ∈R(H(X)) for eachM ∈
R(X). If 0 6= f ∈⋂R(H(X)) then there existsg ∈ C(X) such that0 6= gf ∈⋂R(X),
which is a contradiction sinceC(X) is an algebra of real functions [9].2
Remark 3.13. In view of the importance of almostP -spaces in connection with this work
we note here that:

(1) A basically disconnected almostP -space is aP -space.
(2) An extremally disconnected almostP -space of non-measurable cardinal is discrete.

The first statement follows from Definition 3.10 and the fact that the interiors of zero-sets
in X are closed [7, 1H]. Since an extremally disconnected space is basically disconnected,
the second statement follows from [7, 12H].

4. Regular rings of quotients ofC(X) of the form C(Y )

Definitions and preliminary remarks 4.1. An ideal I in C(X) is said to be fixed if⋂{Z(f ): f ∈ I } is non-empty. The spaceX is called realcompact if every real maximal
ideal inC(X) is fixed. Realcompact spaces are discussed in detail in [7, Chapter 8]. We
say a subspaceS of X is C-embedded inX if every function inC(S) can be extended to
a function inC(X). For eachX there exists a unique realcompact spaceυX in whichX
is dense andC-embedded; thusυX is a realcompact space such thatC(υX) is isomorphic
to C(X). Consequently we shall henceforth assume that all hypothesized spaces are
realcompact Tychonoff spaces. Of course, when we consider specific examples, we shall
have to check that they are realcompact and Tychonoff.

The following is a modification of [7, 10.8 and 10.9(a)].

Theorem 4.2. LetX andY be realcompact Tychonoff spaces.
(a) If t :C(X)→ C(Y ) is a ring embedding for whicht (1) = 1, then there is a

continuous functiont? :Y →X such that:
(i) t?[Y ] is dense inX.
(ii) If f ∈ C(X) thent (f )= (f |t?[Y ]) ◦ t?.

(b) If σ :Y → X is a continuous function such thatσ [Y ] is dense inX, then the map
σ ′ :C(X)→C(Y ) defined by

σ ′(f )= (f |σ [Y ]) ◦ σ
is a ring embedding ofC(X) intoC(Y ) for whichσ ′(1)= 1.

(c) (t?)′ = t and(σ ′)? = σ .

Theorem 4.2 tells us that any ring embeddingC(X)→ C(Y ) that preserves 1 can be
viewed as arising from a continuous mappingσ fromY onto a dense subspace ofX. In such
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situations we can (and will) identifyC(X) with its isomorphic copy{(f |σ [Y ]) ◦ σ : f ∈
C(X)}, which is a subring ofC(Y ).

Lemma 4.3. LetX andY be spaces and suppose thatC(Y ) is a ring of quotients ofC(X).
If σ :Y →X is the induced continuous map fromY onto a dense subsetT ofX, and ifD
is a dense subset ofT , thenσ←[D] is dense inY .

Proof. As above, we identifyC(X) with the subring{(f |T ) ◦ σ : f ∈ C(X)} of C(Y ).
Suppose the lemma fails, and thatD is a dense subset ofT for whichσ←[D] is not dense
in Y . As Y is Tychonoff andY\clY (σ←[D]) 6= ∅, there is anf ∈ C(Y )\{0} such that
f [σ←[D]] = {0}. By hypothesis there existg,h ∈C(X) such that

f · ((g|T ) ◦ σ )= (h|T ) ◦ σ 6= 0.

As σ [Y ] = T , if d ∈D then∅ 6= σ←(d). Letp ∈ σ←(d). Then

0= f (p)= f (p) · g(σ(p))= h(σ(p))= h(d)
and soh[D] = {0}. As D is dense inT , and hence inX, it follows that h = 0, a
contradiction. The lemma follows.2

Recall thatP -spaces were defined in Definition 3.1.

Theorem 4.4 [17, 1W].LetX be a space. Then:
(1) Z(X) is an open base for a TychonoffP -space topology onX. TheGδ-sets ofX

form an open base for the same topology.
(2) LetXδ denoteX equipped with thisP -space topology and letj :Xδ→ X denote

the identity map on the underlying set ofX. Then ifY is a TychonoffP -space and if
f :Y →X is any continuous map, then there is a continuous mapk :Y →Xδ such
that j ◦ k = f .

The spaceXδ is called theP -space coreflection ofX. By [17, 5F(7)],Xδ is realcompact
if X is.

Recall that almostP -spaces were defined in Definition 3.10.

Theorem 4.5. The following are equivalent for a realcompact Tychonoff spaceX:
(1) C(Xδ) is a ring of quotients ofC(X).
(2) X is an almostP -space.
(3) If D is dense inX thenj←[D] (see Theorem4.4) is dense inXδ .

Proof. (1)⇒ (3) This follows from Lemma 4.3.
(3) ⇒ (2) Let ∅ 6= Z ∈ Z(X). Then (intX Z) ∪ (X\Z) is dense inX, and hence by

hypothesis dense inXδ . ButZ is a nonempty open subset ofXδ , and hence

Z ∩ ((intX Z)∪ (X\Z)
) 6= ∅.

Thus intX Z 6= ∅, andX is an almostP -space.
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(2)⇒ (1) Suppose0 6= f ∈ C(Xδ). Then there existsr ∈ R\{0} such thatf←(r) 6= ∅.
As f←(r) ∈ Z(Xδ), there existsS ∈ Z(X) such that∅ 6= S ⊆ f←(r). As X is an almost
P -space, there existsg ∈ C(X) andp ∈ intX S such thatg(p)= 1 andg[X\ intX S] = {0}.
A straightforward calculation shows that

0 6= f · (g ◦ j)= (rg) ◦ j.
SinceC(X) is identified with the subring{k ◦j : k ∈C(X)} of C(Xδ), it follows thatC(Xδ)
is a ring of quotients ofC(X). 2
Corollary 4.6. If C(Y ) is a regular ring of quotients ofC(X) and ifT = t?[Y ] is the image
of Y under the induced mappingY → X, thenC(Y ) is a ring of quotients ofC(Tδ), and
C(Tδ) is a regular ring of quotients ofC(T ).

