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Abstract 

In this paper we consider a combinatorial method for the analysis of finite words recently 
introduced in Colosimo and de Luca (Special factors in biological strings, preprint 97/42, Dipt. 
Matematica, Univ. di Roma) for the study of biological macromolecules. The method is based 
on the analysis of (right) special factors of a given word. A factor u of a word w is special if 
there exist at least two occurrences of the factor u in w followed on the right by two distinct 
letters. We show that in the combinatorics of finite words two parameters play an essential role. 
The first, denoted by R, represents the minimal integer such that there do not exist special factors 
of w of length R. The second, that we denote by K, is the minimal length of a factor of w which 
cannot be extended on the right in a factor of w. Some new results are proved. In particular, 
a new characterization in terms of special factors and of R and K is given for the set PER of 
all words w having two periods p and q which are coprimes and such that [WI = p + q - 2. 
@ 1999 Published by Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The study of the combinatorial properties of finite, as well as infinite, sequences of 

symbols over a finite set is a subject of great interest with remarkable applications in 

various fields such as Algebra, Physics, Computer Science and Biology. The set of 

symbols is usually called alphabet and the finite or infinite sequences words or injinite 

words, respectively. 

As regards the applications, for instance, the existence of unavoidable regularities 

in very large words has many important consequences for the study of finiteness con- 

ditions for semigroups, groups and further algebraic structures (cf. [15]). Moreover, 
the uniform recurrence of infinite nonperiodic words such as Sturmian words and 
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ThuelMorse words, is an old subject of investigation with applications in Physics (for 

instance, the theory of quasi-crystals (cf. [5])). 

The combinatorics of finite words is in some aspects a more recent subject of re- 

search. For instance, the study of repetitions and periodicities in finite words (as the 

theorem of critical point (cf. [18])) has a great interest in Computer Science for var- 

ious questions related to ‘Pattern Matching’ and ‘Data compression’. A further field 

which is a source of several combinatorial problems related to finite words, is molec- 

ular Biology. In fact, in this discipline the basic objects are biological sequences in a 

4 letter alphabet (DNA, RNA) or in a 20 letter alphabet (proteins). 
In a recent paper [7] devoted to this latter subject, we have introduced and developed 

a suitable technique of analysis of DNA sequences which allows us to obtain a large 

amount of information about the ‘structure’ of some ‘genes’. The aim of this article 

is to consider in a general setting and with more details, this combinatorial analysis 

which is typical for finite words since it becomes trivial in the case of infinite words. 

The basic notions of our analysis are the following. To each finite, or infinite word w 

one can associate the language F(w) of all finite factors, or finite blocks of consecutive 

letters, of w. A factor u of w is called right special (left special) if there exist two 

letters x and y of the alphabet such that x # y and U.X, uy E F(w), (xu, yu E F(w)), 

i.e. there are two occurrences of u in w which are followed on the right (on the left) 

by two distinct letters. A factor of w is called bispecial if it is right and left special. 

In the case of an alphabet with more than two letters one can have special factors of 

different valence and order. A right special factor has valence (order) j>2 if it can 

be extended on the right in w by j (at least j) distinct letters. 

Special and bispecial factors of infinite words have been studied by several authors 

[lO-12, 14,2,6]. In the case of a finite word w an important parameter which is always 

defined is the integer R representing the least integer such that there are no right special 

factors of w of length >R. In the case of an infinite word R is a finite quantity if and 

only if the word is ultimately periodic. A further meaningful quantity is the integer K 
defined as the minimal length of a factor of w which cannot be extended in w on the 

right by one letter. In the case of an infinite word (from left-to-right) this quantity is 

infinite. 

We show that these two quantities R and K are two basic parameters in the combi- 

natorial description of a finite word. The paper is organized as follows. In Section 3 

we introduce the notions of right-valence of a factor of a word and the notion of 

special factor. In Section 4 the subword complexity fW of a finite or infinite word w is 

considered. For any integer IZ 20, J,,(n) counts the number of distinct factors of w of 

length n. A basic recursive formula which holds for any finite or infinite word is shown. 

This allows one to compute the subword complexity &(n) for all 12 > 0 in terms of 

the distribution on the length of right (left) special factors of different valence (order). 

