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Abstract

Optimization is an important tool in computational finance and business intelligence. Multiple criteria mathematical pro-

gram(MCMP), which is concerned with mathematical optimization problems involving more than one objective function to

be optimized simultaneously, is one of the ways of utilizing optimization techniques. Due to the existence of multiple objec-

tives, MCMPs are usually difficult to be optimized. In fact, for a nontrivial MCMP, there does not exist a single solution that

optimizes all the objectives at the same time. In practice, many methods convert the original MCMP into a single-objective

program and solve the obtained scalarized optimization problem. If the values of scalarization parameters, which measure

the trade-offs between the conflicting objectives, are not chosen carefully, the converted single-objective optimization problem

may be not solvable. Therefore, to make sure MCMP always can be solved successfully, heuristic search and expert knowledge

for deciding the value of scalarization parameters are always necessary, which is not an easy task and limits the applications

of MCMP to some extend. In this paper, we take the multiple criteria linear program(MCLP) for binary classification as the

example and discuss how to modified the formulation of MCLP directly to guarantee the solvability. In details, we propose

adding a quadratic regularization term into the converted single-objective linear program. The new regularized formulation

does not only overcomes some defects of the original scalarized problem in modeling, it also can be shown in theory that the

finite optimal solutions always exist. To test the performance of the proposed method, we compare our algorithm with sever-

al state-of-the-art algorithms for binary classification on several different kinds of datasets. Preliminary experimental results

demonstrate the effectiveness of our regularization method.
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1. Introduction

Optimization techniques, such as modeling and algorithm design, are playing an important and ever increasing

role in lots of disciplines related with computational sciences. In the machine learning and data mining area, the

utilization of optimization techniques can go back to more than half a century ago. In 1957, A. Charnes and W.

W. Cooper discussed the using of linear programming models as guides to data collection and data analyisis[1]. In

1960’s, J. B. Rosen showed that the pattern separation problem can be formulated and solved as a convex program-

ming problem and linear and nonlinear ellipsoidal separation may be achieved by nonlinear programming in [2];
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O. L. Mangasarian then showed that both linear and nonlinear separation may be achieved by linear programming

in [3]. From the end of 1970’s to 1980’s, N. Feed and F. Glover proposed a series of linear programming models

for discriminant problems [4, 5]. Since 1992, V.N. Vapnik and his colleagues proposed the concept of Support

Vector Machine(SVM)[6, 7], which is a quadratic program model developed from statistical learning theory[8, 9].

Nowadays, SVM has become one of the most powerful machine-learning technique and gains lots of attention

because of its excellent performance empirically. With the popularization of SVMs and the development of opti-

mization itself, the researchers have extensively applied optimization techniques into machine learning and data

mining[10, 11].

Different from all the research works mentioned above, which are all modeled as a single-objective opti-

mization, Y. Shi and his research group started trying to apply the techniques of multiple-objective optimization

techniques into the area of data analysis and data mining since 1998. A series of multiple criteria mathemati-

cal program(MCMP) models, including multiple criteria linear program(MCLP) and multiple criteria quadratic

program(MCQP), are proposed since then(see [12, 13] and references therein). Nowadays, MCMP has become

one of the popular ways of utilizing optimization techniques to handle the real world data mining problems from

computational finance and business intelligence[14, 15, 16, 17].

On one hand, with the introduction of multiple objectives, MCMP has more powerful modeling capabilities

than the single-objective program; On the other hand, MCMPs are always difficult to be optimized than the opti-

mization problem with only on objective function. For a nontrivial MCMP, there does not exist a single solution

that optimizes all the objectives at the same time. In fact, because the multiple goals are usually contradictory

with each other, giving the proper definition of optimal solution in MCMP is not an easy task itself. Although

the propositions of many concepts, such as Pareto optimality and compromise solution[18], indeed help people a

lot to understand the structure of the solutions of MCMP in theory, the algorithms for finding the Pareto optimal

solutions or compromise solutions directly are always time consuming and impractical for large scale problems.

