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KEYWORDS Summary In the petroleum reservoir at an early stage the oil is recovered due to existing
natural pressure and such type of oil recovery is referred as primary oil recovery. It ends when

Instabilit
phenome):\on' pressure equilibrium occurs and still large amount of oil remains in the reservoir. Consequently,
Saturation: ’ secondary oil recovery process is employed by injection water into some injection wells to

push oil towards the production well. The instability phenomenon arises during secondary oil
recovery process. When water is injected into the oil filled region, due to the force of injecting
water and difference in viscosities of water and native oil, protuberances occur at the common

Capillary pressure;
Inclined porous

medium;
Crank2Nicolson interface. It gives rise to the shape of fingers (protuberances) at common interface. The injected
scheme water shoots through inter connected capillaries at very high speed. It appears in the form

of irregular trembling fingers, filled with injected water in the native oil field; this is due
to the immiscibility of water and oil. The homogeneous porous medium is considered with a
small inclination with the horizontal, the basic parameters porosity and permeability remain
uniform throughout the porous medium. Based on the mass conservation principle and important
Darcy’s law under the specific standard relationships and basic assumptions considered, the
governing equation yields a non-linear partial differential equation. The Crank—Nicolson finite
difference scheme is developed and on implementing the boundary conditions the resulting
finite difference scheme is implemented to obtain the numerical results. The numerical results
are obtained by generating a MATLAB code for the saturation of water which decreases with the
space variable and increases with time. The obtained numerical solution is efficient, accurate,
and reliable, matches well with the physical phenomenon.
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Introduction

In primary oil recovery only 12—16% of oil is recovered
due to the natural pressure without any pumping efforts
at the wells. The part of the remaining oil is recovered by
secondary oil recovery process, in which usually water is
injected into oil formatted homogeneous porous medium to
drive oil and consequently, oil is produced through produc-
tion wells. The moment water is injected into the oil filled
region protuberances occur at the common interface due to
the force of injecting water and difference in viscosities of
water and native oil. It gives rise to the shape of fingers (pro-
tuberances) at common interface. It appears in the irregular
shape of trembling fingers in the oil field, due to the immis-
cibility of water and oil, therefore it is called fingering or
instability phenomenon. In the statistical treatment of fin-
gers, only the average behaviour of the two fluids involved is
taken into consideration (Scheidegger and Johnson, 1961).
The present study numerically describes the instability (fin-
gering) phenomenon in double phase flow of two immiscible
fluids (water and oil) through inclined homogeneous porous
medium. An extensive study on this phenomenon with dif-
ferent view point is available in the standard literature
(Babchin et al., 2008; Brailovsky et al., 2006; Chapwanya
and Stockie, 2010; Scheidegger and Johnson, 1961).

Mathematical formulation

The seepage velocities of injected water V,, and native oil
V, are expressed by Darcy’s law as

k P
Vw =—"K (W + pwg sin 9) :

Sw ax
k P, .
vo=—8—:K (a;+pog sin 9) (1)

In Eq. (1) the relative permeabilities k,, and k, are the
functions of water saturation. The permeability K is assumed
to be constant, the porous medium being homogenous. P,
3w, pw are the pressure, kinematic viscosity and density
of water respectively whereas P,, §,, o, are the pressure,
kinematic viscosity and density of oil respectively. 6 is the
angle of inclination of the considered homogeneous porous
medium. The injected water and displaced oil also satisfy
the equation of continuity for their constant phase densities
as

WV 0 3S,

9Sw
= — e 2
¢3t+3x ’ ¢3t+3x 0 2)

where, ¢ is the porosity of the homogeneous porous medium.

1 C

Substituting the value of the seepage velocities V,, and V,
from Eq. (1) into Eq. (2), applying standard relation P, (Sy) =

P, — P,, and then eliminating “;:“, from (2) we obtain,

95, 9 (ke (9P 0P 0 (ke
e R (G (i B o— ( 2k
T 8x< aw(ax ax)>+pwgsm ox (aw )

Using the relation S, + S, = 1, we have simplified form
as

a ky Ko\ 9P, ky ( 9P
— Kl —=+— — —K— -
ax 5y 8, ) ax s, \ax
ko

.0 [ ky .9
+ pwg sin 6& <8wK> + o8 sIN 9& <8K> =0 (4)

o

Integrating Eq. (4) with respect to x and simplifying we

have,

Sy, 10 ky 9P 0S, .0 ky
ot T 2ax <K5waswax) = Pwg sin O (K' a) ®)
following Scheidegger and Johnson approximation

(Scheidegger and Johnson, 1961).