Proof. By Theorem 4.4 there is a mappingκ :Y → Tδ which is onto becauseY → T is
onto (4.2). The induced homomorphismsC(T )→ C(Tδ)→ C(Y ) are then embeddings
and rings of quotients of their domains becauseC(T )→C(Y ) is. (See 2.1(b).) 2
Lemma 4.7. Let T be a dense subspace ofX. If T is an almostP -space thenC(T ) is a
ring of quotients ofC(X).

Proof. As before, we identifyC(X) with {f |T : f ∈ C(X)}. Let 0 6= f ∈ C(T ). Then
f←(r) is a nonempty zero-set ofT for somer 6= 0. By assumption there is an open subset
V ofX such that∅ 6= V ∩T ⊆ f←(r). Choosep ∈ V ∩T andg ∈C(X) such thatg(p)= 1
andg[X\V ] = {0}. Then0 6= f · (g|T )= (rg)|T ∈C(X). 2

[We remark that it is not always true that ifT is dense inX, thenC(T ) is a ring of
quotients of{f |T : f ∈ C(X)}. For example, letX = [0,1] and letT be the irrational
points ofX. It is well known that there existsf ∈C(T ) such thatf cannot be continuously
extended to any point ofX\T . A modification of [6, 3.12] (which is the source of this
example) shows that there do not existg,h ∈ C(X) such that0 6= f · (g|T )= h|T .]

Definition 4.8. The intersection of all dense cozero sets ofX will be denoted bygX. By
[7, 8.9, 8.14],gX will be realcompact ifX is. We note as well thatgX contains the set of
all P -points ofX.

Lemma 4.9. The following are equivalent for a spaceX:
(1) gX is dense inX.
(2) X has a dense subspace that is an almostP -space.
(3) gX is an almostP -space, it is dense inX, and it contains every almostP -space

that is dense inX.

Proof. (1)⇒ (2) LetZ ∈ Z(gX) and letp ∈ Z. AsZ is aGδ-set ofgX [7, 1.10] there is
a countable family{V (n): n ∈N} of open subsets ofX such thatZ =⋂{V (n) ∩ gX: n ∈
N}. By [7, 3.11(b)] there existsF ∈ Z(X) such thatp ∈ F ⊆⋂{V (n): n ∈ N}. Since
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F ∩ gX 6= ∅, it follows from the definition ofgX that intX F 6= ∅. As gX is dense inX
andF ∩X ⊆Z, it follows that intgX Z 6= ∅. HencegX is an almostP -space.

(2)⇒ (3) Let T be a dense subspace ofX and an almostP -space. IfV is any dense
cozero-set ofX then V ∩ T is a dense cozero-set ofT and thusV ∩ T = T ⊆ V .
ConsequentlyT ⊆ gX. ThusgX is dense inX and is therefore an almostP -space by
the preceding argument.

(3)⇒ (1) This is obvious. 2
Corollary 4.10. If X has a dense almost-P subspace, then it has a largest dense almost-P

subspace, namelygX.

Theorem 4.11.
(1) The following are equivalent for a spaceX:

(a) C(X) has a regular ring of quotients of the formC(Y ).
(b) gX is dense inX.

(2) If the equivalent conditions in(1) hold then there is a canonical copy ofC((gX)δ)
betweenC(X) andC(Y ).

Proof. (a)⇒ (b) Letσ :Y →X be the continuous mapping fromY onto a dense subsetT
of X induced by the embedding ofC(X) into C(Y ) (see Theorem 4.2). By Corollary 4.6
we have the ring embeddings

C(X)→C(T )→C(Tδ)→ C(Y ),

wheref ∈ C(X) is taken to(f |T ) ◦ σ ∈ C(Y ). By 2.1(b),C(Tδ) is a ring of quotients of
C(T ) becauseC(Y ) is a ring of quotients ofC(X). It follows from Theorem 4.5 thatT is
an almostP -space. SinceT is dense inX, it then follows thatgX is dense inX.

(b)⇒ (a) By Lemma 4.9gX is an almostP -space. By Lemma 4.7C(gX) is a ring of
quotients ofC(X) (via the embeddingf 7→ f |gX). By Theorem 4.5C((gX)δ) is a ring
of quotients ofC(gX), and is regular as(gX)δ is aP -space. Thus by 2.1(b),C((gX)δ) is
a ring of quotients ofC(X).

(2) By Corollary 4.6 and the above we have embeddings

C(X)
k−→C(gX)

i−→C
(
(gX)δ

) j−→C(Y ),

wheref ∈ C(X) is taken tof |gX ∈ C((gX)δ) by i ◦ k, and to(f |gX) ◦ κ ∈ C(Y ) by
j ◦ i ◦ k (whereκ is as in Corollary 4.6). 2
Corollary 4.12. If H(X) is isomorphic to aC(Y ) then Y = (gX)δ and furthermore
H(X)=H(gX).

Proof. In what follows the mapsi, j , andk are as in the proof of Theorem 4.11(2) above.
By 2.1(f)(ii)H(X) is the smallest regular ring of quotients ofC(X). If H(X) is isomorphic
to aC(Y ), then asC((gX)δ) is regular (as(gX)δ is aP -space) and a ring of quotients of
C(X) (by 2.1(b)), it follows thatj must be an isomorphism. By the realcompactness of
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(gX)δ andY , this implies thatY is homeomorphic to(gX)δ . But as the embeddingi ◦ k
is then the canonical embedding ofC(X) in H(X) and as this canonical embedding is an
epimorphism (see 2.1(f)(i)), theni is an epimorphism (see 2.1(e)(i)). ButH(X) is a ring of
quotients ofC(gX) (by 2.1(b)) and an epimorphic extension ofC(gX) (as noted above),
so by 2.1(f)(iii),C((gX)δ)=H(g(X)). 2
Corollary 4.13. If X has a dense subspace that is an almostP -space thenH(X) is a
Φ-algebra of real-valued functions.

