Three positive solutions of semilinear elliptic equations in exterior cylinder domains

Tsing-San Hsu, Huei-Li Lin *

Center for General Education, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan

Received 15 May 2006
Available online 28 November 2006
Submitted by J. Lavery

Abstract

In this paper, assume that \(h \) is nonnegative and \(\|h\|_{L^2} > 0 \), we prove that if \(\|h\|_{L^2} \) is sufficiently small, then there are at least three positive solutions of Eq. (1) in an exterior cylinder domain.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Three positive solutions; Semilinear elliptic equations; Palais–Smale sequences; Minimax theorem

1. Introduction

Let \(N \) be a positive integer with \(N \geq 3 \). For \(z = (z_1, \ldots, z_N) \in \mathbb{R}^N \), define \(Pz = (z_1, \ldots, z_{N-1}, 0) \). Consider the semilinear elliptic equation

\[
\begin{cases}
-\Delta u + u = |u|^{p-2}u + h(z) & \text{in } \Omega; \\
u \in H^1_0(\Omega),
\end{cases}
\]

where \(\Omega = (\mathbb{R}^{N-1} \setminus \Omega^{N-1}) \times \mathbb{R}, \) \(\Omega^{N-1} \) is a smooth bounded domain in \(\mathbb{R}^{N-1} \), \(2 < p < 2^* = 2N/(N - 2) \), \(h \in L^2(\Omega) \cap L^{(N+r)/2}(\Omega) \) (\(r > 0 \) if \(N \geq 4 \) and \(r = 0 \) if \(N = 3 \)) and \(h \) is nonnegative. Let

\[
d(p, \alpha) = (p - 2) \left(\frac{1}{p - 1} \right)^{\frac{n-1}{p-2}} \left(\frac{2p}{p - 2} \right)^{\frac{1}{2}} \alpha(\Omega)^{\frac{1}{2}},
\]

* Corresponding author.

E-mail address: hlin@mail.cgu.edu.tw (H.-L. Lin).

0022-247X/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2006.10.057
and \(h(z) \geq 0 \) and \(0 < \| h \|_{L^2} < d(p, \alpha) \). Associated with Eq. (1), we consider the functionals \(a, b, \) and \(J_h \), for \(u \in H^1_0(\Omega) \),

\[
\begin{align*}
a(u) &= \int_{\Omega} (|\nabla u|^2 + u^2); \\
b(u) &= \int_{\Omega} |u|^p; \\
J_h(u) &= \frac{1}{2} a(u) - \frac{1}{p} b(u^+) - \int_{\Omega} hu.
\end{align*}
\]

By Rabinowitz [10, Proposition B.10], \(a, b, \) and \(J_h \) are of \(C^2 \). For \(h = 0 \), we consider the semi-linear elliptic equation

\[
\begin{align*}
-\Delta u + u &= |u|^{p-2}u \quad \text{in } \Omega; \\
u &\in H^1_0(\Omega),
\end{align*}
\]

and the energy functional \(J(u) = \frac{1}{2} a(u) - \frac{1}{p} b(u^+) \). Lien–Tzeng–Wang [8] proved that there is no positive ground state solution of Eq. (2) in a ball up domain or a large domain \(\Omega \). Tzeng–Wang [13] proved that if \(\rho \) is sufficiently small, then Eq. (2) admits a positive higher energy solution in \(\Omega \), where \(\Omega^{N-1} \subset B^{N-1}_\rho = \{ x \in \mathbb{R}^{N-1} | |x| < \rho \} \).

For \(h \geq 0 \), suppose that \(h \) is small and exponential decay, Zhu [16] and Hsu–Wang [6] proved that Eq. (1) admits at least two positive solutions in \(\mathbb{R}^N \) and an exterior strip domain, respectively. Without the condition of exponential decay, Cao–Zhou [5] proved that Eq. (1) admits at least two positive solutions in \(\mathbb{R}^N \). In this paper, we use the techniques (see Lemma 30) of the Bahri–Li’s minimax method [2] to show that there exist at least three positive solutions of Eq. (1) in \(\Omega \).

2. Existence of (PS)-sequences

We define the Palais–Smale (denoted by (PS)) sequences, (PS)-values, and (PS)-conditions in \(H^1_0(\Omega) \) for \(J_h \) as follows.

Definition 1.

(i) For \(\beta \in \mathbb{R} \), a sequence \(\{ u_n \} \) is a (PS)\(_\beta \)-sequence in \(H^1_0(\Omega) \) for \(J_h \) if \(J_h(u_n) = \beta + o(1) \) and \(J'_h(u_n) = o(1) \) strongly in \(H^{-1}(\Omega) \) as \(n \to \infty \);

(ii) \(\beta \in \mathbb{R} \) is a (PS)-value in \(H^1_0(\Omega) \) for \(J_h \) if there is a (PS)\(_\beta \)-sequence in \(H^1_0(\Omega) \) for \(J_h \);

(iii) \(J_h \) satisfies the (PS)\(_\beta \)-condition in \(H^1_0(\Omega) \) if every (PS)\(_\beta \)-sequence in \(H^1_0(\Omega) \) for \(J_h \) contains a convergent subsequence.

Lemma 2. Let \(u \in H^1_0(\Omega) \) be a critical point of \(J_h \), then \(u \) is a nonnegative solution of Eq. (1). Moreover, if \(u \neq 0 \) or \(h \neq 0 \), then \(u \) is positive in \(\Omega \).

Proof. Suppose that \(u \in H^1_0(\Omega) \) satisfies \(\langle J'_h(u), \varphi \rangle = 0 \) for any \(\varphi \in H^1_0(\Omega) \), that is,

\[
\int_{\Omega} (\nabla u \nabla \varphi + u \varphi) = \int_{\Omega} \left(u^{p-1}_+ \varphi + h \varphi \right) \quad \text{for any } \varphi \in H^1_0(\Omega).
\]
Thus, \(u \) is a weak solution of \(-\Delta u + u = u^{p-1}_+ + h(z)\) in \(\Omega \). Since \(h \geq 0 \), by the maximum principle, \(u \) is nonnegative. If \(u \neq 0 \) or \(h \neq 0 \), we have that \(u \) is positive in \(\Omega \).

Let

\[
M_h = \{ u \in H^1_0(\Omega) \setminus \{0\} \mid u \geq 0 \text{ and } \langle J'_h(u), u \rangle = 0 \} \quad \text{and} \quad \alpha_h(\Omega) = \inf_{u \in M_h} J_h(u).
\]

Denote by \(M_0 = M \), \(J_0(u) = J(u) \) and \(\alpha_0(\Omega) = \alpha(\Omega) \).

By Chen–Wang [4], we have the following lemmas.

Lemma 3. There is a bijective \(C^{1,1} \) map \(m \) from the unit sphere \(\Sigma \) in \(H^1_0(\Omega) \) to \(M \). Moreover, \(M \) is path-connected and there exists a constant \(c > 0 \) such that for any \(u \in M \), \(\| u \|_{H^1} \geq c \) and \(J(u) \geq c \).

Lemma 4.

(i) For each \(u \in H^1_0(\Omega) \setminus \{0\} \), there exists a \(s_u > 0 \) such that \(s_u u \in M \);

(ii) Let \(\beta > 0 \) and \(\{u_n\} \) be a sequence in \(H^1_0(\Omega) \setminus \{0\} \) for \(J \) such that \(J(u_n) = \beta + o(1) \) and \(a(u_n) = b(u^{p+1}_n) + o(1) \). Then there is a sequence \(\{s_n\} \) in \(\mathbb{R}^+ \) such that \(s_n = 1 + o(1) \), \(\{s_n u_n\} \) in \(M \) and \(J(s_n u_n) = \beta + o(1) \).