Currently, many methods convert the original MCLP into a single-objective program and solve the obtained scalar-

ized optimization problem. For this kind of methodologies, the choice for the values of scalarization parameters

is critical. If the values of scalarization parameters, which measure the trade-offs between the conflicting objec-

tives, are not chosen carefully, the converted single-objective optimization problem may be not solvable. How

to guarantee the solvability of the scalarized optimizations becomes a very worthy study problem. However, the

researches in this area is just in its infancy. To the best of our knowledge, there is only a limited works discussing

how to make sure the converted single-objective optimizations have solutions. In [16], the authors proposed a

regularized formulation for the MCLP model in classification, which is a feasible and bounded-below quadratic

programming. For most of the existing works of applying MCMP[12, 13, 14, 15, 17] in data mining, to make

sure MCMPs always can be solved successfully in practice, heuristic search and expert knowledge for deciding

the value of scalarization parameters are always necessary[14, 15, 17], which is not an easy task and limits the

applications of MCMP to some extend. In this work, different from the methodology in [16], we propose a new

and simpler regularization way for the MCLP model of binary classification. The new regularized formulation

does not only overcomes some defects of the original scalarized problem in modeling, it also can be shown in

theory that the finite optimal solutions always exist.

The remaining part of this paper is organized as follows. In Section 2, we first review the basic model of MCLP

for binary classification and the traditional way of converting MCLP into a scalarized optimization problem. Then

the properties of the converted single-objective linear program are analyzed carefully. Based on these discussions,

we propose our new regularization formulation, which can be guaranteed to be always solvable for all the possible

choices of parameters. Some geometric interpretations of the model and theoretical analysis on the solvability are

also given at the same time. In Section 3, to test the effectiveness of the new regularized model, we evaluate the

new method empirically and reported the experimental results obtained. We draw the conclusion and state some

future works in the last section. A few words about the notations used in this paper. All vectors will be column

vectors unless transposed to a row vector by a superscript T . The column vector of zeros of arbitrary dimension

will be denoted by 0 and the column vector of ones of arbitrary dimension will be denoted by e. The capital

English letters are used to denote matrixes, especially, the identity matrix of arbitrary dimension will be denoted

by I.



1692   Lingfeng Niu et al.  /  Procedia Computer Science   18  ( 2013 )  1690 – 1699 

2. The New Regularized MCLP Model for Binary Classification

2.1. Modelling Binary Classification as the MCLP
Let S = {(x1, y1), ..., (x�, y�)} be a set of training samples belonging to different categories, where xi ∈ X ⊆ �n

and yi ∈ Y are the input data and corresponding label for the sample i, respectively. The goal of a classification

problem is to construct a classifier which, given a new data point, will correctly predict the class to which the new

point belongs. When there are two elements inY, the problem is called binary classification; When there are more

than two elements in Y, it is called multiclass classification. We consider the problem of binary classification in

this work and let Y = {±1} for the rest of this paper. Introducing variables w ∈ �n, b ∈ �, and ξ, β ∈ ��, the

basic MCLP for binary classification [12] can be presented in the following way:

min
w,b,ξ,β

∑�
i=1 ξi (1a)

max
w,b,ξ,β

∑�
i=1 βi (1b)

s.t. yi(xT
i w + b) = βi − ξi, i = 1, · · · , �; (1c)

ξi ≥ 0, βi ≥ 0, i = 1 · · · , �; (1d)

Here w and b can be considered as the slope and intercept of the separating hyperplane, respectively. For the

intuitive explanations of ξ and β, different from previous works [12, 13, 14, 15, 16, 17], we would like to interpreted

ξi as the a positive value which is proportional to the distance between the point xi and the half-hyperplane

yi(xT w + b) > 0, and βi as the a positive value which is proportional to the distance between the point xi and the

half-hyperplane yi(xT
i w + b) < 0, for any i = 1, · · · , �. Then

∑�
i=1 ξi can be considered as the measurement for

misclassification and
∑l

i=1 βi can be considered as a measurement for the generalization of the separating plane.

Just as we have mentioned in the first section of this paper, because the existing conflicting goals of max
∑�

i=1 βi

and min
∑�

i=1 ξi, there usually does not exist a single solution that can optimize both objectives at the same time.

In theory, the concept of compromise solution[18] is proposed to describe and analyze the solution of MCLP

(1). However, in practice, the algorithms of finding the compromise solutions directly are always much more time

consuming than the algorithms for the same scale single objective problems, and, therefore, are not suitable for

dealing with large-scale data. Therefore, instead of solving MCLP (1) directly, many methods convert (1) into to

the following scalaried single-objective linear program(LP):

min
w,b,ξ,β

∑�
i=1 ξi − γ

∑�
i=1 βi (2a)

s.t. yi(xT
i w + b) = βi − ξi, i = 1, · · · , �; (2b)

ξi ≥ 0, βi ≥ 0, i = 1 · · · , �. (2c)

where γ > 0 is the scalarization parameter, which balances the trade-offs between max
∑�

i=1 βi and min
∑l

i=1 ξi.
Obviously, if one would like to find a reasonable solution of MCLP (1) by solving LP (2), one of the basic

requirements is that LP (2) has at least a finite optimal solution. Then whether LP (2) is always solvable becomes

a natural question need to be answered. For a better understanding of the structure of problem (2), we will first

analyze the properties of this LP in the next subsection.