Moreover, in the case of finite words, some general results concerning the behaviour 

and the maximal values of fw are proved. In Section 5 we show that the maximal rep- 
etition in a finite nonempty word is given by max{R, K} - 1. In Section 6 we prove an 

interesting and useful formula which allows us to evaluate the total complexity of a 
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word expressed in terms of the length of the word, the value of K and the distribution 

of right special factors. In Section 7 we study the subword complexity of finite Stur- 

mian words, We give a new characterization of the set PER of all words w which have 

two periods p and q which are coprimes and such that ]wl = p + q - 2. Moreover, we 

prove that the total complexity of a word w E PER is given by pq. Finally, in Section 8 

an equality relating subword complexity, the distribution of right special factors and 

the value of K is proved by using the tree representation of a finite word. 

2. Preliminaries 

In this section we shall introduce some notations and definitions which will be used 

in the paper. In the following d will denote a finite alphabet, i.e. a finite nonempty set 

whose elements are called letters. By df we denote the set of all finite sequences of 

letters, or finite words. A finite word, or simply word, w can be uniquely represented 

by a juxtaposition of its letters: 

w = Wl . ..w., 

with Wi E Jd, 1 d i < n. The integer n is called the length of w and is denoted by Iw]. 

The set JCZ+ of all the words over JX! is the free semigroup on d, where the semigroup 

operation, called product, is defined by concatenation or juxtaposition of the words. If 

one adds to & the identity element E, called empty word, then one obtains the free 
monoid d* over CZZ. The length of E is taken to be equal to 0. 

A word u is a factor, or subword, of w if there exist words p,q E d* such that 

w = puq. If p (q) is equal to E, then u is called pre$x (suffix) of w. We denote by 

Pref(w) (Suf(w)) the set of all prefixes (suffixes) of w. For any pair (i,j) of integers 

such that 1 <i <j dn we denote by w[i,j] the factor w[i,f = Wi . . . wj. 

IfW=Wi...W,, WiEd,i=l,..., n, is a word, then the reversed wN of w is the 

word 

WN = wn...wl. 

Moreover, one sets E- = E. A word is palindrome if w- = w. The set of all palin- 

dromes will be denoted by PAL. 
Let w = wi . ..w., wi E ,sZ, 1 <i <n, be a word. A positive integer q is called a 

period of w if q > IwI or if q < IwI the following condition is satisfied: 

Wi = Wi+q 

for all i E [ 1, n - q]. We shall denote by pw, or simply p, the minimal period of w. 

A word w is called periodic if p d [Iwl/2], where for a real X, [x] denotes its integer 

part. 

In the following N (N+) will denote the set of nonnegative (positive) integers. An 

infinite (from left-to-right) word w over the alphabet & is any map 

w:N++&. 
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For each n > 0, we set w, = w(n) and denote w also as 

w = WlWZW3... . 

A word u E SX?+ is a finite factor of w if there exist integers i, j E N, 0 < i 6 j, such 

that u = wi.. . wj; the sequence w[i,j] = wi... wj is also called an occurrence of u 

in w. 

An infinite word w is called ultimately periodic if it can be expressed as 

w = UP = uvv . . . v.. . ) 

with u E A* and v E A+. 

For any finite or infinite word w, F(w) denotes the set of all its finite factors and 

alph(w) the set of all the letters of the alphabet d occurring in w, i.e. alph(w) = 

F(w) f-l &!. 

A language L over the alphabet d is any subset of d*. For each n 2 0 we denote 

by d” the set of all the words of length n. For any language L one denotes by F(L) 

the set of the factors of all the words of L, i.e. 

F(L) = u F(w). 
WEL 

A language L is closed by factors if L = F(L). For any finite or infinite word w, 

F(w) is, trivially, closed by factors. 

3. Special factors 

Let card(d) = d and w be a finite or infinite word over the alphabet d. For any 

factor u of w we consider the maximal subset, with respect to the inclusion, R, of -Qz, 

that we simply denote by R, such that 

UR C F(w). 

Thus for all letters x E R one has KC E F(w) and, on the contrary, for all x E &’ \ R, 
ux q! F(w), i.e. u occurs in w followed on the right by any one of the letters of R, 
and only by these. 

In a symmetric way one can consider the maximal subset L, of &‘, that we simply 

denote by L, such that 

Lu C F(w), 

so that for all x E L , xu E F(w) and for all x E d \ L one has xu #F(w). 