Proof. By 2.1(b) and Theorem 4.11(2),C((gX)δ) is a regular ring of quotients ofC(X)
(as noted in the preceding proof). Hence by 2.1(f)(ii) there is an embedding ofH(X) into
C((gX)δ). It is standard that any fixed maximal ideal ofC((gX)δ) contracts to a real
maximal ideal of the subringH(X). Furthermore, the intersection of these contractions to
H(X) is clearly the zero ideal. SinceH(X) is also aΦ-algebra (see Proposition 3.8), the
conclusion follows. 2

5. When isH(X) aC(Y )?

As yet we do not have a complete answer to this question. However, we do have
considerable information about several classes of special cases. We begin by recapitulating
the relationship amongC(X), C(gX), C((gX)δ) andH(X).

Suppose that there is a (realcompact Tychonoff) spaceY such thatC(Y ) is a regular ring
of quotients of (an embedded copy of)C(X). Then by Theorem 4.11C((gX)δ) is such a
ring, gX is dense inX, and we have

C(X)∼= {f |gX: f ∈ C(X)}⊆ C(gX)⊆ C((gX)δ).
SinceH(X) is the smallest regular ring of quotients ofC(X), it follows that

C(X)∼= {f |gX: f ∈ C(X)}⊆H(X)⊆ C((gX)δ). (∗)
By Corollary 4.12 we know thatH(X) is aC(Y ) for someY iff gX is dense inX and

H(X)= C((gX)δ), i.e., iff the second inclusion above is in fact an equality. In general it
is not immediately obvious under what conditions we would haveC(gX) ⊆ H(X). The
minimality of H(X) among regular rings of quotients ofC(X) does mean thatH(X) is
naturally embedded inH(gX). Note that Example 6.4 shows thatC(gX) need not be
included inH(X) and thatH(X) can be a proper subring ofH(gX). However,H(X)
andH(gX) can coincide without being aC(Y ). This will happen ifX is a compact, non-
scattered almost-P space (such asβN\N).

One consequence of(∗) is that sincegX and (gX)δ have the same underlying set,
each member ofH(X) would be representable as a real-valued function with domain
gX. In particular, if f ∈ C(X) then (f |gX)∗ would be representable in this fashion.
A straightforward computation shows thatS(f |gX) is a dense subset of(gX)δ , and hence
by Theorem 3.2 there is a unique memberf ∧ ∈ C((gX)δ) such thatf ∧|S(f |gX) =
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(f |gX)∗, namely:f ∧(x)= 1/f (x) if x ∈ (cozf )∩gX, andf ∧(x)= 0 if x ∈ Z(f )∩gX.
We will (again) abuse notation slightly and identify(f |gX)∗ with f ∧. Thus we have:

Lemma 5.1. LetgX be dense in the Tychonoff spaceX.
(a) If f ∈ C(X) then(f |gX)∗(x)= 1/f (x) if x ∈ gX ∩ cozf and (f |gX)∗(x)= 0 if

x ∈ gX ∩Z(f ).
(b) The ringH(X)= {∑n

i=1(fi |gX)(hi |gX)∗: fi, hi ∈ C(X), andn ∈N}.

Proof. Part (a) follows from the previous discussion. Part (b) follows from (a) and
Theorem 3.2. 2

We briefly digress from our consideration ofH(X) to consider a more general algebra of
real-valued functions. LetX be a Tychonoff space. Ifg ∈ C(X), let usdefineg∧ :X→R
by

g∧(x)= 1/g(x) if x ∈ coz(g),

g∧(x)= 0 if x ∈ Z(g).
We then defineG(X) to be the subring of the ring of all real-valued functions with domain
X generated byC(X) ∪ {g∧: g ∈ C(X)}. Since(fg)∧ = f ∧g∧, it is immediate that

G(X)=
{

n∑
n=1

fi(g
∧
i ): n ∈N, fi , gi ∈C(X)

}
.

By Lemma 5.1(b), ifX is an almostP -space (i.e., ifgX = X), thenG(X) is the
epimorphic hullH(X) of C(X). However, we warn the reader that in general this is not the
case. More specifically, letX be a Tychonoff space and consider the mapλ from the set
C(X)∪ {f ∧: f ∈ C(X)} ontoC(X)∪ {f ∗: f ∈C(X)} defined by:λ(g)= g if g ∈C(X),
andλ(f ∧)= f ∗ if f ∈C(X). This map cannot, in general, be “extended by linearity” to a
ring isomorphism fromG(X) ontoH(X). If X is an almostP -space, however, the obvious
linear extension ofλ is indeed a ring isomorphism.

Denote the subring of bounded members ofG(X) by G∗(X). ThenG∗(X) carries the
usual “sup norm” defined by:

‖k‖ = sup
{|k(x)|: x ∈X} if k ∈G∗(X),

and this norm induces a metric onG∗(X). As usual, we say thatG∗(X) is uniformly closed
if it is complete with respect to this “sup norm” metric.

If X is an almostP -space and ifH(X)= C(Xδ), thenG∗(X)=H ∗(X)= C∗(Xδ), and
soG∗(X) would be uniformly closed asC∗(Xδ) is. Consequently it becomes of interest to
know what conditionsX must satisfy ifG∗(X) is to be uniformly closed.

Lemma 5.2. LetX be a Tychonoff space. If
∑n
i=1fi(g

∧
i )= h ∈G(X), thenZ(h) has the

form
⋃k
i=1Si ∩ Vi , where eachSi ∈ Z(X) and eachVi ∈ coz(X).