2.2. Properties of the Scalarized LP
For any given LP, there are only three different kind of cases could happen: Case I. The problem has a finite

optimal solution; Case II. The problem is unbounded; Case III. The problem is infeasible. The following lemma

tell us that for the special LP (2), Case III never happens.

Lemma 2.1. The feasible set of LP (2) is not empty.

Proof. Let w = 0 ∈ �n, b = 0 ∈ �, ξ = β = 0 ∈ ��. It can be easily checked that zero point (wT , b, ξT , βT )T

satisfies all the constraints in LP (2). i.e. the zero vector 0 is always a feasible point of LP (2).

In order to get a separating plane by solving LP (2), only guaranteeing the existence of feasible points is not

enough. A finite optimal solution of LP(2) is always required. The following lemma tells us with improper choice

of the scalarization parameter γ, LP (2) may be unbounded.
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Lemma 2.2. When parameter γ > 1, LP (2) is unbounded.

Proof. From Lemma 2.1, we already know that LP (2) always has a feasible point. Suppose (wT , b, ξT , βT )T

is a feasible point of (2), then for all δ > 0, (wT , b, ξT + δeT , βT + δeT ) is also a feasible point of (2) and the

corresponding value of objective function is

�∑

i=1

(ξi + δ) − γ
�∑

i=1

(βi + δ) = (

�∑

i=1

ξi − γ
l∑

i=1

βi) + �(1 − γ)δ.

Because γ > 1, �(1− γ) < 0. Then we can see that with δ goes up to +∞, �(1− γ)δ goes to −∞. Consequently, the

value of the objective function in (2) goes to the negative infinity. Therefore, LP (2) is unbounded.

From the above lemma, we know the positive parameter γ ≤ 1 is a necessary condition for the problem

(2) has a finite optimal solution. In fact, if we check the intuitive explanations of the model, this conclusion is

not totally unexpected. Recall that γ measures the weight between the goals of less misclassification and better

generalization. Obviously, talking about the generalization ability of a separating plane is only reasonable when it

can classify the samples in the training dataset S reasonably well. This means the weight assigned to minimizing

misclassification should be higher than the weight assigned to maximizing generalization, i.e. the value of γ should

be no greater than one. Now our nature question is that “Is γ ≤ 1 also a sufficient condition for the solvability of

LP (2)?”. If the answer is no. How we can modified the formulation of (2) to get a revised model whose solvability

can be guaranteed.

From Lemma 2.1, we already know that the feasible set of LP (2) is no empty. Then only two situations

can happen: The first is that for any feasible point in the feasible set of (2), the corresponding objective function

value is nonnegative; The second is that there is at least one feasible point of problem (2), whose corresponding

objective function value is negative. Now we discuss what will happen for the second situation.

Lemma 2.3. Suppose there is a point in the feasible set of LP (2), whose corresponding objective function value
is negative. Then LP (2) must be unbounded.

Proof. From the assumption of this lemma, for LP (2), there must be a feasible point (ŵT , b̂, ξ̂T , β̂T )T satisfying∑l
i=1 ξ̂i − γ

∑l
i=1 β̂i < 0. According to the structure of constraints in (2), we know for any t ≥ 0, (tŵT , tb̂, tξ̂T , tβ̂T )T

is still a feasible point. Since
∑l

i=1 tξ̂i − γ∑l
i=1 tβ̂i = t(

∑l
i=1 ξ̂i − γ

∑l
i=1 β̂i) goes to negative infinity as t goes to the

positive infinity, we obtain that LP (2) is unbounded.

Just as we have mentioned in the previous subsection, in order to obtain a separating plane, LP (2) must have

a finite optimal solution. So obviously the situation described in the above lemma is not the one we expected to

occur. However, it occurs frequently in practice. The following example tells us, at least for the totally separable

problems, a feasible solution with negative objective function always can be constructed.