Let us now introduce the map v, : F(w) + N defined for all u E F(w) as 

v,(u) = card(uR) = card(R) = card(ud II F(w)). 
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The integer v,(u) will be called the right-valence of u. In a symmetric way one can 

introduce the map VI : F(w) -+ N defined for all u E F(w) as 

VI(U) = card(lu) = card(l) = card(du n F(w)). 

The integer VI(U) will be called the left-valence of U. 

For any u E F(w) one has 0 <v,(u), VI(U) <d. It easily follows that if a subword 

u of w has right (left) valence equal to j, then any suffix (prefix) v of u has right 

(left) valence >j. Let us observe that the empty subword E of w has, according to the 

definition, a right and a left valence equal to card(alph(w)). 

Let us give the following example. Let w be the word of length 12 

w = abcadabacada 

on the four letter alphabet {a, b, c, d}. The subword ab has right-valence equal to 2 
since ab occurs in w followed on the right by the letter a and by the letter c, whereas 

all the other factors of w of length 2 have right-valence equal to 1. For instance, ca 

occurs in w followed on the right only by the letter d. The subword a has right-valence 

equal to 3 since a occurs in w followed on the right by the letters b, c and d. The 

subword b has right valence 2 and the subwords c and d have right valence equal to 1. 

The subword acada has right-valence equal to 0 since it does not occur in w followed 

on the right by any letter. The left-valence of cada is 2 since cada can be followed 

on the left in w by the letters a and b. The left valence of abc is 0. 

A factor u of w is said of right (left) order k if v,(u) 3 k (v,(u)>k). Hence, if u has 

order k it can be extended on the right (left) in a factor of w with at least k distinct 

letters. 

Let us observe that if w is an infinite word, then any factor u of w can always be 

extended on the right in a factor of w by at least one letter, so that v,(u) 3 1. However, 

the left-valence of some prefixes of the word can be 0. For instance, in the case of 

the word abw = ab.. . b.. . the left-valence of all the prefixes abi with j>O, is 0. 

A factor u of w is called right special if there exist at least two letters a, b E &‘, 

a # b such that 

ua, ub E F(w), 

i.e. the right-valence v~(u) > 1. Thus a right special factor has a right-order equal to 

2. In the case of an alphabet d having only two letters any right special factor is of 

course of valence two. In the case of DNA (RNA) alphabet having four letters one can 

have right special factors of valence 2, 3 and 4. 

In a symmetric way one says that a factor u of w is left special if its left-valence 

VI(U) > 1. 

Since any suffix (prefix) u of a right (left) special factor u has a right (left) valence 

v,(v)>v,(u) (vl(v)av~(u)) one has that a suffix (prefix) of a right (left) special factor 

is still a right (left) special. 

A factor u of w is said to be bispecial if it is both right and left special. 
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We shall refer to right special factors even though what we say can be extended, in a 

symmetric way, to the case of left special factors. In the following we shall denote by 

S,(w) the set of all right special factors of w. Moreover, for any j such that 0 <j dd 

we denote by S,.(j,w) the set of all factors of w of valence j. One has, of course 

S,(w) = u S&w). 
l<j<d 

We set for n>O, 

s,(j, n, w) = card(S,(j, w) fl JxZ”). 

Let us, moreover, introduce for any j such that 0 <j 6 d the following set: 

G&w) = U S&w) = {f E F(W) I v,(f)aj}, 

which is the set of all factors of w having a right-valence greater than or equal to j, 

i.e. of a right-order j. Moreover, we set for n > 0: 

G,(j, n, w) = G,(j, w) 17 d” 

and 

g,(j,n,w) = card(G,(j,n,w)) = &s,(k,n,w). 
k=j 

Let us observe that for any n 20 the following relation holds: 

,$ti - l>srci, n,w) = 5 SAL&W). 
j=2 

In a symmetric way one can define the sets Sl(w), S/(‘j,w), G,(j, w) and the maps 

sr(j,n,w) and g,(j,n,w). One has that gr(2,n,w) (gr(2,n, w)) equals the number of 

right special (left special) factors of length n of w. We shall simply denote g,(2,n, w) 

by R,(n) and gl(2,n,w) by L,(n). 
In the following we shall drop in the formulas the reference to the word w when 

there are no ambiguities. 

4. Subword complexity 

In this section we introduce the important notion of subword complexity of a finite 

or infinite word. Let w be a word. The subword complexity fw of w is the map 

fw : N --) N defined as 

fw(n) = card(F(w) n ~2”). 