Proof. For each subsetA of {1, . . . , n}, let

T (A)=
[⋂{

coz(gi): i ∈A
}] ∩ [⋂{

Z(gi): i ∈ {1, . . . , n}\A
}]
.
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Clearly {T (A): A ⊆ {1, . . . , n}} partitionsX and eachT (A) has the formS ∩ V , where
S ∈ Z(X) and V ∈ coz(X). If x ∈ T (A) then h(x) = 0 iff

∑
i∈A fi(x)/gi(x) = 0 iff∑

i∈A fi(x)[
∏
j∈A\{i} gj (x)] = 0. But

∑
i∈A fi[

∏
j∈A\{i} gj ] = kA ∈ C(X), so evidently

Z(h)=⋃{T (A)∩Z(kA): A⊆ {1, . . . , n}} which is the required form. 2
Corollary 5.3. If h ∈G(X) thenZ(h) is anFσ -set ofX.

Proof. Each cozero-set ofX is a union of countably many closed subsets ofX (i.e., is an
Fσ -set ofX), and the intersection of a closed set and anFσ -set is clearly anFσ -set. The
result now follows from Lemma 5.2.2
Theorem 5.4. LetX be a Tychonoff space for whichG∗(X) is uniformly closed. Then the
union of any countable family of zero-sets ofX is aGδ-set ofX.

Proof. Let {Z(i): i ∈ N} be a countable family of zero-sets ofX. Let gi be the
characteristic function ofZ(i). Thengi = 1− fif ∧i , whereZ(i) = Z(fi), and sogi ∈
G∗(X) for each i. Let hn = ∑n

i=1(
1
2)
igi . Then eachhn ∈ G∗(X). Clearly (hn) is a

Cauchy sequence of functions inG∗(X) with respect to the “sup norm” metric. Thus as
G∗(X) is assumed to be uniformly closed, the limit of this sequence, which is

∑∞
i=1(

1
2)
igi

(henceforth denoted byh) is in G∗(X). Clearly coz(h) =⋃i∈NZ(fi). By Corollary 5.3
Z(h) is anFσ -set so its complement coz(h) is aGδ-set ofX. The theorem follows. 2
Corollary 5.5. LetX be an almostP -space. IfH(X)= C(Xδ) then the union of countably
many zero-sets ofX must be aGδ-set ofX.

Definition 5.6. A Tychonoff topological spaceX is calledscatteredif every subspace of
X contains isolated points.

Spaces of ordinal numbers are examples of scattered spaces, as are one-point compact-
ifications of discrete spaces. The property of being scattered is preserved by subspaces
(obviously) and the formation of products with finitely many factors (but not infinitely
many). It is easy to verify that a space is scattered space if and only if each of its subspaces
contains a dense set of isolated points. See [11, §9 VI] for more information.

Theorem 5.7. If G∗(X) is uniformly closed then every compact subspace ofX is scattered.

Proof. By Theorem 5.4 it suffices to prove that ifX has a compact subspaceT that is not
scattered, then there is a countable family{Zn: n ∈N} of zero-sets such that

⋃{Zn: n ∈N}
is not aGδ-set ofX.

In the first part of the proof of [15, 3.1] it is shown that ifL is a non-scattered compact
space, then there is a compact subspaceB ofL and a continuous surjection fromB onto the
Cantor setC. So, there is a compact subsetF of T and a continuous surjectiong :F → C.
As g is a perfect surjection there is a compact subspaceK of F such that the restriction
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g|K of g is a perfect continuous irreducible surjection (see [17, 6.1(b) and 6.5(c)]. By [17,
6.1(b)],K is separable and has no isolated points.

Let {pn: n ∈ N} be a faithfully indexed countable dense subset ofK. Fix n ∈ N.
BecauseX is Tychonoff, for eachj ∈ N\{n} there exists a zero-setZ(n, j) of X such
thatpn ∈ Z(n, j) andpj /∈ Z(n, j). Let Z(n) =⋂{Z(n, j): j ∈ N\{n}}. ThenZ(n) is a
zero-set ofX. SinceK has no isolated points, the set{pj : j ∈ N\{n}} is dense inK and
soZ(n)∩K is a closed nowhere dense zero-set ofK.

Now suppose that
⋃{Z(n): n ∈N} is aGδ-set ofX, i.e., is of the form

⋂{W(j): j ∈N}
where eachW(j) is open inX. Then[X\W(j)]∩K, which we denote byM(j), is a closed
subset ofK, and as it is disjoint from the dense subset{pn: n ∈ N} of K, it is nowhere
dense inK. Thus

K =
⋃{

Z(n)∩K: n ∈N}∪ [⋃{
M(j): j ∈N}],

and so we have expressed the compact spaceK as the union of countably many closed
nowhere dense subsets, which contradicts the Baire category theorem. Thus

⋃{Z(n): n ∈
N} is not aGδ-set ofX, and our theorem follows.2
Theorem 5.8. LetX be Tychonoff. If there is a spaceY such thatH(X)= C(Y ) thengX
is dense inX and each compact subspace ofgX is scattered.

Proof. By Corollary 4.12 our hypotheses imply thatgX is dense inX, thatY = (gX)δ ,
and thatH(X) = H(gX). As H(X) = C((gX)δ), it follows from the representation of
H(X) given in Lemma 5.1 thatC(gX)⊆H(X)=H(gX)= C((gX)δ). By the discussion
following the proof of Lemma 5.2, it follows thatG∗(gX) = H ∗(gX) = C∗((gX)δ). As
C∗((gX)δ) is uniformly closed, it follows thatG∗(gX) is, and so by Theorem 5.7 every
compact subset ofgX is scattered. 2

For example, ifD is an infinite discrete space then its Stone–Čech outgrowthβD\D
is a compact almost-P space without isolated points (see [5]) and hence by Theorem 5.8,
H(βD\D) is not aC(Y ); it is not even uniformly closed.

Theorem 5.9. LetX be a realcompact almost-P space. IfH(X) andC(Xδ) have the same
idempotents and ifH(X) is uniformly closed thenH(X)= C(Xδ) and consequentlyH(X)
is a ring of continuous functions.