Example 2.4. Consider the totally separable binary classification problem described in Figure 1. Here, ⊕ repre-
sents the samples in one category, and ⊗ represents the samples in the other category. We choose the solid line in

Fig. 1. Demo: Multiple solutions for LP (2)

the middle of the figure as the separating plane, then the value of w ∈ �n and b ∈ � corresponding to this line
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can be decided and we denote the values as w̄ and b̄, respectively. For all i = 1, · · · , �, if yi(xT
i w̄ + b̄) ≥ 0, let

ξ̄i = 0 and β̄i = yi(xT
i w̄ + b̄); if yi(xT

i w̄ + b̄) < 0, let β̄i = 0 and ξ̄i = −yi(xT
i w̄ + b̄). It can be easily checked that

(w̄T , b̄, ξ̄T , β̄T )T ∈ �n+2�+1 satisfies all the constraints in (2). Therefore, a feasible point (wT , b, ξ̄T , β̄T )T ∈ Ω1 of
LP (2). Since this is a totally separable problem, for all i = 1, · · · , �, we have ξ̄i = 0 and β̄i > 0, a feasible point
with the negative function value is then constructed.

Summarizing the discussion above, we can see that for the totally separable problem, for any value of γ > 0,

LP (2) is unbounded, i.e. LP (2) is always unsolvable. Unfortunately, this is not the only unwanted situation we

might meet. The following example demonstrates another fetal defect of solving MCLP (1) by LP (2).

Example 2.5. Consider again the classification problem depicted in Figure 1. The solid line in the middle of the
figure, the dash line in the left hand and the dash-dot line in the right hand are all separating planes. And obvious-
ly, the solid line in the middle is the best separating plane one can find. Following the constructive way in Example
2.4, denote the feasible point corresponds to the solid line as (wT , b̄, ξ̄T , β̄T )T , the feasible point corresponds to the
dash line as (wT , b́, ξ́T , β́T )T , and the feasible point corresponds to the dash-dot line as (wT , b̀, ξ̀T , β̀T )T .1 Though
simple computations, we can see that the objective function value of LP (2) for these three different points are the
same. This means that if (wT , b̄, ξ̄T , β̄T )T is the optimal solution of LP (2), so are the points (wT , b́, ξ́T , β́T )T and
(wT , b̀, ξ̀T , β̀T )T . Then according to LP (2), all three separating planes are the best separating plane, which is,
obviously, not the result we want to get.

In all, we can see that LP (2) is not a good model for the totally separable classification problem. Since the

totally separable case is the ideal and the simplest situation in classification, in order to apply LP (2) successfully,

we have to make some modification.

2.3. New Regularized MCLP Model for Binary Classification
Just as we have discussed in the above subsection, LP (2) might be unsolvable. In the exiting works for solving

MCLP by LP (2)[12, 13, 14, 15, 17], this trap is avoided by pre-setting the value of part of the variables in LP

(2). However, if the chosen value are not proper, even LP (2) can be solved, the separating plane obtained may

still not be a good separating plane. From this point of view, the choice for the value of the pre-setting variables is

very important. Heuristic search and expert knowledge are always necessary for deciding a good value, which is

timing consuming and limits the applications of MCMP to some extend. So in this paper, we would like provide

a new method to guarantee the solvability instead of the way of fixing the value of part of the variables.

In order to avoid the difficulty described in Example 2.5, we suggest adding a regularization term 1
2
βT Hβ into

the objective function of (2), where H is a �×� positive matrix. Then we obtain the following modified formulation

for the LP (2), which is a quadratic programming:

min
w,b,ξ,β

∑�
i=1 ξi − γ

∑�
i=1 βi +

1
2
τβT Hβ (3a)

s.t. yi(xT
i w + b) = βi − ξi, i = 1, · · · , �; (3b)

ξi ≥ 0, βi ≥ 0, i = 1 · · · , �; (3c)

where τ > 0 is a pre-given parameter. The following theorem shows that the solvability of the modified problem

(3) is guaranteed.

Theorem 2.6. Problem (3) always has a feasible solution.

Proof. Because H is positive definite, for all β ∈ ��, the minimum value of −γ∑l
i=1 βi +

1
2
βT Hβ is − γ2

2τ
eT H−1e.

Because ξ ≥ 0, we have that
∑l

i=1 ξi ≥ 0. In all, we know for problem (3), the objective function has a lower

bound − γ2

2τ
eT H−1e. We notice that the feasible set of LP (2) is the same as quadratic program (3, from Lemma 2.1

we know that the feasible set of problem (3) is nonempty. In all, we obtained the conclusion that the optimization

problem (3) always has a feasible solution.

