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Further studies of a new vitamin E analogue more active than 
a-tocopherol in the rat curative myopathy bioassay 
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The bloactlvltles of the acetates of 1R,4’R.8’R- and 2S,4’R.8’R-2.4.6,7-tetramethyl-2-(4’,8’.12’-trlmethyltr~decyl)-5-hydroxy-3.4-d~hydroben~ofu~~n 
IRRR- and SRR-~-AC) have been measured m the rat curative myopathy bioassay and compared with the RRR and SRR stereolsomers of z-toco- 
pheryl acetate (RRR- and SRR-~-AC). Each stereolsomer of 1 IS only shghtly more active than the corresponding stereolsomer of 2 (RRR-I-Ac/RRR- 

~-AC = 1.10, SRR-I-Ac,ISRR-~-AC = 1.16). This finding contrasts with our earlier finding [( 1986) FEBS Lett 205, 117 1201, confirmed in the present 
study, that all-rat-l-AC IS 1 5-1.9 as active as u/l-rat-~-AC. We suggest that the stereochemlstry (S vs R) at the 4’ and 8’ tall carbons IS of less 

blological Importance m 1 than m 2 

Vltamm E analogue, Rat curative myopathy assay. Peroxyl radical: AntIoxIdant 

1. INTRODUCTION 

In 1986 we reported the synthesis of all-rat-2,4,6,7- 

tetramethyl-2-(4’,8’,12’-trimethyltridecyl)-5-hydroxy- 
3,4_dihydrobenzofuran, 1, and showed that in the rat 
curative myopathy bioassay this compound had 
1.5-1.9 times the vitamin E activity of all-rac-a- 
tocopherol, 2, when both compounds were dosed as 
their acetates [l]. The greater biopotency of 1 was 
ascribed to the fact that it reacts in vitro with the perox- 
yl radicals (ROO’) which are responsible for lipid 
peroxidation with a rate that is 1.47 times the rate at 
which 2 reacts with ROO’, i.e., kf/k: = 1.47, 

tivity than RRR-2 [5] in the rat resorption-gestation 
bioassay despite the fact that their kl values in vitro 
must be identical. In this article we again employ the rat 
curative myopathy bioassay [6], which has been shown 
to correlate fairly well with the rat resorption-gestation 
bioassay for all-rat-2 vs RRR-2 [7], and for their 
acetates, i.e. all-rat-2-Ac vs RRR-~-AC [8], and explore 
the influence of chirality at position 2 on the bioactivity 
of 1, our reason being that it is known that it is the 
stereochemistry at the 2-position which is the major 
determinant of the bioactivity of 2 [5,6,9-141. 

2. MATERIALS AND METHODS 
kl 

ROO’ + ArOH - ROOH + ArO’ (1) 
all-rat-1 was synthesized as described prewously [l]. ?R,4’R,8’R-1 

(RRR-1) and 2S,J’R,8’R-1 (SRR-1) were also synthesized as describ- 

this difference in reactivity having been rationalized on 
stereoelectronic grounds [l-3]. Of course, the situation 
in vivo must be more complex. Thus, it is well known 
that all-rat-2 has less bioactivity than the ‘natural’ 
stereoisomer, 2R,4’R,S’R-2 (RRR-2), the currently ac- 
cepted ratio of bioactivities being 1 .O : 1.36 [4] (though 
in man the ratio is closer to 1 :2 insofar as retention in 
plasma following a dose of a 1 : 1 mixture of the two 
forms is concerned (G. Burton and K. Ingold, un- 
published results)). In fact, all 7 of the ‘unnatural’ 
stereoisomers of 2 have been shown to have less bioac- 
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ed previously [lS]. These three compounds were converted to thetr 
acetates and further purtfied by chromatography on silica gel 

The rat curattve myopathy bioassay, whtch 15 based on the reduc- 
tion of the highly elevated plasma pyruvate kinase (PK) activities of 
vitamin E defictent rats, was conducted essentially as described 
previously [l,h]. hlale weaniing (21-22 days old) Sprague-Dawley 
rats from the NRCC specific pathogen free facility were hou,ed in- 
di~idually in itatnless steel wire mesh cage3 at 21&23”C and with a 
12: 12 h light :darL cycle. Tap water and vttamm E-free diet were 
provided ad hbitum. pill three diets employed (see Table I) were 
modificattons of the AIN 76 formulairon 1161 and contamed 10% 
tocopherol-stripped corn otl (with 0.02% BHT) Instead of 5% corn 
oil and had menadione concentrations of 500 p&kg. Diet I contamed 
4% of the selenium-free 4164 salt mix (III place of the 3.5% AIN 76 
salt mix) and sucrose mas reduced from 50% to 44.5%. Diet II con- 
tained the 3.5% AIN 76 salt mtx but had the sucrose reduced from 
50% to 20% and the starch increased from 15% to 40%. Diet III was 
identical to diet fl except that one-quarter of the starch tva\ replaced 
with dyetrose (a selectively depolymerized corn starch) to permit 
pelletmg Diets I and II were purchased from ICN Btochenucals 1161 
and diet III from Dyets Inc., Bethlehem, PA. Vitamin A levels were 
formally the same m all three diets. The diets uere fed for 16 weeks 
prior to use of the ammals m the vnamm E btoassays. 