Proof. One has the monomorphismC(X)→ H(X)→ C(Xδ). Since bothH(X) and
C(Xδ) are regular and have the same idempotents, contraction and extension of ideals
establish a homeomorphism between SpecH(X) and Spec(C(Xδ))= β(Xδ). By [9] (see
p. 89 lines before 5.1, and p. 90 lines before 5.2), the following are equivalent for the
Φ-algebraH(X).

(i) H(X) is isomorphic to a ring of continuous functions,
(ii) H(X) is isomorphic toC(R(H(X))),
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(iii) M(H(X))= β(R(H(X))),
(iv) H(X)= C(Xδ).
Thus it suffices to show thatM(H(X)) = β(R(H(X))), which we now do. It is clear

that contraction of maximal ideals fromβ(R(H(X))) toM(H(X)) when restricted to real
maximal ideals, defines a one-to-one continuous map fromXδ toR(H(X)). If this map is
onto, it will be a homeomorphism becauseβ(Xδ) and SpecH(X) are homeomorphic. Let
M be a real maximal ideal inH(X). ThenM ∩ C(X) is real maximal inC(X); say it is
Np for some pointp ∈X.

Let N∧p denote the corresponding real maximal ideal inC(Xδ). BothN∧p ∩H(X) and
M are real maximal ideals ofH(X) that contract toNp in C(X). But contraction defines
maps

Spec
(
C(Xδ)

)→ Spec
(
H(X)

)→ Spec(X).

The first is one-to-one and onto as noted above, and the second is one-to-one becauseH(X)

is an epimorphic extension ofC(X) (see [13, Proposition 1.6]). ThusM = N∧p ∩H(X),
and the contraction map from the real maximal ideals ofC(Xδ) is onto. 2
Definition 5.10 [15]. A Tychonoff topological space is calledfunctionally countableif
|f [X]|6 ℵ0 for eachf ∈C(X).

Lemma 5.11. LetX be a Tychonoff space that either contains a compact subspace with
no isolated points, or else is not totally disconnected. ThenX is not functionally countable.

Proof. SupposeK is a compact subspace ofX without isolated points. Then as
demonstrated in the proof of 3.1 of [15], there exists a continuous surjectiong from K

onto the Cantor set (viewed as a subspace ofR). By 3.11(c) of [7] there existsf ∈ C(X)
such thatf |K = g. Clearly|f [X]|> |g[K]| = c soX is not functionally countable.

Secondly, letC be a connected component ofX with more than one point. AsX is
Tychonoff there existsf ∈ C(X) such that|f [C]|> 1. Asf [C] is a connected subset of
R, it follows that|f [X]|> |f [C]| = c. ThusX is not functionally countable.2
Theorem 5.12. Let X be a realcompact Tychonoff space for which|C(gX)| = c. If gX
is not functionally countable thenH(X) 6= C((gX)δ), and henceH(X) is not aC(Y ). In
particular if eithergX is not totally disconnected, or elsegX contains a compact subspace
without isolated points, thenH(X) is not aC(Y ).

Proof. If H(X) = C((gX)δ) then by Theorem 4.11gX is dense inX. Thus by
Corollary 2.6|H(X)| = |C(X)| = |C(gX)| = c. SincegX is not functionally countable, by
the proof of 3.1 of [15] there exists anf ∈ C(gX) for which |f [gX]| = c. Denotef [gX]
by S. Thus{f←(r): r ∈ S} partitions(gX)δ into c pairwise disjoint clopen subsets. If
A⊆ S then the characteristic function of the set

⋃{f←(r): r ∈A} belongs toC((gX)δ),
and so|C((gX)δ)|> 2c. ThusH(X) 6= C((gX)δ). The rest of the theorem follows from
Lemma 5.11 and Corollary 4.12.2
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We now consider some situations in whichH(X) is aC(Y ). We begin by analyzing
whatgX is in several situations.

Lemma 5.13. Let T be a realcompact almost-P space, and letT be a dense subspace of
a spaceX. If T isC∗-embedded inX thengX = T .

Proof. By [7, 6.7] we know thatT ⊆X ⊆ βT . Letp ∈X\T . By [17, 5.11(c)] there exists
C(p) ∈ cozβX such thatT ⊆ C(p) ⊆ βT \{p}. As X ∩ C(p) ∈ cozX, it follows that
gX ⊆ T . By Lemma 4.9gX = T . 2

Recall (see problem 3P of [17], for example) that a Tychonoff spaceX is calledweakly
Lindelöf if each open cover ofX has a countable subfamily whose union is dense inX.
Lindelöf spaces and spaces of countable cellularity are weakly Lindelöf; see the cited
reference.

Lemma 5.14. The following are equivalent for a realcompact almost-P Tychonoff space
T :

(1) T is weakly Lindelöf.
(2) T is Lindelöf.
(3) If T is dense in the realcompact spaceX thengX = T .

Proof. Clearly (2) implies (1). For the converse, supposeT is a weakly Lindelöf space
and letC be an open cover ofT . Each member ofC can be written as a union of cozero
sets ofT asT is Tychonoff. By hypothesis there are countably many of these cozero sets
whose union is dense inT . As T is almostP , this union must in fact be all ofT . So, the
countable subcollection ofC whose members contain the countably many cozero sets in
question must be a countable subcover ofC. ThusT is Lindelöf. Hence (1) implies (2).

Suppose (2) holds. By Lemma 4.9 in order to prove (3) it suffices to prove thatgX ⊆ T .
So, letp ∈X\T . AsX is Tychonoff there exists a familyC(p) of cozero sets ofX such
that

⋃
C(p)= X\{p}. As T is Lindelöf, there is a countable subfamily{C(i): i ∈ N} of

C(p) such thatT ⊆⋃{C(i): i ∈N} = V (p). ClearlyV (p) is a dense cozero set ofX that
containsT and notp, sop /∈ gX. ConsequentlyT = gX.