1The reason for the w terms for three different points are the same is that three different separating planes possess the same slope.
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Consider again the example in Figure 1. Let H = I, it can be easily checked that for (model 3), only the solid

line in the middle corresponds to the optimal solution and the situation described in Example 2.5 does not happen.

Compared with the regularized MCLP proposed in [16], in (3), there is only one quadratic regularization term in

the objective function. So fewer regularization parameter and matrix need to be tuned in our modified formulation

and, therefore, our method is cheaper to be implemented in practice.

Although problem (3) always has finite optimal solutions, there is still an defect from the modeling point of

view. In details, we notice that

xT w + b = 0 and txT + tb = 0, for all t > 0

presents the same discriminant function and therefore, the same separating plane. However, the objective function

value of (3) corresponds to txT + tb = 0 differs with the value of t > 0, which is obviously should not occur. As

a remedy to this problem, we should require that the slope-intercept expression of each discriminant function is

unique in the model. This requirement can be easily implemented by choosing the value of intercept term b from

the set {1, 0,−1}. Then we get the following model of mixed integer nonlinear programming:

min
w,b,ξ,β

∑l
i=1 ξi − γ

∑l
i=1 βi +

1
2
τβT Hβ (4a)

s.t. yi(xT
i w + b) = βi − ξi, i = 1, · · · , �; (4b)

ξi ≥ 0, βi ≥ 0, i = 1 · · · , �; (4c)

b ∈ {−1, 1, 0}. (4d)

We observe that if xT w∗ = 0 is the best separating plane, where the value of |ε| is small enough, xT w∗ + ε = 0 is

also a good enough separating plane. Since as long as the intercept term is not zero, it is always can be normalized

to 1 or -1. To reduce the computational cost further, we can omitted the case of b = 0 from (4) and suggest users

apply the following simplified model in practice:

min
w,b,ξ,β

∑l
i=1 ξi − γ

∑l
i=1 βi +

1
2
τβT Hβ (5a)

s.t. yi(xT
i w + b) = βi − ξi, i = 1, · · · , �; (5b)

ξi ≥ 0, βi ≥ 0, i = 1 · · · , �; (5c)

b ∈ {−1, 1}. (5d)

Sometimes, considering the stability of calculations, the users may favor the separating plane whose elements in

slope is not too large. To this aim. the regularization term κwT Kw can be added to the objective function to limit

the value of the elements in w. Then the following model can be considered instead of (5):

min
w,b,ξ,β

∑l
i=1 ξi − γ

∑l
i=1 βi +

1
2
τβT Hβ + 1

2
κwT Kw (6a)

s.t. yi(xT
i w + b) = βi − ξi, i = 1, · · · , �; (6b)

ξi ≥ 0, βi ≥ 0, i = 1 · · · , �; (6c)

b ∈ {−1, 1}, (6d)

where κ > 0 and positive matrix K ∈ �n×n are pre-given model parameters. Similar to the proof in Theorem 2.6,

we can easily proved that the solvability of both model (5) and (6) can be guaranteed.

3. Experiments

To test the performance of the new method, we compared our algorithm with several state-of-the-art algorithms

for binary classification in this section. All experiment were executed on a computer with Intel I5 CPU, CPU clock

rate of 3.10GHz, 2 GB main memory. The method proposed in this paper are solved by CVX[19, 20], which is a

Matlab-based modeling system for convex optimization. CVX are described using a limited set of construction

rules, which enables them to be analyzed and solved efficiently. As for the implementation for other algorithms,
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SVM were applied with libSVM[21] which is an powerful software for both support vector classification and

regression; Other typical methods were implemented through Weka [22] platform, which is an excellent data

mining environment that integrates various of machine learning algorithms under a uniform platform.

The datasets in our experiment are all from the UCI Machine Learning Repository [23]. Most of them are

wildly used for machine learning research in the validation and comparison among classification algorithms. For

each dataset, we first discarded the instances with missing value. And then, grid search were adopted to selecting

proper parameters for each method. Search procedure were executed under an uniform settings. During searching

we chose 5 fold cross-validation for each group of parameters. That is to say, for each parameters group candidate,

classification accuracy was obtained once by running a 5-fold cross validation on a specific dataset. After all, we

chose the best accuracy as the performance of the method on that dataset. Several classical binary classification

algorithms were chosen for comparison including linear SVC [8], Naive Bayes [24], C45 [25], Random Forest [26]

and KNN [27]. The experimental results were showed in Table 1. Here, the column “RMCLP1” and “RMCLP2”

represents the results for the model (5) and (6), respectively.