Each bioassay normally employed 36 rats, each recetvmg one of 
three doses of either of two test compounds (I.e. IR rats per com- 
pound and 6 per dose level) daily for 4 days. On day I, before do\ing. 
and on day 5 (23-24 h after the last dose) blood (0 5-l .O ml) v%ab ob- 
tamed by cardiac puncture under brief halothane anesthesia (5% 111 

02, l-2 nun), mixed with NaXDTA (1 mg)‘ml), chilled on ice and 
centrifuged at 8000 x g for 1 mm to kediment cells The plasma was 
retained and stored on ice until assayed (within l-l.5 h) for PK ac- 
ttvity, essenttally as described by Gutman and Berm [17]. The rat5 
were ranked rn order of mitial (day I) plasma PK and divided sequen- 
trally into 6 groups. The 6 rats m each group were then randomly 
assigned to receive one of the three doter of either teat compound. 
The teit compounds uere dissolved in tocopt~erot-stripped corn oil 
and admInIstered per os (250bJ’kg body uerght) with a positive 
dtsplacement pipette. After blood sampling on day 5 the animals were 
killed by exposure to gaseous COZ. 

For each bioassay the hnear regression of plasma PK actrvity 
(units/ml) cs In(dose) of test compound was computed by the method 
of least squares and, provrded that paratleliam of the dose-responx 
lines was not statt,ticalIy rejected by analyst, of variance. a common 
slope was calculated and apphed to the regressions. The ratio of 
potencies of the two test compounds was then computed from the 
hortzontat dtsplacement of the two hnes. 

10 - r 
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3. RESULTS AND DISCUSSION 

The results of 7 bioassay experiments (2 of which 
employed twice the normal number of rats), in terms of 
potency ratios for each of the pairs of compounds 
tested are given in Table I and some typicai plots of 
plasma PK activity vs ln(dose) are shown in Fig. 1. 

Our present results confirm our earlier finding [I] 
that aN-rat-l-Ac has significantly greater activity in the 
rat curative myopathy bioassay than synthetic vitamin 
E. i.e. than all-rat-2-Ac (see test 4). Moreover, the pre- 
sent potency ratio for these two stereoisomeric mix- 
tures, viz. 1.55, is in excellent agreement with the 
previously reported ratios from three separate assays, 
viz. [l], 1.49, 1.86 and 1.93, average 1.76. 

In contrast to the results obtained with all-rat-1 and 
-2 acetates stand the results obtained with the pure 
stereoisomers. Thus, the directly measured potency 
ratio for the RRR-I-Ac/RRR-~-AC pair is 1.10 (test 1) 
while the potency ratios that may be calcmated for this 
pair by combining the data from tests 2 and 5 and from 
tests 6 and 7 are 1.39 and 1.09, respectively. SimiIarly, 
the directly measured potency ratio for the 
SRR-1-AdSRR-~-AC pair is 1.16 (test 3) whiie the 
potency ratios which may be calculated for this pair by 
combining the data from tests 2 and 7 and from tests 
5 and 6 are 1.55 and 1.13, respectively. Although both 
the directly measured and indirectly calculated potency 
ratios for the RRR pair and the SRR pair are not, 
statistically speaking, significantly different from 1 .O 
(see Table I) the total weight of evidence is that 
RRR-I-AC and SRR-~-AC are -1.1-1.5 times as active 
as the corresponding stereoisomers of cY-tocopherol 
acetate. We therefore conclude that the statistically 
significantly greater activity of all all-rat-l-AC relative 
to a/l-rat-2-Ac (Table 1 and [I]) is most likely to be due 
to a significantly higher activity of some (or all) of the 

III 
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Ftg. 1. Dose-dependence of the reductton in plasma pyruvate kmase (PK) leveis measured on day 5 in viramm E deficient rat> after admnnstration 
once daily for 3 consecutive days of I. RRR-~-AC ( ,) or RRR-1-4~ (A) (test 1. assay 1): II: RRR-I-.4c (A) or SRR-1-h (A) (test 5, assay 1); 

and III: RRR-2.Ac ( 8) or SRR-~-AC (0) (telt 7, absay 1). The data pomts displayed m each graph are the means of data from 6 anmials. 
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Table 1 

Potency ratio of various pure stereoisomers and mixtures of stereoisomers of the acetates of 1 and 2 m reducing 
plasma pyruvate kinase in the rat curative myopathy bioassay 

Test Pair of compounds 

A B Assav 1 

Potency ratio, A : Bd 

Assav 2 Assav 3 Averaae 

Diet 

1 RRR-I-AC RRR-~-AC 1.09”’ 0.96”’ 1.24”’ 1.10 1 
2 SRR-I-AC RRR-~-AC 0.76”’ 0.76 I 
3 SRR-I-AC SRR-~-AC 1.16”‘.d 1.16 I 
4 all-rat-I-AC all-rat-2-Ac 1.55’.d 1.55 III 
5 SRR-~-AC RRR-I-AC 0.60’ 0.43’ 0.51 II 

6 SRR-~-AC RRR-I-AC 0.42 0.47’ 0.45 II 
7 SRR-L-AC RRR-~-AC 0.44b 0.56’ 0.46’ 0.49 I 

a The superscripts ns, b and c indicate the degree of significance, P 10.05, P < 0.05 and P < 0.01, respectively, 
that the test pair of compounds do not differ m potency 

’ Double assay with 36 rats per test compound rather than the usual 18 rats 

stereoisomers of ~-AC relative to the corresponding 
stereoisomers of ~-AC. We prefer not to invoke some 
hypothetical synergism between the stereoisomers of 
‘all-rat-I-AC’ although we note that ‘synergism’ has 
previously been invoked to explain relative bioassay 
results for ~-AC stereoisomeric mixtures and single 
stereoisomers which were analogous to those given in 
Table I [5,13,18]. It may, however, be significant that 
chirality differences in 13C NMR spectra are less pro- 
nounced in stereoisomers of 1 than in stereoisomers of 
2 [15] which suggests that the stereochemistry (S vs R) 
at the 4’ and/or 8’ carbons of 1 is of less biological im- 
portance than would appear to be the case for 2 [5]. 
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