To prove that (3) implies (2), suppose that (2) fails. AsβT is Tychonoff, there is a family
C of cozero sets ofβT such thatT ⊆⋃C, but no countable subfamily ofC coversT .
LetK denote the one-point compactification of the subspace

⋃
C of βT , with p being the

“point at infinity”. ThenT is a dense subspace ofK. If W were a dense cozero set ofK then
asT is almostP , T ⊆W . If p /∈W thenW ⊆⋃C, and asW is Lindelöf (being a cozero
set of a compact space and henceσ -compact), there would be a countable subfamily ofC

that coversW and henceT , in contradiction to the choice ofC. Thusp ∈ gK\T . Hence
(3) fails and (2) implies (3). 2
Lemma 5.15. Let X be a realcompact space and let{K(n): n ∈ N} be a sequence of
compact open almost-P subspaces whose direct sum

⊕{K(n): n ∈ N} = T is a dense
subspace ofX. ThengX = T andC(T )⊆H(X) (and soH(T )=H(X)).
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Proof. As T is a σ -compact free union of compact almost-P spaces, it is Lindelöf and
almost-P . Hence by Lemma 5.14gX = T . By the remarks preceding Lemma 5.1,

C(X)∼= {f |T : f ∈C(X)}⊆H(X)⊆ C(Tδ).
So by Lemma 5.1(b) it suffices to show that ifk ∈ C(T ) there existf,h ∈ C(X) such that
k = (f |T )(h|T )∗. Definef andh as follows:

f (x)= [k(x)][n(|k(x)| + 1)
]−1 if x ∈K(n),

f (x)= 0 if x ∈X\T ;
h(x)= [n(|k(x)| + 1)

]−1 if x ∈K(n),
h(x)= 0 if x ∈X\T .

Since, for eacha > 0,f←[R\(−a, a)] andh←[R\(−a, a)] are compact, one easily shows
thatf andh belong toC(X). A routine computation shows thatk = (f |T )(h|T )∗. 2
Theorem 5.16. LetX be a realcompact space with a countable dense setD = {d(i): i ∈
N} of isolated points. ThenH(X)∼= C(N).

Proof. By Lemma 5.14gX =D =Dδ so by the remarks preceding Lemma 5.1,

C(X)∼= {f |D: f ∈C(X)}⊆H(X)⊆ C(D)∼= C(N).
But by the preceding lemma (withD in the role ofT ) C(D)⊆H(X). ThusH(X)∼= C(N)
as claimed. 2
Theorem 5.17. If T is a realcompactP -space and ifT is dense andC∗-embedded in the
realcompact spaceX thenH(X)∼= C(T ).

Proof. By Lemma 5.13gX = T = Tδ so arguing as in the proof of Lemma 5.15, we need
only show that ifk ∈ C(D) there existf,h ∈ C(X) such thatk = (f |P)(h|P)∗. Clearly
the functionsk/(|k| + 1) and1/(|k|+ 1) belong toC∗(T ) and hence by hypothesis can be
continuously extended tof andh in C(X), respectively. A routine computation shows that
k = (f |D)(h|D)∗. 2
Example 5.18. TheC∗-embedding hypothesis cannot be dropped from Theorem 5.17; in
many models of set theoryβN\N has a dense set ofP -points, and this set is realcompact
if the continuum hypothesis is assumed, yet as noted after Theorem 5.8,H(βN\N) cannot
be aC(Y ).

6. Some further examples

In the previous section all our examples of spacesX for which H(X) is aC(Y ) had
the property thatgX was aP -space. We now present some examples where this is not the
case. The first example is mentioned in [19], but no details are provided there.
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Example 6.1. Let D be an uncountable discrete space and letK = D ∪ {p} be its one-
point compactification. We claim thatH(K)= C(Kδ). First observe thatK is an almost
P -space since any dense cozero setC of K will be Lindelöf (as it is a union of countably
many closed sets ofK) and containD; consequentlyp ∈ C as otherwise{{d}: d ∈ D}
would be an open cover ofC with no countable subcover. ThusgK = K and so by the
remarks preceding Lemma 5.1 we have

C(K)⊆H(K)⊆ C(Kδ).
Hence we must show thatH(K) = C(Kδ). By Lemma 5.1(b) it suffices to show that if
k ∈C(Kδ) then there existf andh in C(K), ands ∈R, such thatk = (f )(h)∗ + s.

DenoteKδ by L. It is routine to verify that each point ofD is isolated inL, and if
p ∈ S ⊆ L thenS is open inL iff L\S is countable. (This immediately implies thatL is
Lindelöf.) Supposek(p)= r. ThenL\k←[r − 1/n, r + 1/n)] is countable for eachn ∈N,
soL\k←(r) is a countable subsetC of L. ClearlyC is clopen inL; letC = {a(n): n ∈N}.
Letg = k−r and observe thatg(x)= 0 if x ∈K\C. Define functionsf andhwith domain
K as follows.

f
(
a(n)

)= g(a(n))/n[|g(a(n))| + 1
]

if n ∈N,
f (x)= 0 if x ∈K\C;
h
(
a(n)

)= 1/n
[|g(a(n))| + 1

]
if n ∈N,

h(x)= 0 if x ∈K\C.
It is easy to verify thatf andh belong toC(K), and a routine computation shows that

k = (f )(h)∗ + r . ConsequentlyH(K)= C(Kδ) and we are done.

Example 6.2. Let
⊕{K(n): n ∈ N} be denoted byT , where eachK(n) is a copy of the

spaceK of the previous example. LetX be any realcompact space containingT as a dense
subspace. By Lemma 5.15gX = T andC(T ) ⊆ H(X) ⊆ C(Tδ); consequentlyH(X) =
H(T ) (see Corollary 4.12). It is well-known (and easily proved) that if a Tychonoff space
S can be written as a direct sum

⊕{Y (n): n ∈ N} thenC(S) ∼= ∏{C(Y (n)): n ∈ N}.
Although formation of the epimorphic hull may not commute with direct products of rings,
because of the simplicity of the expression forH(K) derived in Example 6.1 above, and
because each summand ofT isK, it follows that

H
(∏{

C(K(n)): n ∈N})∼=∏{
H(K(n)): n ∈N}.