Table 1. Classification Accuracy Result Comparison in different datasets

ID Ins Num Attri Num RMCLP1 RMCLP2 LinearSVC NaiveBayes C45 RandomForest KNN

iris 0 1 100 4 100 100 100 100 99 100 100

iris 0 2 100 4 100 100 100 100 100 100 100

iris 1 2 100 4 99 97 97 91 92 93 96

wine 0 1 130 13 99.3 97.69 100 98.46 93.08 100 98.46

wine 0 2 107 13 100 100 100 100 99.07 100 100

wine 1 2 119 13 100 100 99.16 97.48 94.12 99.16 96.64

breast-cancer 277 9 75.09 75.45 73.29 73.29 75.45 72.2 75.09

breast-w 683 9 97.22 97.36 97.36 96.19 95.46 97.36 97.36

credit-a 653 15 88 87.6 86.52 78.1 85.15 86.22 87.29

credit-g 1000 20 76.1 76.6 76.5 74.8 71.4 75.3 73.8

diabetes 768 8 77.6 77.47 78.52 75.39 72.4 77.21 74.22

heart-statlog 270 13 86.3 86.67 85.19 82.96 80.37 81.48 81.48

hepatitis 80 19 90 90 91.25 85 77.5 88.75 86.25

ionosphere 351 34 88.03 89.17 89.46 82.62 89.74 94.3 88.89

liver-disorders 345 6 70.73 71.01 71.88 57.1 66.67 73.04 63.19

sonar 208 60 82.21 79.81 81.25 66.83 68.75 85.1 86.06

spambase 4601 57 91.98 92.52 93.11 79.55 93.13 95.87 90.68

Average 89.5 89.31 89.44 84.63 85.48 89.35 87.96

In order to validate how our algorithm works in separable cases, we turned two simple datasets ‘iris’ and ‘wine’

into binary classification problems by having two of their original categories left. In general, good classifiers

should almost make this kind of datasets completely divided. Experiment results are illustrated in Figure 2. In

details, the leftmost two bars in Figure 2 representing the performance of our method, from which we can see that

separable data indeed can be identified and well treated by our regularization method. By comparing with other

five bars in the figure, we can find that our method perform as well as other classical algorithms.

Then we compare our regularized model with the state-of-the-art algorithms in the non-separable cases. The

results in figure 3 and 4 show that our method is still competitive with other algorithms confronting more complex

situation. Especially, for the datasets ‘credit-a’, ‘credit-g’ and ‘heart-statlog’, our method obtains the highest

classification accuracy among all the algorithms. One of the possible reason for this result is that in these three

datasets, there is linear relationship among some features of the samples, and our method can explore this kind of

linear correlation better than other methods. Furthermore, The results on the different types of data also illustrate

the stability of our method.

4. Conclusion and future work

MCLP, as an alternative method for classification and regression, has been widely used in various machine

learning and data mining problems. In order to apply MCLP efficiently in practice, many methods convert the
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Fig. 2. Comparison on separable datasets

Fig. 3. Comparison on more complex datasets 1
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Fig. 4. Comparison on more complex datasets 2

original MCLP into a single-objective linear program to solve. However, the solvability of the converted single-

objective optimization is not very clear. In this paper, we take the MCLP for binary classification as the example

and discuss how to modified the formulation of converted single-objective optimization to guarantee the solvabil-

ity. By fixing the value of intercept of the separating plane to {±1}, the new model overcomes some defects of the

original scalarized problem in modeling; By adding a quadratic regularization term into the objective function,

the new regularized formulation can be shown that the finite optimal solutions always exist. We compare the

new method with several state-of-the-art algorithms for binary classification on several different kinds of datasets.

Preliminary experimental results indeed demonstrate the effectiveness of our method.

The model proposed in this paper is restricted to the case with linear kernel. Although we know linear classifier

is a good choice for lots of practical applications, especially for those whose dimension of the input feature is

very high. There are still quite a few problems cannot be predicted accurately by linear functions. Therefore,

in order to exploit the flexibility of nonlinear separating surfaces, we plan to extend the model to the case with

nonlinear kernels, which is interesting and very changeable. To the best of our knowledge, there is no existing work

for regularized MCLP with nonlinear classifiers currently. In this paper, we only considered the case of binary

classification in this paper. How to apply the idea to more general cases, such as multi-category classification or

regression, is also one of our on ongoing works.
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