For any N, fw(n) counts the number of distinct factors of length II occurring in w. The 

subword complexity of infinite words has been extensively studied. A recent overview 

on this subject is in [l]. In this paper we shall be mainly concerned with finite words. 
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When w is a finite word of length N, then fw(n) = 0 for n>N. The quantity 

c(w) = go .Mi) = carW’(w)) 

is called the total complexity, or complexity index of w. It gives a global measure of 

the ‘richness’ of the language of the subwords of w. The total complexity of a finite 

word has been considered, with different motivations, by several authors [17, 19,7, 161. 

In [ 171 a more general class of measures, called d-complexities, d > 0, was considered. 

For d = 1 one obtains the complexity index of w. 

We denote by C(w) the maximal value of the complexity &(n) for n 30, i.e. 

C(w) = max{f,(n) 1 n >O}. 

We call C(w) the maximal complexity of w. 

When w is an infinite (from left-to-right) word then any factor u of w can always be 

extended on the right by at least one letter in a factor of w. The situation is different 

in the case of a finite word w. Indeed, there can be subwords of w which cannot be 

extended on the right in F(w). Such words have to be, of course, suffixes of w. 

We shall denote by So(w) the set S,.(O,w) of all factors of w which cannot be 

extended on the right in F(w), i.e. their right-valence is 0 and set for any n 20 

so(n) = card($(O, w) n M) = s,(O, n). 

We shall set 

K, = inf{n 1 s,(O,n) # 0). 

If w is an infinite word, then K, = w. If w is a finite word and JwI = N, then we 

denote by k, the suffix of w of minimal length which cannot be extended on the right 

in F(w) (Equivalently, k, is the suffix of w of minimal length which has only one 

occurrence in w). One has that any word ik,,, E Suf(w), 1 E A!*, also cannot be 

extended on the right in F(w). 

Thus one has that K, = Ik,(, so that so(n) = 0 for O<n<K, - 1 and so(n) = 1 for 

K,<n<N. Hence, ss(n)dl, for all O<n<N and 

card(So(w)) = N -K, + 1. 

For any w E A+ the value of K, is such that 0 <K, <N. If w = E, then we shall 

assume K, = 0. In the following we shall drop in K, the subscript w when there is 

no ambiguity. 

The following basic iterative equation holds: for 0 <n <N, 

fw(n + 1) = J&J) + ,&_i - 1 )W, n) - so(n). (2) 

The preceding equation relates the number of factors of w of length n + 1 with the 

number of factors of w of length n and the amounts of right special factors of length 
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n having a different valence. Indeed, for each n such that 0 <n dN there can exist at 

most one factor of length n which has right-valence 0, so that it cannot be extended 

on the right in a factor of length n+ 1. Thus there will be at least fw(n)-so(n) factors 

of length n + 1. If u is a factor of w of length n having a valence j > 1, then u can 

be extended on the right by further j - 1 letters producing j - 1 further subwords of 

length n + 1. 

Since so(n) = s,(O,n) the equation can be also rewritten in a more compact form as 

fw(n + 1) = _A&) +$O - l)&,n). (3) 

We note that the preceding equation holds true also when n > N and for n = 0. In 

this latter case one has to recall that the empty word E is a right and left special factor 

of w of valence equal to card(alph(w)). By iteration of Eq. (3), since &(O) = 1, one 

obtains the following formula for the subword complexity of a finite, as well infinite 

word w (cf. [7]): 

n-l d 
_Mn) = 1 + C CCj - l)sAj,k). 

k=O j=O 
(4) 

In the case of an infinite word w, one has so(n) = 0 for all n 20, and Eq. (4) simply 

becomes 

n-l d 
hi(n) = 1 + kTo,zti - l)dXk). (5) 

Let us consider for any n 20 the number R,(n) of all right special factors of w 

of length n, i.e. R,(n) = g,(2,n). Any suffix of a right special factor is still a right 

special factor; thus if there exists an integer n for which R,,,(n) = 0, then R,,,(m) = 0 

for all man. One can, define, R,, or simply R, the quantity (possibly infinite if the 

word is infinite) 

R = inf{n 1 R,(n) = 0). 