Lemma 5. For each nonnegative \(u \in H^1_0(\Omega) \setminus \{0\} \), we have

\[
\left(\frac{a(u)}{b(u)} \right)^{\frac{1}{p-2}} \geq \left(\frac{2p}{p-2} \right)^{\frac{1}{2}} \alpha(\Omega)^{\frac{1}{2}}.
\]

Proof. Applying Lemma 4. \(\square \)

Lemma 6 (Palais–Smale Decomposition Lemma for \(J_h \)). Let \(\{u_n\} \) be a \((PS)_\beta\)-sequence in \(H^1_0(\Omega) \) for \(J_h \). Then there are a subsequence \(\{u_n\} \), a positive integer \(l \), sequences \(\{z_i^n\}_{n=1}^{\infty} \) in \(\mathbb{R}^N \), functions \(u \in H^1_0(\Omega) \), and \(w^i \neq 0 \) in \(H^1(\mathbb{R}^N) \) for \(1 \leq i \leq l \) such that

\[
|z^n_i| \to \infty \quad \text{for } 1 \leq i \leq l;
\]

\[-\Delta u + u = |u|^{p-2} u + h(z) \quad \text{in } \Omega;\]

\[-\Delta w^i + w^i = |w^i|^{p-2} w^i \quad \text{in } \mathbb{R}^N;\]

\[u_n = u + \sum_{i=1}^{l} w^i (\cdot - z^n_i) + o(1) \quad \text{strongly in } H^1(\mathbb{R}^N);\]

\[J_h(u_n) = J_h(u) + \sum_{i=1}^{l} J(w^i) + o(1).\]

In addition, if \(u_n \geq 0 \), then \(u \geq 0 \) and \(w^i \geq 0 \) for \(1 \leq i \leq l \).

Proof. See Zhu–Zhou [17]. \(\square \)

Define \(\psi(u) = \langle J'_h(u), u \rangle = a(u) - b(u^+_+) - \int_\Omega hu \). Then
Lemma 7. For each \(u \in M_h \), we have \(\langle \psi'(u), u \rangle = a(u) - (p - 1)b(u) \neq 0 \).

Proof. By Tarantello [12, Lemma 2.3] and Cao–Zhou [5]. \(\square \)

By Lemma 7, we write \(M_h = M_h^+ \cup M_h^- \), where

\[
M_h^+ = \{ u \in M_h \mid a(u) - (p - 1)b(u) > 0 \},
\]

\[
M_h^- = \{ u \in M_h \mid a(u) - (p - 1)b(u) < 0 \}.
\]

Define

\[
\alpha^+_h(\Omega) = \inf_{u \in M_h^+} J_h(u); \quad \alpha^-_h(\Omega) = \inf_{u \in M_h^-} J_h(u).
\]

By Wang–Wu [15], we have the following lemma.

Lemma 8. \(\{ u_n \} \) is a \((PS)_{\alpha(\Omega)}\)-sequence in \(H_0^1(\Omega) \) for \(J \) if and only if \(J(u_n) = \alpha(\Omega) + o(1) \) and \(a(u_n) = b(u_n^+) + o(1) \). In particular, every minimizing sequence \(\{ u_n \} \) in \(M \) of \(\alpha(\Omega) \) is a \((PS)_{\alpha(\Omega)}\)-sequence in \(H_0^1(\Omega) \) for \(J \).

For each nonnegative \(u \in H_0^1(\Omega) \setminus \{ 0 \} \), we write

\[
t_{\text{max}} = \left(\frac{a(u)}{(p - 1)b(u)} \right)^{\frac{1}{p - 2}} > 0.
\]

Lemma 9. For each nonnegative \(u \in H_0^1(\Omega) \setminus \{ 0 \} \), we have the following results:

(i) There is a unique number \(t^- = t^-(u) > t_{\text{max}} > 0 \) such that \(t^- u \in M_h^- \) and \(J_h(t^-u) = \max_{t \geq t_{\text{max}}} J_h(tu) \);
(ii) \(t^-(u) \) is a continuous function;
(iii) \(M_h^- = \left\{ u \in H_0^1(\Omega) \setminus \{ 0 \} \mid u \geq 0 \text{ and } \frac{1}{\| u \|_{H^1}} t^- \left(\frac{u}{\| u \|_{H^1}} \right) = 1 \right\} \);
(iv) If \(\int_\Omega hu > 0 \), then there is a unique number \(0 < t^+ = t^+(u) < t_{\text{max}} \) such that \(t^+ u \in M_h^+ \) and \(J_h(t^+ u) = \min_{0 \leq t \leq t^-} J_h(tu) \).

Proof. See Tarantello [12] and Cao–Zhou [5]. \(\square \)

Lemma 10.

(i) For each \(u \in M_h^+ \), we have \(\int_\Omega hu > 0 \) and \(J_h(u) < 0 \). In particular, \(\alpha_h(\Omega) \leq \alpha_h^+(\Omega) < 0 \);
(ii) \(J_h \) is coercive and bounded below on \(M_h \).

Proof. (i) For each \(u \in M_h^+ \), \(a(u) - (p - 1)b(u) > 0 \) and \(a(u) = b(u) + \int_\Omega hu \). Then

\[
\int_\Omega hu = a(u) - b(u) > (p - 2)b(u) > 0.
\]
Hence
\[J_h(u) = \left(\frac{1}{2} - \frac{1}{p} \right) b(u) - \frac{1}{2} \int_\Omega hu < \frac{p - 2}{2p} b(u) - \frac{p - 2}{2} b(u) \]
\[= -\frac{(p - 1)(p - 2)}{2p} b(u) < 0. \]

(ii) By Tarantello [12, p. 288]. \qed

Lemma 11. Let \(u \) be in \(M_h \) such that \(J_h(u) = \min_{v \in M_h} J_h(v) = \alpha_h(\Omega) \). Then

(i) \(\int_\Omega hu > 0; \)
(ii) \(u \) is a solution of Eq. (1) in \(\Omega \).

Proof. (i) By Lemma 10(i), we have
\[0 > \alpha_h(\Omega) = J_h(u) = \left(\frac{1}{2} - \frac{1}{p} \right) a(u) - \left(1 - \frac{1}{p} \right) \int_\Omega hu. \]
Thus, \(\int_\Omega hu > 0. \)

(ii) By Lemma 7, \(\langle \psi'(v), v \rangle \neq 0 \) for each \(v \in M_h \). Since \(J_h(u) = \min_{v \in M_h} J_h(v) \), by the Lagrange multiplier theorem, there is a \(\lambda \in \mathbb{R} \) such that \(J_h'(u) = \lambda \psi'(u) \) in \(H^{-1}(\Omega) \). Then we have
\[0 = \langle J_h'(u), u \rangle = \lambda \langle \psi'(u), u \rangle. \]
Thus, \(\lambda = 0 \) and \(J_h'(u) = 0 \) in \(H^{-1}(\Omega) \). Therefore, \(u \) is a solution of Eq. (1) in \(\Omega \) with \(J_h(u) = \alpha_h(\Omega) \). \qed

By Cao–Zhou [5], we have the following lemma.

Lemma 12.

(i) There exists a \((PS)_{\alpha_h(\Omega)} \)-sequence \(\{u_n\} \) in \(M_h \) for \(J_h \);
(ii) There exists a \((PS)_{\alpha^+_h(\Omega)} \)-sequence \(\{u_n\} \) in \(M^+_h \) for \(J_h \);
(iii) There exists a \((PS)_{\alpha^-_h(\Omega)} \)-sequence \(\{u_n\} \) in \(M^-_h \) for \(J_h \).

3. Existence of the first solution

By Lemma 12(i), there is a \((PS)_{\alpha_h(\Omega)} \)-sequence \(\{u_n\} \) in \(M_h \) for \(J_h \). Then we have the following \((PS)_{\alpha_h(\Omega)} \)-condition.