Using the standard relationships for relative permeability
and capillary pressure (Brailovsky et al., 2006; Chapwanya
and Stockie, 2010; Scheidegger and Johnson, 1961), the
resulting governing equation for the instability phenomenon
in homogeneous porous medium inclined at a small angle is
given by,

Sw a aSw aSw
zﬂ_z»((s”z»()+cz»( (©)

where, X=x/L, T = KBt/(25,L2¢) are the dimensionless vari-
ables and C = 2Lp,, g sin /8.

The following initial and boundary conditions are consid-
ered:

Sw(X,00=0, 0<X=<1
$4(0,T)=1, T>0 @)
Se(1,T)=0, T>0

Numerical solution

The resulting finite difference scheme obtained for (6)
is given by (8) and (8.1), for 2<i<(R—1), where,
r=AT/(AX)?. Fori=1 and i =R the resulting schemes can be
obtained after implementing the boundary conditions from
(7) (Von Rosenberg, 1969).

c

2
S Sw -5 — —— | Sw. + | —2Sy — = | Sw: +|S + =15 -5 + —— | Sw:
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2 1
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I’:| "in |: Wi,n+1/2 4 ( Wi+1.n+1/2

|:SWiAn (SWHLn - 25Wi,n + SWi—1,n) + 7(Swi+1An -

C
B Swfq‘nﬂ/z) * 4AX} Swistn (8)

with

1 cAaxX

Swi—tn )2 + T(Swmﬂ - Swi—1,n ):| (8'1)
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Table 1  Saturation of water for instability phenomenon in
inclined homogeneous porous medium for C=0.0001.
T=0.001 T=0.10 T=0.20 T=0.30
X=0 1 1 1 1
X=0.1 0.0022 0.8751 0.9120 0.9280
X=0.2 0.0000 0.7091 0.7977 0.8356
X=0.3 0.0000 0.5274 0.6749 0.7374
X=0.4 0.0000 0.3335 0.5439 0.6334
X=0.5 0.0000 0.1385 0.4056 0.5240
X=0.6 0.0000 0.0029 0.2623 0.4095
X=0.7 0.0000 0.0000 0.1202 0.2911
X=0.8 0.0000 0.0000 0.0087 0.1715
X=0.9 0.0000 0.0000 0.0000 0.0585
X=1 0 0 0 0
| \\ ;
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Figure 1  Water saturation profile for instability phenomenon

in inclined homogeneous porous media for various values of time
for C=0.0001.

The numerical results for the above Crank—Nicolson
finite difference scheme for the nonlinear Eq. (6) governing
the instability phenomenon in homogeneous porous media
with small inclination is obtained by generating a MATLAB
code.

Results and discussion

The numerical results for the saturation of water are shown
in Table 1 and its graphical representation is shown in Fig. 1.
It can be seen that the saturation of water advances with
time and decreases with the space variable. This shows that
the physical fact of the problem is preserved. The numer-
ical values are shown in Table 1 for which the numerical
results behave well with problem. It was observed that for
T>0.3125, the numerical results, does not behave well.
With the suitable choice of the parameters involved in the
problem the corresponding value of time with respective
dimensionless number T can be calculated and the sensitiv-
ity of parameters can be equally studied.

Conclusion

In the present paper the governing non-linear equation
representing the instability phenomenon in homogeneous
porous medium with a small inclination is solved by using
Crank—Nicolson scheme. The precise set of initial and
boundary conditions have been employed to derive numer-
ical solution. The obtained results behave well with the
physical phenomena of the problem. It was observed that
the saturation of water increases with time and decreases
with the space variable. This shows that water advances with
the time and the oil recovery factor can be calculated with
respect to obtained results. The sensitivity of parameters
can be equally studied and the present method can be con-
veniently applied to other non-linear equations subject to
specific initial and boundary conditions.
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