Thus if 0 < R < co, then R- 1 represents the maximal length of a right special factor 
of w. One has R = 0 if and only if the word w has no right special factors. Thus also 

the empty word E is not special. This occurs if and only if the finite (infinite) word is 

a power (o-power) of a single letter. In the case of a finite word w of length N one 

has R,(N - 1) = R,,,(N) = 0, so that R, is always defined. The following proposition 

shows that in the case of infinite words, with the only exception of ultimately periodic 

words, R, is always infinite. 

Proposition 4.1. An injinite word w is ultimately periodic if and only if R, < co. 

Proof. From a classic theorem on ultimately periodic words (cf. [S]) one has that an 

infinite word w is ultimately periodic if and only if there exists an integer no such that 
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&(ns) = &(na + 1). From Eq. (3) this occurs, since so(n) = 0 for all n 20, if and 

only if R,(ne) = 0. 

Let us now suppose that w is a finite word of length N. For n = N one has 

f,(N) = 1 so that from Eqs. (4) and (l), one derives, since Cfg’ s,(O, n) = N-K, that 

N-l d N-l d 

kF0 ],20’ - 1 >sro’, k) = C C sro’, k) = N - K. 
k=O j=2 

(6) 

Inverting the order of the sums in the preceding equation, one obtains [7] 

5Pj=N-K 
j=2 

having set 

N-l 

For any ja2, Pj gives the total number of right special factors of order j. Since 

P2 = card(S,(w)), then from Eq. (7) one derives the following upper bound to the 

total number of right special factors of w: 

card(S,(w)) <N - K. 

Let us now refer to left special factors of w. In this case one considers the prefix h, 
of minimal length which cannot be extended on the left in a subword of w. We shall 

denote by H,, or simply H, the length of h,, i.e. H, = lh,,,l. In a perfect symmetric 

way one can prove that for all n 3 0 one has 

d 

fw(n + 1) = fw(n) + CCj - lMj,n>. (9) 
j=O 

A formula similar to Eq. (7) can be derived for left special factors: 

5 Aj = N - H, 
j=2 

(10) 

where for any j>2, /ii gives the total number of left special factors of order j. In a 

symmetric way by Eq. (10) one derives 

card(&(w)) G N - H. 

From Eqs. (7) and (10) one obtains 

&(Pj-Aj)=H-K. 
j=2 

If one compares Eqs. (3) and (9), then one derives the following important equation 

relating right and left special factors distributions: for all n 2 0, 

(11) 
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Let us set for all n 2 0 and x E {Y, Z} 

P*(n) =I& - l)&,n) =&X(i,.)- (12) 

We call pr (pl) also the weighted distribution of the right (left) special factors of w. 

Let us define for all n 20 

A, = p,(n) - m(n). 

Since s,(O,n),sr(O,n)< 1 one derives from Eq. (11) that for all n 2 0 

We shall now study the behaviour of the subword complexity fw of a finite word 

w over d of length N. Let us first observe that the following upper bound to the 

subword complexity fw exists for all 0 d n <N 

&(n) < min{d”, N - n + 1). 

Indeed, d” is the cardinality of d” and N - n + 1 is the set of all occurrences of 

subwords of length n in w. The map h : N -+ N defined for n 20 as 

h(n) = min{d”,N - n + l> 

when d > 1 and n is sufficiently small relatively to N, increases as an exponential 

with n and decreases as a straight line having slope -1 (corresponding to an angle of 

37c/4). This passage from the exponential to the straight line occurs, for a value of n, 

that we denote by eN, defined as 

eN = min{n E N 1 h(n) = N - n + 1). 

One easily verifies that the following properties hold: 

(a) deN-’ + eN - 2 < N ddeN + eN - 1, 

(b) h takes its maximal value in eN, 

(c) [log, N] <e, <[log, Nl + 1. 
Let us now get more information about fw. As we shall see the values of R and K 

will play an essential role in the behaviour of fw. The following proposition is in [7]. 

A similar proposition was proved independently by J. Cassaigne (private communi- 

cation). 

Proposition 4.2. Let w be a word of length N such that card(alph(w))> 1 and set 
m = min{R, K} and A4 = max{R, K}. The subword complexity fW is strictly increasing 
in the interval [O,m], is nondecreasing in the interval [m,M] and strictly decreasing 
in the intervaE [I@ N]. Moreover, for n in the interval [MN], one has &(n + 1) = 

fW(n) - 1. If R<K, then fW is constant in the interval [m,A4]. 
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Proof. We distinguish two cases. 