Lemma 13. Let \(\{u_n\} \subset M_h \) be a \((PS)_{\alpha_h(\Omega)} \)-sequence for \(J_h \). Then there exist a subsequence \(\{u_n\} \) and a nonzero \(u_0 \in H^1_0(\Omega) \) such that \(u_n \to u_0 \) strongly in \(H^1_0(\Omega) \). Moreover, \(u_0 \) is a positive solution of Eq. (1) such that \(J_h(u_0) = \alpha_h(\Omega) \).
Proof. Since \(\{u_n\} \subset M_h \) be a \((PS)_{\alpha h(\Omega)}\)-sequence for \(J_h \), then \(\{u_n\} \) is bounded in \(H^1_0(\Omega) \). Thus, there are a subsequence \(\{u_n\} \) and a nonzero \(u^0 \in H^1_0(\Omega) \) such that \(u_n \rightharpoonup u^0 \) weakly in \(H^1_0(\Omega) \). Applying the Palais–Smale Decomposition Lemma 6, we get
\[
0 > \alpha_h(\Omega) + o(1) = J_h(u_n) \geq \alpha_h(\Omega) + l\alpha(\Omega).
\]
Then \(l = 0 \). Hence, \(u_n \rightharpoonup u^0 \) strongly in \(H^1_0(\Omega) \) and \(J_h(u^0) = \alpha_h(\Omega) \). Moreover, \(u^0 \) is a positive solution of Eq. (1) in \(\Omega \). \(\Box \)

We prove that \(u_0 \) is the unique critical point of \(J_h \) in \(B(r_0) \) in the following lemmas.

Lemma 14. Let \(r_0 = \left(\frac{1}{p-1} \right)^{\frac{1}{p-2}} \left(\frac{2p}{p-2} \right)^{\frac{1}{2}} \alpha(\Omega)^{\frac{1}{2}} \). Then

(i) \(M^+_h \subset B(r_0) = \{ u \in H^1_0(\Omega) \mid \|u\|_{H^1} < r_0 \} \);

(ii) \(J_h(u) \) is strictly convex in \(B(r_0) \).

Proof. (i) If \(u \in M^+_h \), then \(a(u) > (p - 1)b(u) \) and \(a(u) = b(u) + \int_{\Omega} hu \). Thus,
\[
a(u) < \frac{1}{p-1}a(u) + \|h\|_{L^2}\|u\|_{H^1}.
\]
This implies
\[
\|u\|_{H^1} < \left(\frac{p-1}{p-2} \right) \|h\|_{L^2} < \left(\frac{p-1}{p-2} \right) (p - 2) \left(\frac{1}{p-1} \right)^{\frac{p-1}{p-2}} \left(\frac{2p}{p-2} \right)^{\frac{1}{2}} \alpha(\Omega)^{\frac{1}{2}}
\]
\[
= \left(\frac{1}{p-1} \right)^{\frac{1}{p-2}} \left(\frac{2p}{p-2} \right)^{\frac{1}{2}} \alpha(\Omega)^{\frac{1}{2}} = r_0.
\]

(ii) We know
\[
J''_h(u)(v, v) = a(v) - (p - 1) \int_{\Omega} |u|^{p-2}v^2 \quad \text{for all } v \in H^1_0(\Omega).
\]
Thus, by Lemma 5, we obtain
\[
J''_h(u)(v, v) \geq a(v) - (p - 1) \|u\|_{L^p}^{-2} \|v\|_{L^p}^2
\]
\[
\geq a(v) - (p - 1) \left[a(u)^{\frac{p-2}{2}} \left(\frac{p-2}{2p} \right)^{\frac{p-2}{2}} \alpha(\Omega)^{-\frac{(p-2)^2}{2p}} \right]
\]
\[
\times \left[a(v) \left(\frac{p-2}{2p} \right)^{\frac{p-2}{2}} \alpha(\Omega)^{-\frac{(p-2)^2}{2p}} \right]
\]
\[
\geq a(v) \left[1 - (p - 1) \left(\frac{2p}{p-2} \alpha(\Omega) \right)^{\frac{2-p}{2}} \|u\|_{H^1}^{-2} \right]
\]
\[
> 0 \quad \text{for } u \in B(r_0) \setminus \{0\}.
\]
Thus, \(J''_h(u) \) is positive definite for \(u \in B(r_0) \) and \(J_h \) is strictly convex in \(B(r_0) \). \(\Box \)
By Lemma 13, there exists a solution \(u_0 \in \mathbf{M}_h \) of Eq. (1) such that \(J_h(u_0) = \alpha_h(\Omega) \). Furthermore, we have the following lemma.

Lemma 15.

(i) \(u_0 \in \mathbf{M}_h^+ \) and \(J_h(u_0) = \alpha_h^+(\Omega) = \alpha_h(\Omega) \);

(ii) \(u_0 \) is the unique critical point of \(J_h(u) \) in \(B(r_0) \), where \(r_0 \) is defined as in Lemma 14;

(iii) \(J_h(u_0) \) is a local minimum in \(H_0^1(\Omega) \).

Proof. (i) By Lemma 11(i), \(\int_\Omega h u_0 > 0 \). We claim that \(u_0 \in \mathbf{M}_h^+ \). Otherwise, if \(u_0 \in \mathbf{M}_h^- \), then by Lemma 9, there exists a unique \(t^-(u_0) = 1 > t^+(u_0) > 0 \) such that \(t^+(u_0) u_0 \in \mathbf{M}_h^+ \) and

\[
\alpha_h(\Omega) \leq \alpha_h^+(\Omega) \leq J_h(t^+(u_0) u_0) < J_h(t^-(u_0) u_0) = \alpha_h(\Omega),
\]

which is a contradiction. Since \(u_0 \in \mathbf{M}_h^- \), \(\alpha_h^+(\Omega) \leq J_h(u_0) = \alpha_h(\Omega) \leq \alpha_h^+(\Omega) \), that is, \(J_h(u_0) = \alpha_h^+(\Omega) = \alpha_h(\Omega) \).

(ii) By part (i) and Lemma 14.

(iii) See Cao–Zhou [5, p. 452]. \(\square \)

Lemma 16. Let \(u \in H_0^1(\Omega) \) be a critical point of \(J_h \), then either \(u \in \mathbf{M}_h^- \) or \(u = u_0 \).

Proof. Let \(u \in H_0^1(\Omega) \) be a critical point of \(J_h \), we get \(u \in \mathbf{M}_h = \mathbf{M}_h^+ \cup \mathbf{M}_h^- \). Since \(\mathbf{M}_h^+ \cap \mathbf{M}_h^- = \emptyset \), \(\mathbf{M}_h^+ \subset B(r_0) \) and \(u_0 \) is the unique critical point of \(J_h(u) \) in \(B(r_0) \), where \(r_0 \) is defined as in Lemma 14, then either \(u \in \mathbf{M}_h^- \) or \(u = u_0 \). \(\square \)

4. Existence of the second solution

Using the arguments of Chen–Chen–Wang [3, Proposition 1] and Zhu–Zhou [17], we have the following lemma.

Lemma 17. Assume that \(h \in L^2(\Omega) \cap L^{(N+r)/2}(\Omega) \) (\(r > 0 \) if \(N \geq 4 \) and \(r = 0 \) if \(N = 3 \)). Let \(u \) be a positive solution of Eq. (1) in \(\Omega \). Then for any \(\varepsilon > 0 \), there are positive constants \(c_\varepsilon \) and \(c'_\varepsilon \) and \(R \) such that \(\Omega \subset B_R = \{ x \in \mathbb{R}^{N-1} | |x| < R \} \) and

\[
|u(z)| \geq c_\varepsilon \exp(- (1 + \varepsilon) |Pz|) \quad \text{for } |Pz| \geq R \text{ and } |z_N| < c'_\varepsilon.
\]

We know that there is a positive radially symmetric smooth solution \(w \) of Eq. (2) in \(\mathbb{R}^N \) such that \(J(w) = \alpha(\mathbb{R}^N) \). Recall the facts:

(i) for any \(\varepsilon > 0 \), there exist constants \(C_0, C'_0 > 0 \) such that for all \(z \in \mathbb{R}^N \)

\[
w(z) \leq C_0 \exp(- |z|) \quad \text{and} \quad |\nabla w(z)| \leq C'_0 \exp(- (1 - \varepsilon)|z|);
\]

(ii) for any \(\varepsilon > 0 \), there exists a constant \(C_\varepsilon > 0 \) such that

\[
w(z) \geq C_\varepsilon \exp(- (1 + \varepsilon)|z|) \quad \text{for all } z \in \mathbb{R}^N.
\]

For such \(R \) in Lemma 17, let \(\psi_R \) be a \(C^\infty \)-function on \(\mathbb{R}^N \) such that \(0 \leq \psi_R \leq 1 \), \(|\nabla \psi_R| \leq c \) and

\[
\psi_R(z) = \begin{cases}
1 & \text{for } |Pz| \geq R + 1; \\
0 & \text{for } |Pz| \leq R.
\end{cases}
\]
We define

\[w_n(z) = \psi_R(z)w(z - e_n) \quad \text{for } n \in \mathbb{N}, \]

where \(e_n = (n, 0, \ldots, 0) \in \mathbb{R}^N \). Clearly, \(w_n \in H^1_0(\Omega) \).