Hence by Lemma 5.15

H(X)=H(T )∼=H
(∏{

C(K(n)): n ∈N})∼=∏{
H(K(n)): n ∈N}

∼=
∏{

C(L(n)): n ∈N}∼= C(⊕{L(n): n ∈N})= C(Tδ),
where eachL(n) is homeomorphic to the spaceL described in the previous example. Thus
if X containsT as a dense subspace (for example, ifX = βT ) thenH(X) is aC(Y ), even
thoughgX 6=X andgX is not aP -space.
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Example 6.3. LetW denote the space of countable ordinals with the order topology, and
letW∗ denote its one-point compactification (see Chapter 5 of [7]). It is a routine exercise
to show, with the aid of Lemma 5.14, thatg(W∗)=W∗\{α: α is a countable limit ordinal},
which is homeomorphic to (and hence will be identified with) the spaceL described in
Example 6.1. AsL is aP -space, if we can show thatC(L) ⊆H(W∗) then it will follow
thatC(L)=H(W∗). As before, by Lemma 5.1(b) it suffices to show that ifk ∈C(L) then
there existr ∈ R andf,h ∈ C(W∗) such thatk = (f |L)(h|L)∗ + r . As seen above, there
existsα ∈W such thatk[L\[0, α]] = {r}. By applying Theorem 5.16 to the compact open
subspace[0, α] of W∗, we see thatH([0, α])= C(L ∩ [0, α])∼= C(N) and so there exist
functionsj andm in C([0, α]) such that(k−r)|L∩[0, α] = (j |L∩[0, α])(m|L∩[0, α])∗.
Extendj tof ∈ C(W∗) by decreeing thatf [W∗\[0, α]] = {0}, and extendm toh ∈C(W∗)
similarly. One then easily checks thatk = (f |L)(h|L)∗ + r , and sok ∈ H(W∗). Thus
H(W∗)∼= C(L) as claimed.

Example 6.4. Let M denote a compact metric space without isolated points. Its
Alexandroff double, denotedA(M), is constructed as follows. Ifx ∈ M and j ∈ N let
S(x, j) denote the open sphere inM with centerx and radius 1/j . The underlying set of
A(M) isM × {0,1}, andA(M) is topologized as follows. Each point of the form(x,1) is
isolated, and a neighborhood base at(x,0) is {T (x, j): j ∈N} whereT (x, j)= [S(x, j)×
{0,1}]\{(x,1)}. ThenA(M) is a first countable compact Hausdorff space of weightc and
the setM × {1} is a dense subsetD of isolated points ofA(M) of cardinality c. (The
reader is referred to [4, 3.1.26] for a detailed analysis in the case whereM is the circle.)
It follows from [2, 2.2] that|C(A(M))| = c. SinceA(M) is compact and first countable,
each singleton subset is a zero-set (see [7, 3.11(b)]), soA(M)\{p} is a dense cozero-set
of A(M) for eachp ∈M × {0}. It immediately follows that[g(A(M))]δ = g(A(M))=D.
Thus|H(A(M))| = |C(A(M))| = c while |C(g(A(M)))| = 2c; consequently, in contrast
to our earlier examples,H(X) is a proper subring ofC(gX) whenX is taken to beA(M),
even thoughgX is aP -space and it is dense inX. HenceH(X) is not aC(Y ) in this case.
This example also illustrates that{k|gX: k ∈H(X)} 6=H(gX) in general.

7. Observations onQcl(X)

We begin by asking under what conditionsQcl(X) will be isomorphic to aC(Y ). This
question is more easily answered than the analogous question aboutH(X) because we
have at our disposal the following

Theorem 7.1 [6, 2.6].Qcl(X) is the ring of all continuous functions on the dense cozero-
sets ofX, modulo the relation which identifies functions that agree on the intersections of
their domains.

We note here that ifQcl(X)= C(Y ), thenQcl(X) is uniformly closed [9, 3.1, 5.2], and is
therefore isomorphic to the ring of all continuous functions on the countable intersections
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of dense cozero-sets ofβX [3, 3.4]. As well,Y is then an almost-P -space since non-zero-
divisors inQcl(X) are units.

In view of the Remarks 4.1 we assume in what follows thatX is realcompact.

Theorem 7.2. The following are equivalent for a spaceX:
(1) Qcl(X)= C(Y ) for some Tychonoff spaceY .
(2) Qcl(X)= C(gX).
(3) (a)gX is dense inX, and

(b) Every function inC(gX) has a continuous extension to a dense cozero-set ofX.

Proof. (1)⇒ (2) As in Theorem 4.2 and Lemma 4.3 there is a mappingσ :Y →X such
thatσ [Y ] = T is dense inX and preimages of dense subsets ofT are dense inY . Since
Qcl(X) = C(Y ), Y is an almostP -space. SinceC(Y ) is a ring of quotients ofC(X),
Lemma 4.3 is applicable and shows that the inverse image of a proper dense cozero-set ofT

is a proper dense cozero-set ofY . ButY , being almost-P , has no such subset. Hence neither
doesT , and soT is an almostP -space. It follows thatT ⊆ gX. ThusQcl(X) ⊆ C(gX)
and we have

Qcl(X)⊆ C(gX)⊆ C(T )⊆ C(Y )∼=Qcl(X).

(2)⇒ (3) EvidentlygX is dense inX. We then have a monomorphism ofQcl(X) onto
C(gX) defined byf → f |gX, wheref ∈C(V ) for some dense cozero-setV of X.