In order to prove Lemma 22, we need the following lemmas.

Lemma 18.

(i) \(a(w_n) = b(w_n) + o(1) = \frac{2p}{p-2}a(\mathbb{R}^N) + o(1) \) as \(n \to \infty \);

(ii) \(J(w_n) = \alpha(\Omega) + o(1) = \alpha(\mathbb{R}^N) + o(1) \) as \(n \to \infty \);

(iii) \(w_n \rightharpoonup 0 \) weakly in \(H^1_0(\Omega) \) as \(n \to \infty \).

Proof. It is similar to the proof of Wang [14, Lemma 30]. \(\square \)

Lemma 19. Let \(E \) be a domain in \(\mathbb{R}^N \). If \(f : E \to \mathbb{R} \) satisfies

\[\int_E |f(z)e^{\sigma|z|}| \, dz < \infty \quad \text{for some } \sigma > 0, \]

then

\[\left(\int_E f(z)e^{-\sigma|z-e_n|} \, dz \right)e^{\sigma n} = \int_E f(z)e^{\sigma|z|} \, dz + o(1) \quad \text{as } n \to \infty. \]

Proof. Since \(\sigma|e_n| \leq \sigma|z| + \sigma|z - e_n| \), we have

\[|f(z)e^{-\sigma|z-e_n|}e^{\sigma|e_n|}| \leq |f(z)e^{\sigma|z|}|. \]

Since \(-\sigma|z - e_n| + \sigma|e_n| = \sigma\frac{|z-e_n|}{|e_n|} + o(1) \) as \(n \to \infty \), then the lemma follows from the Lebesgue dominated convergence theorem. \(\square \)

Lemma 20. For \(t \geq 0 \), we have the following inequalities:

(i) \((1 + t)^q \geq 1 + t^q + \frac{q}{q-1}t^{q-1} \) where \(q \geq 2 \);

(ii) \((1 + t)^q \geq 1 + t^q + qt \) where \(q \geq 2 \);

(iii) \((1 + t)^q \geq 1 + t + qt + \frac{q}{q-2}t^{q-1} \) where \(q \geq 3 \);

(iv) If \(t \leq c \) for some \(c > 0 \), then \((1 + t)^q \geq 1 + t^q + qt + A(c)t^2 \) where \(2 < q < 3 \) and \(A(c) > 0 \).

Proof.

(i) Let \(f(t) = (1 + t)^q - 1 - t^q - \frac{q}{q-1}t^{q-1} \) for \(t \geq 0 \) and \(q \geq 2 \). Then \(f(0) = 0 \), and

\[f'(t) = q[(1 + t)^{q-1} - t^{q-1} - t^{-q-2}] \]

Since \(q \geq 2 \), we get \((1 + t)^{q-1} = (1 + t)^{q-2} + t(1 + t)^{q-2} \geq t^{q-2} + t^{q-1} \). Thus, \(f'(t) \geq 0 \).

(ii) The proof is similar to (i).

(iii) Let \(g(t) = (1 + t)^q - 1 - t^q - qt - \frac{q}{q-2}t^{q-1} \) for \(t \geq 0 \) and \(q \geq 3 \). Then \(g(0) = 0 \), and by (i), we obtain

\[g'(t) = q[(1 + t)^{q-1} - t^{q-1} - 1 - \frac{q-1}{q-2}t^{q-2}] \geq 0. \]
(iv) Let \(h(t) = (1 + t)^q - t^q \) for \(0 \leq t \leq c \) and \(2 < q < 3 \). Then

\[
\begin{align*}
 h'(t) &= q[(1 + t)^{q-1} - t^{q-1}], \quad h'(0) = q, \\
 h''(t) &= q(q-1)(1 + t)^{q-2} - t^{q-2} > 0,
\end{align*}
\]

and

\[
 h'''(t) = q(q-1)(q-2)(1 + t)^{q-3} - t^{q-3} < 0.
\]

Since \(t \leq c \) for some \(c > 0 \), applying the Taylor theorem, we have

\[
(1 + t)^q - t^q - 1 - qt \geq \frac{q(q-1)}{2}(1 + c)^{q-2} - c^{q-2}t^2.
\]

By Lemma 20, we obtain

\[
(a + b)^q \geq a^q + b^q + qa^{q-1}b + \frac{q}{q-2}ab^{q-1} \quad \text{for } q \geq 3 \text{ and } a, b \geq 0,
\]

and

\[
(a + b)^q \geq a^q + b^q + qa^{q-1}b + A(c)a^{q-2}b^2 \quad \text{for } 2 < q < 3 \text{ and } b/a \leq c.
\]

Lemma 21.

(i) There exists a number \(t_0 > 0 \) such that for \(0 \leq t < t_0 \) and each \(w_n \in H^1_0(\Omega) \), we have

\[
J_h(u_0 + tw_n) < J_h(u_0) + \alpha(\Omega);
\]

(ii) There exist positive numbers \(t_1 \) and \(n_1 \) such that for any \(t > t_1 \) and \(n \geq n_1 \), we have

\[
J_h(tw_n) < 0.
\]

Proof. (i) Since \(J_h \) is continuous in \(H^1_0(\Omega) \) and \(\{w_n\} \) is bounded in \(H^1_0(\Omega) \), there is a \(t_0 > 0 \) such that for \(0 \leq t < t_0 \) and each \(w_n \in H^1_0(\Omega) \)

\[
J_h(u_0 + tw_n) < J_h(u_0) + \alpha(\Omega).
\]

(ii) By Lemma 18, \(J_h(tw_n) = (\frac{t^2}{2} - \frac{t^p}{p}) \frac{2p}{p-2} \alpha(\Omega) + o(1) \) as \(n \to \infty \). There is an \(n_1 > 0 \) such that for \(n \geq n_1 \)

\[
J_h(tw_n) < \left(\frac{t^2}{2} - \frac{t^p}{p}\right) \frac{2p}{p-2} \alpha(\Omega) + 1.
\]

Thus, there exists a \(t_1 > 0 \) such that

\[
J_h(tw_n) < 0 \quad \text{for any } t > t_1 \text{ and } n \geq n_1.
\]

Lemma 22. There exists a number \(n_0 > 0 \) such that for \(n \geq n_0 \)

\[
\sup_{t \geq 0} J_h(u_0 + tw_n) < \alpha_h(\Omega) + \alpha(\Omega),
\]

where \(u_0 \) is the local minimum in Lemma 15.
Proof. By Lemma 21, we only need to show that there exists an \(n_0 > 0 \) such that for \(n \geq n_0 \)

\[
\sup_{t_0 \leq t \leq t_1} J_h(u_0 + tw_n) < J_h(u_0) + \alpha(\Omega) = \alpha_h(\Omega) + \alpha(\Omega).
\]

Since \(u_0 \) is a positive solution of Eq. (1) in \(\Omega \), then

\[
\langle u_0, tw_n \rangle_{H^1} = \int_{\Omega} (u_0 - tw_n + tw_n) dz.
\]

For \(t_0 \leq t \leq t_1 \) and \(n \geq n_1 \), since \(J(w) = J(w(z - e_n)) \), \(\sup_{t \geq 0} J(tw) = \alpha(\mathbb{R}^N) \) and \(0 \leq \psi_R \leq 1 \), we obtain

\[
J_h(u_0 + tw_n) = \frac{1}{2} \|u_0 + tw_n\|^2_{H^1} - \frac{1}{p} \int_{\Omega} (u_0 + tw_n)^p - \int_{\Omega} h(u_0 + tw_n)
\]

\[
= J_h(u_0) + J(tw_n) + \langle u_0, tw_n \rangle_{H^1}
\]

\[
+ \frac{1}{p} \int_{\Omega} \left[u_0^p + (tw_n)^p - (u_0 + tw_n)^p - phw_n \right]
\]

\[
= J_h(u_0) + J(tw_n) - \frac{1}{p} \int_{\Omega} \left[(u_0 + tw_n)^p - u_0^p - (tw_n)^p - pu_0^{p-1}(tw_n) \right]
\]

\[
\leq J_h(u_0) + \alpha(\mathbb{R}^N) + \frac{t^2}{2} \int_{\mathbb{R}^N} |\nabla \psi_R|^2 \left[w(z - e_n) \right]^2 dz
\]

\[
+ t^2 \int_{\mathbb{R}^N} |\nabla \psi_R| |\nabla w(z - e_n)| w(z - e_n) dz
\]

\[
+ \frac{t^p}{p} \int_{\mathbb{R}^N} (1 - \psi_R^p) \left[w(z - e_n) \right]^p dz
\]

\[
- \frac{1}{p} \int_{\mathbb{R}^N} \left[(u_0 + tw_n)^p - u_0^p - (tw_n)^p - pu_0^{p-1}(tw_n) \right].
\]

For a small \(\varepsilon > 0 \), since \(\text{supp}(1 - \psi_R^p) = \{z \in \mathbb{R}^N \mid |Pz| \leq R + 1\} \) is unbounded, then

\[
\int_{|Pz| \leq R+1} (1 - \psi_R^p) \left[w(z - e_n) \right]^p dz \leq C_1 \exp(-(p - \varepsilon)n). \tag{5}
\]

Similarly, we have

\[
\int_{\text{supp}(\nabla \psi_R)} |\nabla \psi_R|^2 \left[w(z - e_n) \right]^2 dz \leq C_2 \exp(-(2 - \varepsilon)n), \tag{6}
\]

and

\[
\int_{\text{supp}(\nabla \psi_R)} |\nabla \psi_R| |\nabla w(z - e_n)| w(z - e_n) dz \leq C_3 \exp(-(2 - 2\varepsilon)n). \tag{7}
\]
Let \(D = \{ z \in \Omega \mid R \leq |Pz| \leq 2R \text{ and } |z_N| < c' \} \). By Lemma 20(ii), we get
\[
(I) = (u_0 + tw_n)^p - u_0^p - (tw_n)^p - pu_0^{p-1}(tw_n) \geq 0.
\]

Then
\[
\int_{\mathbb{R}^N} (I) \, dz \geq \int_{D} (I) \, dz. \tag{8}
\]

(i) For \(3 \leq p < 2^* \), by (3)
\[
\int_{D} (u_0 + tw_n)^p \geq \int_{D} \left[u_0^p + (tw_n)^p + pu_0^{p-1}(tw_n) + \frac{p}{p-2}u_0(tw_n)^{p-1} \right].
\]

Thus, by Lemma 19, there is an \(n'_1 \geq n_1 \) such that if \(n \geq n'_1 \), then
\[
\int_{D} u_0w_n^{p-1} \, dz \geq c_1 \exp(-\min\{1, p-1\}(1+\epsilon)n) \geq c_1 \exp(-(1+\epsilon)n). \tag{9}
\]

Using (5)–(9), we choose an \(\epsilon < 1/3 \) and an \(n_0 \geq n'_1 \) such that for \(n \geq n_0 \)
\[
\sup_{n_0 \leq t \leq t_1} J_h(u_0 + tw_n) < J_h(u_0) + \alpha(\mathbb{R}^N).
\]

(ii) For \(2 < p < 3 \), since \(\max\{w_n(z)/u_0(z) \mid R \leq |Pz| \leq 2R \} \leq c < \infty \) for each \(n \in \mathbb{N} \), by (4)
\[
\int_{D} (u_0 + tw_n)^p \geq \int_{D} \left[u_0^p + (tw_n)^p + pu_0^{p-1}(tw_n) + A(c)u_0^{p-2}(tw_n)^2 \right].
\]

Thus, by Lemma 19, there is an \(n'_1 \geq n_1 \) such that if \(n \geq n'_1 \), then
\[
\int_{D} u_0^{p-2}w_n^2 \, dz \geq c_2 \exp(-\min\{2, p-2\}(1+\epsilon)n)
\]
\[
\geq c_2 \exp(-(p-2)(1+\epsilon)n). \tag{10}
\]

Using (5)–(8), (10), we choose an \(\epsilon < (4 - p)/p \) and an \(n_0 \geq n'_1 \) such that for \(n \geq n_0 \)
\[
\sup_{n_0 \leq t \leq t_1} J_h(u_0 + tw_n) < J_h(u_0) + \alpha(\mathbb{R}^N) = \alpha_h(\Omega) + \alpha(\Omega).
\]

By (i) and (ii), we complete the proof. \(\square \)

Let
\[
A_1 = \left\{ u \in H_0^1(\Omega) \setminus \{0\} \mid u \geq 0 \text{ and } \frac{1}{\|u\|_{H^1}}t^{-\left(\frac{u}{\|u\|_{H^1}}\right)} > 1 \right\} \cup \{0\},
\]
\[
A_2 = \left\{ u \in H_0^1(\Omega) \setminus \{0\} \mid u \geq 0 \text{ and } \frac{1}{\|u\|_{H^1}}t^{-\left(\frac{u}{\|u\|_{H^1}}\right)} < 1 \right\}.
\]

From Tarantello [12], we have the following results.
Lemma 23.

(i) \(A \setminus M^-_h = A_1 \cup A_2 \), where \(A = \{ u \in H^1_0(\Omega) \mid u \geq 0 \} \);
(ii) \(M^+_h \subset A_1 \);
(iii) There exist \(t_0 > 1 \) and \(n_2 \geq n_0 \) such that \(u_0 + t_0 w_n \in A_2 \) for each \(n \geq n_2 \), where \(n_0 \) is defined as in Lemma 22;
(iv) There exists a sequence \(\{ s_n \} \subset (0, 1) \) such that \(u_0 + s_n t_0 w_n \in M^-_h \) for each \(n \geq n_2 \);
(v) \(\alpha^- h < \alpha h(\Omega) + \alpha(\Omega) \).

Proof. (i) By Lemma 9(iii).

(ii) For each \(u \in M^+_h \), we have
\[
1 < t_{\text{max}}(u) < t^-(u) = \frac{1}{\| u \|_{H^1}} t^-(\frac{u}{\| u \|_{H^1}}),
\]
then \(M^+_h \subset A_1 \). In particular, \(u_0 \in A_1 \), where \(u_0 \) is defined as in Lemma 15.

(iii) There is a constant \(c > 0 \) such that \(0 < t^- (\frac{u_0 + t w_n}{\| u_0 + t w_n \|_{H^1}}) < c \) for each \(t \geq 0 \) and each \(n \in \mathbb{N} \).

On the contrary, we consider that there exist a sequence \(\{ t_n \} \) and a subsequence \(\{ w_n \} \) such that \(t^- (\frac{u_0 + t_n w_n}{\| u_0 + t_n w_n \|_{H^1}}) \to \infty \) as \(n \to \infty \). Let \(v_n = \frac{u_0 + t_n w_n}{\| u_0 + t_n w_n \|_{H^1}} \). Claim that \(b(v_n) \) is bounded below away from zero.