The third implication being obvious, the result follows.2
In general we know that for any Tychonoff spaceX, one has the natural inclusions

C(X) ⊆Qcl(X) ⊆ H(X) ⊆Q(X). We next discuss circumstances under which some or
all of these inclusions are equalities. We also consider conditions onX under which some
of Qcl(X),H(X), andQ(X) are isomorphic to rings of the formC(Y ) while at the same
time others are not.

Remark 7.3 (Equalities among rings of quotients).
(a) It is possible forQ(X) to be isomorphic to aC(Y ) without eitherQcl(X) or

H(X) being isomorphic to aC(T ). A class of spaces of this sort is described in
Example 6.4. Note that these spaces satisfy 3(a) but not 3(b) of Theorem 7.2.

(b) It is possible forQcl(X) andH(X) to coincide; this happens ifX is basically
disconnected (see [7, 1H, 6M.1] and Lemma 2.2 above). IfX is extremally
disconnected thenQcl(X) = H(X) = Q(X) (see Corollary 3.5). IfX is a P -
space thenC(X) = Qcl(X) = H(X) (Corollary 3.4). Thus ifX is an extremally
disconnectedP -space thenC(X) has no proper ring of quotients and henceC(X)=
Qcl(βX) = H(βX) = Q(βX) (Corollary 3.5). It is known that an extremally
disconnectedP -space of non-measurable cardinal is discrete [7, 12H].

(c) There are spacesX andT such thatH(X) andQcl(X) coincide and are isomorphic
toC(T ). By Theorem 7.2, Lemma 5.13 and the remarks preceding Lemma 5.1, this
will happen ifT is a realcompactP -space andX = βT .
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(d) It is possible forC(X), H(X) and Qcl(X) to be distinct, and for each to be
isomorphic to aC(Y ). For example, ifX andT are as defined in Example 6.2,
then it follows from Theorem 7.2 thatQcl(X) ∼= C(T ) and from Example 6.2 that
H(X)∼= C(Tδ).

(e) It is possible forQcl(X) to be isomorphic to aC(T ) but for H(X) not to be
isomorphic to aC(Y ). As an example, letT =⊕{B(n): n ∈ N}, where eachB(n)
is a copy ofβN\N, and letX be any realcompact Tychonoff space that contains
T properly as a dense subspace (e.g.,X = βT ). By Theorem 7.2 it follows that
Qcl(X) ∼= C(T ) but asgX = T and not every compact subset ofT is scattered (as
βN\N is not), then it follows from Theorem 5.8 thatH(X) is not aC(Y ).

8. Open questions

Several interesting and obvious questions remain unresolved. The most fundamental is:

Question 8.1. Characterize those realcompact Tychonoff spacesX for which H(X) =
C((gX)δ).

Questions pertaining to special cases of Question 8.1 are the following:

Question 8.2. If H(X)= C((gX)δ) does it follow thatX has a dense set ofP -points?

Despite persistent efforts we have been unable to answer Question 8.2 in the general
case. However, observe that the answer is “yes” ifX is basically disconnected, for in that
casegX = P(X); we leave verification of this as an exercise for the reader.

Question 8.3. If X is a compact scattered almost-P space, does it follow thatH(X) =
C((X)δ)? (cf. Theorem 5.8).

Note added in proof

The authors have recently answered this question in the negative.

Acknowledgements

The authors gratefully acknowledge the support of the Natural Sciences and Engineering
Research Council of Canada.

The authors wish to thank the referee for many valuable suggestions.

References

[1] R.L. Blair, A.W. Hager, Extensions of zero-sets and of real-valued functions, Math. Z. 136
(1974) 41–52.



88 R.M. Raphael, R.G. Woods / Topology and its Applications 105 (2000) 65–88

[2] W.W. Comfort, A.W. Hager, Estimates for the number of real-valued continuous functions,
Trans. Amer. Math. Soc. 150 (1970) 619–631.

[3] F. Dashiell, A. Hager, M. Henriksen, Order-Cauchy completions of rings and vector lattices of
continuous functions, Canad. J. Math. 32 (1980) 657–685.

[4] R. Engelking, General Topology (revised and completed edition), Heldermann, Berlin, 1989.
[5] N. Fine, L. Gillman, Extensions of continuous functions inβN , Bull. Amer. Math. Soc. 66

(1960) 376–381.
[6] N.J. Fine, L. Gillman, J. Lambek, Rings of Quotients of Rings of Functions, McGill University

Press, Montreal, Quebec, 1966.
[7] L. Gillman, M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, NJ, 1960.
[8] A.W. Hager, Isomorphism with aC(Y ) of the maximal ring of quotients ofC(X), Fund. Math.

66 (1969) 7–13.
[9] M. Henriksen, D.G. Johnson, On the structure of a class of archimedian lattice-ordered algebras,

Fund. Math. 50 (1961) 73–94.
[10] A. Hager, J. Martinez, Fraction-dense algebras and spaces, Canad. J. Math. 45 (1993) 977–996.
[11] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
[12] J. Lambek, Lectures on Rings and Modules, Blaisdell, Toronto, 1966.
[13] D. Lazard, Epimorphismes plats d’anneaux, C. R. Acad. Sci. Paris Sér. A 266 (1968) 314–316.
[14] R. Levy, AlmostP -spaces, Canad. J. Math. 29 (2) (1977) 284–288.
[15] R. Levy, M. Rice, Normal spaces and theGδ-topology, Colloq. Math. 44 (1981) 227–240.
[16] J.P. Olivier, Anneaux absolument plats universels et epimorphismes d’anneaux, C. R. Acad. Sci.

Paris Sér. A 266 (1968) 317–318.
[17] J.R. Porter, R.G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer, New York,

1988.
[18] R. Raphael, Injective rings, Comm. Algebra 1 (5) (1974) 403–414.
[19] H.H. Storrer, Epimorphismen von kommutativen Ringen, Comment. Math. Helv. 43 (1968)

378–401.