Case (a): there is a subsequence \(\{ t_n \} \) such that \(t_n = c_0 + o(1) \) as \(n \to \infty \), where \(c_0 > 0 \). By Lemma 18, we have
\[
a(w_n) = b(w_n) + o(1) = \frac{2p}{p-2} \alpha(\Omega) + o(1).
\]

Thus,
\[
b(v_n) \geq b(w_n) \geq \frac{1}{\| u_0 + t_n w_n \|_{H^1}^p} \frac{\| u_0 \|_{H^1}^p}{t_n^p} \int_{\Omega} (\frac{u_0}{t_n} + w_n)^p - \frac{2p}{p-2} \alpha(\Omega) + o(1).
\]

Case (b): \(t_n \to \infty \) as \(n \to \infty \). The proof is similar to case (a).

Case (c): there is a subsequence \(\{ t_n \} \) such that \(t_n = o(1) \) as \(n \to \infty \). By Lemma 18, we have
\[
\| u_0 + t_n w_n \|_{H^1}^2 = \| u_0 \|_{H^1}^2 + t_n^2 \| w_n \|_{H^1}^2 + 2t_n \langle w_n, u_0 \rangle_{H^1} = \| u_0 \|_{H^1}^2 + o(1).
\]

Thus,
\[
b(v_n) \geq \frac{1}{\| u_0 + t_n w_n \|_{H^1}^p} \frac{\| u_0 \|_{H^1}^p}{t_n^p} \int_{\Omega} u_0^p - \frac{1}{\| u_0 \|_{H^1}^p} \int_{\Omega} u_0^p + o(1).
\]
Since \(t^- (v_n) v_n \in M_h^- \subset M_h \), we have
\[
J_h(t^- (v_n) v_n) = \frac{1}{2} \left[t^- (v_n) \right]^2 - \frac{1}{p} \left[t^- (v_n) \right]^p b(v_n) - t^- (v_n) \int_\Omega h v_n
\]
\[\rightarrow - \infty \text{ as } n \rightarrow \infty.\]
However, \(J_h \) is bounded below on \(M_h \), which is a contradiction. Let
\[
t_0 = \left(\frac{p - 2}{2 p \alpha(\Omega)}c^2 - a(u_0) \right)^{\frac{1}{2}} + 1,
\]
then
\[
\left\| u_0 + t_0 w_n \right\|_{H^1}^2 = a(u_0) + t_0^2 \left(\frac{2p}{p - 2} \right) \alpha(\Omega) + o(1)
\]
\[> c^2 + o(1) \geq \left[t^- \left(\frac{u_0 + t_0 w_n}{\|u_0 + t_0 w_n\|_{H^1}} \right) \right]^2 + o(1).
\]
Thus, there is an \(n_2 \geq n_0 \), where \(n_0 \) is defined as in Lemma 22, such that, for \(n \geq n_2 \),
\[
\frac{1}{\left\| u_0 + t_0 w_n \right\|_{H^1}} t^- \left(\frac{u_0 + t_0 w_n}{\|u_0 + t_0 w_n\|_{H^1}} \right) < 1,
\]
or \(u_0 + t_0 w_n \in A_2 \).
(iv) Define a path \(\gamma_n(s) = u_0 + s t_0 w_n \) for \(s \in [0, 1] \) and each \(n \geq n_2 \) where \(t_0 > 1 \), then
\[
\gamma_n(0) = u_0 \in A_1, \quad \gamma_n(1) = u_0 + t_0 w_n \in A_2.
\]
Since \(\frac{1}{\|u\|_{H^1}} t^- \left(\frac{u}{\|u\|_{H^1}} \right) \) is a continuous function for nonzero \(u \) and \(\gamma_n([0, 1]) \) is connected, there exists a sequence \(\{s_n\} \subset (0, 1) \) such that \(u_0 + s_n t_0 w_n \in M_h^- \).
(v) By part (iv) and Lemma 22,
\[
\alpha_h^- \leq J_h(u_0 + s_n t_0 w_n) < J_h(u_0) + \alpha(\Omega) = \alpha_h(\Omega) + \alpha(\Omega). \quad \square
\]
Kwong [7] proved that there is the unique positive solution \(w \) of Eq. (2) in \(\mathbb{R}^N \) such that \(J(w) = \alpha(\mathbb{R}^N) \). Lien–Tzeng–Wang [8] proved that Eq. (2) does not have a positive ground state solution in \(\Omega \) and \(\alpha(\Omega) = \alpha(\mathbb{R}^N) \). Then by Cao–Zhou [5, Proposition 3.1], Palais–Smale Decomposition Lemma 6 and Lemma 16, we have the following restricted (PS)\(_{\beta} \)-condition.

Lemma 24.

(i) If \(\{u_n\} \) is a (PS)\(_{\beta} \)-sequence in \(H^1_0(\Omega) \) for \(J_h \) with \(\beta < \alpha_h(\Omega) + \alpha(\Omega) \), then there exist a subsequence \(\{u_n\} \) and a nonzero \(u^0 \) in \(H^1_0(\Omega) \) such that \(u_n \to u^0 \) strongly in \(H^1_0(\Omega) \) and
\[
J_h(u^0) = \beta. \quad \text{Moreover, } u^0 \text{ is a positive solution of Eq. (1) in } \Omega;
\]
(ii) If \(\{u_n\} \subset M_h^- \) is a (PS)\(_{\beta} \)-sequence in \(H^1_0(\Omega) \) for \(J_h \) with
\[
\alpha_h(\Omega) + \alpha(\Omega) < \beta < \alpha_h^-(\Omega) + \alpha(\Omega),
\]
then there exist a subsequence \(\{u_n\} \) and a nonzero \(u^0 \in M_h^- \) such that \(u_n \to u^0 \) strongly in \(H^1_0(\Omega) \) and
\[
J_h(u^0) = \beta.
\]
Moreover, \(u^0 \) is a positive solution of Eq. (1) in \(\Omega \).
Proof. (i) Since \(\{u_n\} \) is bounded in \(H^1_0(\Omega) \), there are a subsequence \(\{u_n\} \) and a nonzero \(u^0 \in H^1_0(\Omega) \) such that \(u_n \rightharpoonup u^0 \) weakly in \(H^1_0(\Omega) \). Applying the Palais–Smale Decomposition Lemma 6, we get

\[
\alpha_h(\Omega) + \alpha(\Omega) > \beta + o(1) = J_h(u_n) = J_h(u^0) + l\alpha(\Omega) \geq \alpha_h(\Omega) + l\alpha(\Omega).
\]

Then \(l = 0 \). Hence, \(u_n \to u^0 \) strongly in \(H^1_0(\Omega) \) and \(J_h(u^0) = \beta \). Moreover, \(u^0 \) is a positive solution of Eq. (1) in \(\Omega \).

(ii) Since \(\{u_n\} \) is bounded in \(H^1_0(\Omega) \), there are a subsequence \(\{u_n\} \) and a nonzero \(u^0 \in H^1_0(\Omega) \) such that \(u_n \rightharpoonup u^0 \) weakly in \(H^1_0(\Omega) \). By Lemma 16, either \(u^0 \in M^-_h \) or \(u^0 = u_0 \). Applying the Palais–Smale Decomposition Lemma 6 to obtain

\[
\beta + o(1) = J_h(u_n) = J_h(u^0) + l\alpha(\Omega) \geq \alpha_h(\Omega) + l\alpha(\Omega).
\]

By Lemma 23(v), we have \(\alpha^-_h(\Omega) < \alpha_h(\Omega) + \alpha(\Omega) \), then \(l \leq 1 \). If \(l = 1 \) and \(u^0 = u_0 \), then \(\beta = J_h(u^0) + \alpha(\Omega) = \alpha_h(\Omega) + \alpha(\Omega) \), which is a contradiction. If \(l = 1 \) and \(u^0 \in M^-_h \), then

\[
\beta = J_h(u^0) + \alpha(\Omega) \geq \alpha^-_h(\Omega) + \alpha(\Omega),
\]

which is a contradiction. Thus, \(l = 0 \). We complete the proof. \(\Box \)

By Lemma 12(iii), there is a \((PS)_{\alpha^-_h(\Omega)}\)-sequence \(\{u_n\} \) in \(M^-_h \) for \(J_h \). Then we have the following \((PS)_{\alpha^-_h(\Omega)}\)-condition.

Lemma 25. Let \(\{u_n\} \subset M^-_h \) be a \((PS)_{\alpha^-_h(\Omega)}\)-sequence for \(J_h \). Then there exist a subsequence \(\{u_n\} \) and a nonzero \(u^0 \in H^1_0(\Omega) \) such that \(u_n \to u^0 \) strongly in \(H^1_0(\Omega) \). Moreover, \(u^0 \) is a positive solution of Eq. (1) such that \(J_h(u^0) = \alpha^-_h(\Omega) \).

Proof. By Lemma 23(v), \(\alpha^-_h(\Omega) < \alpha_h(\Omega) + \alpha(\Omega) \). Then applying Lemma 24(i), we have that there exists a positive solution \(u^0 \) of Eq. (1) such that \(J_h(u^0) = \alpha^-_h(\Omega) \). \(\Box \)

Therefore, by Lemmas 2, 13 and 25, Eq. (1) admits at least two positive solutions in \(\Omega \).

Theorem 26. Assume that \(h(z) \geq 0 \) and \(0 < \|h\|_{L^2} < d(p, \alpha) \), then there are at least two positive solutions of Eq. (1) in \(\Omega \).

5. Existence of the third solution

For \(c > 0 \), we define

\[
b_c(u) = \int_{\Omega} cu^p;
\]

\[
I_c(u) = \frac{1}{2} a(u) - \frac{1}{p} b_c(u_+);
\]

\[
M_{I_c} = \{ u \in H^1_0(\Omega) \setminus \{0\} \mid \langle I'_c(u), u \rangle = 0 \}.
\]
Recall that there exist a unique $t^- = t^-(u) > 0$ and a unique $t^+ = t^+(u) > 0$ such that $t^- u \in M_h^-$ and $t^+ u \in M$. Let $\Sigma = \{u \in H^1_0(\Omega) \mid u \geq 0 \text{ and } \|u\|_{H^1} = 1\}$. Then we have the following results.

Lemma 27.

(i) For each $u \in \Sigma$, there exists a unique number $t^c(u) > 0$ such that $t^c(u)u \in M_{L_c}$ and
\[
\max_{t \geq 0} I_c(tu) = I_c(t^c(u)u) = \left(\frac{1}{2} - \frac{1}{p}\right)b_c(u)^{2/p^2};
\]
(ii) For each nonnegative $u \in H^1_0(\Omega)$ and $0 < \mu < 1$, we have
\[
(1 - \mu)I_{\frac{1}{\mu^p}}(u) - \frac{1}{2\mu}\|h\|_{L^2}^2 \leq J_h(u) \leq (1 + \mu)I_{\frac{1}{\mu^p}}(u) + \frac{1}{2\mu}\|h\|_{L^2}^2;
\]
(iii) For each $u \in \Sigma$ and $0 < \mu < 1$, we have
\[
(1 - \mu)p^{p^2}J(t^1 u) - \frac{1}{2\mu}\|h\|_{L^2}^2 \leq J_h(t^- u) \leq (1 + \mu)p^{p^2}J(t^1 u) + \frac{1}{2\mu}\|h\|_{L^2}^2;
\]
(iv) $\alpha^- > 0$ for sufficiently small $\|h\|_{L^2}$.

Proof. (i) For each $u \in \Sigma$, let $f(t) = I_c(tu) = \frac{1}{2}t^2 - \frac{1}{p}t^pb_c(u)$, then $f(t) \to -\infty$ as $t \to \infty$, $f'(t) = t - tj b_c(u)$ and $f''(t) = 1 - (p - 1)tj b_c(u)$. Let
\[
t^c(u) = \left(\frac{1}{b_c(u)}\right)^{2/p^2} > 0.
\]
Then $f'(t^c(u)) = 0$, $t^c(u)u \in M_{L_c}$ and
\[
(t^c(u))^2 f''(t^c(u)) = a(t^c(u)u) - (p - 1)b_c(t^c(u)u) = (2 - p)(t^c(u))^2 a(u) < 0.
\]
Thus, there exists a unique $t^c(u) > 0$ such that $t^c(u)u \in M_{L_c}$ and
\[
\max_{t \geq 0} I_c(tu) = I_c(t^c(u)u) = \left(\frac{1}{2} - \frac{1}{p}\right)b_c(u)^{2/p^2}.
\]
(ii) For $\mu \in (0, 1)$, we get
\[
\left|\int_\Omega hu \, dz\right| \leq \|u\|_{H^1} \|h\|_{L^2} \leq \frac{\mu}{2}\|u\|_{H^1}^2 + \frac{1}{2\mu}\|h\|_{L^2}^2.
\]
Thus, for each nonnegative $u \in H^1_0(\Omega)$, then
\[
\frac{1 - \mu}{2}\|u\|_{H^1}^2 - \frac{1}{p} \int_\Omega u^p - \frac{1}{2\mu}\|h\|_{L^2}^2 \leq J_h(u) \leq \frac{1 + \mu}{2}\|u\|_{H^1}^2 - \frac{1}{p} \int_\Omega u^p + \frac{1}{2\mu}\|h\|_{L^2}^2.
\]
(iii) Applying part (ii), we have that for each $u \in \Sigma$
\[
(1 - \mu)I_{\frac{1}{\mu^p}}(t^1 u) - \frac{1}{2\mu}\|h\|_{L^2}^2 \leq J_h(t^- u) \leq (1 + \mu)I_{\frac{1}{\mu^p}}(t^2 u) + \frac{1}{2\mu}\|h\|_{L^2}^2,
\]
where \(t^{c_1}u \in M_{I_1^{-\mu}} \) and \(t^{c_2}u \in M_{I_1^{1+\mu}} \). By part (i), then

\[
I_{I_1^{-\mu}}(t^{c_1}u) = \left(\frac{1}{2} - \frac{1}{p} \right) b_{I_1^{-\mu}}(u)^{-\frac{2}{p-2}} = (1 - \mu) \frac{2}{p-2} \left(\frac{1}{2} - \frac{1}{p} \right) b(u)^{-\frac{2}{p-2}} = (1 - \mu) \frac{2}{p-2} J(t^1u).
\]

Similarly, \(I_{I_1^{1+\mu}}(t^{c_2}u) = (1 + \mu) \frac{2}{p-2} J(t^1u) \). Hence, (iii) holds.

(iv) Applying part (iii) to obtain

\[
\max_{t \geq 0} J_h(tu) \geq (1 - \mu) \frac{p}{2} \alpha(\Omega) - \frac{1}{2\mu} \|h\|_{L^2}^2.
\]

Since \(\alpha(\Omega) > 0 \), then for each \(u \in \Sigma \) and sufficiently small \(\|h\|_{L^2} \), we have

\[
J_h(t^{-u}) = \max_{t \geq 0} J_h(tu) \geq c > 0,
\]

that is, \(\alpha_h^- > 0 \) for sufficiently small \(\|h\|_{L^2} \). \(\Box \)

Since \(\alpha_h^- > 0 \) for sufficiently small \(\|h\|_{L^2} \), we define

\[
K_h(u) = \max_{t \geq 0} J_h(tu) = J_h(t^{-u}) > 0,
\]

where \(t^{-u} \in M_{\Sigma}^c \). We observe that if \(\|h\|_{L^2} \) is sufficiently small, Bahri–Li’s minimax argument [2] also works for \(K_h \). Let

\[
\Gamma = \left\{ g \in C(B_r(0), \Sigma) \mid g|_{\partial B_r(0)} = \psi_R(z)w(z - y)/\|\psi_R(z)w(z - y)\|_{H^1} \right\}
\]

for large \(r = |y| \),

where \(y = (y_1, \ldots, y_{N-1}, 0) \) and \(\Sigma = \{ u \in H^1_0(\Omega) \mid u \geq 0 \text{ and } \|u\|_{H^1} = 1 \} \). Then we define

\[
\gamma_h(\Omega) = \inf_{g \in \Gamma} \sup_{y \in \mathbb{R}^N} K_h(g(y));
\]

\[
\gamma_0(\Omega) = \inf_{g \in \Gamma} \sup_{y \in \mathbb{R}^N} K_0(g(y)).
\]

By Lemma 27(iii), for \(0 < \mu < 1 \), we have

\[
(1 - \mu) \frac{p}{2} \gamma_0(\Omega) - \frac{1}{2\mu} \|h\|_{L^2}^2 \leq \gamma_h(\Omega) \leq (1 + \mu) \frac{p}{2} \gamma_0(\Omega) + \frac{1}{2\mu} \|h\|_{L^2}^2. \tag{11}
\]

Let \(\Omega = (\mathbb{R}^{N-1} \setminus \overline{\Omega^{N-1}}) \times \mathbb{R} \) and \(\Omega^{N-1} \subset B^{N-1}_\rho = \{ x \in \mathbb{R}^{N-1} \mid |x| < \rho \} \). Throughout this section, assume that \(\rho \) is sufficiently small, then we have the following important lemma.

Lemma 28. \(\alpha(\Omega) < \gamma_0(\Omega) < 2\alpha(\Omega) \).

Proof. Tseng–Wang [13] proved that Eq. (2) admits at least one positive solution \(u \) in \(\Omega \) and \(J(u) = \gamma_0(\Omega) < 2\alpha(\Omega) \). Lien–Tseng–Wang [8] proved that Eq. (2) does not have a positive ground state solution in \(\Omega \) and \(\alpha(\Omega) = \alpha(\mathbb{R}^N) \). Hence, \(\alpha(\Omega) < \gamma_0(\Omega) < 2\alpha(\Omega) \). \(\Box \)
The following minimax theorem is given in Shi [11] to unify the mountain pass lemma of Ambrosetti–Rabinowitz [1] and the saddle point theorem of Rabinowitz [9].

Theorem 29. Let K be a compact metric space, $K_0 \subset K$ a closed set, X a Banach space, $\chi \in C(K_0, X)$ and let us define the complete metric space M by

$$M = \left\{ g \in C(K, X) \mid g(s) = \chi(s) \text{ if } s \in K_0 \right\}$$

with the usual distance d. Let $\varphi \in C^1(X, \mathbb{R})$ and let us define

$$c = \inf_{g \in M} \max_{s \in K} \varphi(g(s)), \quad c_1 = \max_{\chi(K_0)} \varphi.$$

If $c > c_1$, then for each $\varepsilon > 0$ and each $f \in M$ such that

$$\max_{s \in K} \varphi(f(s)) \leq c + \varepsilon,$$

there exists $v \in X$ such that

$$c - \varepsilon \leq \varphi(v) \leq \max_{s \in K} \varphi(f(s)),$$

$$\text{dist}(v, f(K)) \leq \varepsilon^{1/2},$$

$$\|\varphi'(v)\| \leq \varepsilon^{1/2}.$$

Lemma 30. There exists a number $d_0 > 0$ such that if $0 < \|h\|_{L^2} < d_0$, then

$$\alpha_h(\Omega) + \alpha(\Omega) < \gamma_h(\Omega) < \alpha_h^-(\Omega) + \alpha(\Omega).$$

Moreover, there exists a positive solution u of Eq. (1) in Ω such that $J_h(u) = \gamma_h(\Omega)$.

Proof. By Lemma 27(iii), we also have that for $0 < \mu < 1$

$$(1 - \mu) \frac{\rho}{\rho - 2} \alpha(\Omega) - \frac{1}{2\mu} \|h\|_{L^2}^2 \leq \alpha^-(\Omega) \leq (1 + \mu) \frac{\rho}{\rho - 2} \alpha(\Omega) + \frac{1}{2\mu} \|h\|_{L^2}^2.$$

For any $\varepsilon > 0$, there exists a $d_1(\varepsilon) > 0$ such that if $\|h\|_{L^2} < d_1(\varepsilon)$, then

$$\alpha(\Omega) - \varepsilon < \alpha^-(\Omega) < \alpha(\Omega) + \varepsilon.$$

Thus,

$$2\alpha(\Omega) - \varepsilon < \alpha^-(\Omega) + \alpha(\Omega) < 2\alpha(\Omega) + \varepsilon.$$

Using (11), for any $\delta > 0$, there exists a $d_2(\delta) > 0$ such that if $\|h\|_{L^2} < d_2(\delta)$, then

$$\gamma_0(\Omega) - \delta < \gamma_h(\Omega) < \gamma_0(\Omega) + \delta.$$

Fix a small $0 < \varepsilon < (2\alpha(\Omega) - \gamma_0(\Omega))/2$, since $\alpha(\Omega) < \gamma_0(\Omega) < 2\alpha(\Omega)$, choosing a $\delta > 0$ such that for $\|h\|_{L^2} < d_0 = \min\{d_1, d_2\}$, we get

$$\alpha_h(\Omega) + \alpha(\Omega) < \alpha(\Omega) < \gamma_h(\Omega) < 2\alpha(\Omega) - \varepsilon < \alpha^-(\Omega) + \alpha(\Omega).$$
It is similar to Lemma 18, for \(t \geq 0 \), we have
\[
J_h(t \psi_R(z) w(z - y)) = \left(\frac{t^2}{2} - \frac{t^p}{p} \right) \frac{2p}{p - 2} \alpha(\mathbb{R}^N) + o(1)
\]
\[
= J(t w) + o(1) \leq \alpha(\mathbb{R}^N) + o(1) \quad \text{as} \ |y| \to \infty.
\]
Then
\[
K_h(\psi_R(z) w(z - y)/\|\psi_R(z) w(z - y)\|_{H^1})
\]
\[
= J_h(t^{-\psi_R(z) w(z - y)/\|\psi_R(z) w(z - y)\|_{H^1}})
\]
\[
\leq \alpha(\mathbb{R}^N) + o(1) = \alpha(\Omega) + o(1) \quad \text{as} \ |y| \to \infty,
\]
that is, \(\gamma_h(\Omega) > K_h(\psi_R(z) w(z - y)/\|\psi_R(z) w(z - y)\|_{H^1}) \) for large \(r = |y| \). Applying the Minimax Theorem 29 to obtain that \(\gamma_h(\Omega) \) is a \((PS)\)-value in \(H^1_0(\Omega) \) for \(J_h \). Therefore, by Lemmas 2 and 24(ii), we have that there exists a positive solution \(u \) of Eq. (1) in \(\Omega \) such that \(J_h(u) = \gamma_h(\Omega) \).

We can conclude the following theorem.

Theorem 31. Assume that \(h \in L^2(\Omega) \cap L^{(N+r)/2}(\Omega) \) (\(r > 0 \) if \(N \geq 4 \) and \(r = 0 \) if \(N = 3 \)), \(h(z) \geq 0 \) and \(0 < \|h\|_{L^2} < \min\{d(p, \alpha), d_0\} \), where \(d_0 \) is defined as in Lemma 30. Let \(\Omega = (\mathbb{R}^{N-1} - \Omega^{N-1}) \times \mathbb{R} \) and \(\Omega^{N-1} \subset B^{N-1}_\rho = \{ x \in \mathbb{R}^{N-1} \mid |x| < \rho \} \). If \(\rho \) is sufficiently small, then there are at least three positive solutions of Eq. (1) in \(\Omega \).

Proof. By Lemmas 2, 13, 25 and 30, we have that Eq. (1) has at least three positive solutions in \(\Omega \).

References