Case 1: R<K: For n E [O,R - l] one has that so(n) = 0 and p,(n) > 0. Thus from 

Eq. (2), fw is strictly increasing in the interval [O,R]. For II E [R,K - 11, so(n) = 0 

and p,(n) = 0, so that fw is constant in the interval [R,K]. For n E [K,N] one has 

so(n) = 1 and p,(n) = 0, so that fw is strictly decreasing in the interval [K,N], and, 

moreover, for iz E [K,N] 

Mn + 1) = L(n) - 1. 

Case 2. R>K : For n E [O,K-1] one has that so(n) = 0 and p,(n) > 0, so that from 

Eq. (2), & is strictly increasing in the interval [O,K]. For n f [K,R - l], so(n) = 1 

and p,(n) > 0, so that fw is nondecreasing in the interval [K, R]. For n E [R,N] one 

has so(n) = 1 and p,(n) = 0, so that fw is strictly decreasing in the interval [R,N], 

and, moreover, for n E [R,N] 

fw(n + 1) = Mn) - 1. 

If one refers to left special factors, then one can define the quantity 

L = min{n ] L,(n) = O}. 

In a symmetric way one proves a dual proposition of Proposition 4.2, in which R is 

replaced by L and K by H. 

Proposition 4.3. The subword complexity fW of a word w of length N takes its 

maximal value in R and, moreover, 

f,(R) = N - max{R, K} + 1. 

Proof. If w is the power of a single letter, then the result is trivial. Indeed, one 

has R = 0, K = N and fW(n) = 1 for all n E [O,N]. Let us then suppose that 

card(alph(w)) > 1. The subword complexity fW takes its maximal value in R. Indeed, 

from Proposition 4.2 if R > K, then fW takes its maximum value in R. On the contrary, 

if R < K, then fW takes its maximum value in K. However, in this case fW is constant 

in the interval [R,K], so that f,(R) = f,(K) and fW reaches in R its maximum value. 

If R 3K one has that fW(n + 1) = fW(n) - 1 for all n in the interval [R, N - 11. This 

implies 1 = f,(N) = f,(R) - (N -R) and then f,(R) = N -R + 1. If R < K one has 

that fw(n + 1) = fw(n) - 1 for all n in the interval [K, N - 11. From this one derives 

1 = f,(N) = f,(K) - (N -K). Since f,(K) = f,(R) the result follows. 

The maximal complexity C(w) of a finite word is then given by 

C(w) = N - max{R,K} + 1. (13) 

Thus C(w) depends only on the length Iw] = N of the word w and on the values of 

R and K. 
By a symmetric argument one can prove the following: 
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Proposition 4.4. The subword complexity fW of a word w of length N takes its 
maximal value in L and, moreover, 

f,(L) = N - max{L,H} + 1. 

From Propositions 4.3 and 4.4, one easily derives 

Corollary 4.1. The subword complexity fW is such that f,(R) = fW(L). Moreover, 

one has 

max{R,K} = max{L,H}. 

Example. Let d = {a, b}. The word w = abbbbbaababaaab is such that R = L = 5, 

K = 4 and H = 3. Moreover, f,(5) = 11 and this is the maximal value of the 

subword complexity of w. The word w = abaaaaaa is such that K = L = 6 and 

H = R = 2 and f,(2) = f,(6) = 3. In the case of word w = aaabaaaba one has 

K = H = 6 > R = L = 3 and f,(3) = f,(6) = 4. 

Corollary 4.2. Let w E SF be a word of length N. Then 

max{R, K} 2 [logd N]. 

Proof. Let M = max{R,K}. From Propositions 4.3 and 4.4, one derives 

f,(M)=N-M+l. 

Moreover, f,(M) d h(M) < d”. Thus 

d”>N-M+l 

This can occur only if Ma[log, N]. 

The following proposition [7], whose proof we omit, concerns the “structure” of the 

right (left) special factors of maximal length of a given word. 

Proposition 4.5. Let w be a word and u be a right (left) special factor of w of 
maximal length. One has that u is either a prejx (sujix) of w or bispecial. If 
R > H(L >K), then u is bispecial. 

Proposition 4.6. Let w E d* be a word of length N. Then 

Proof. The result is trivial if R = 0 or K = 0. Indeed, in such a case K = N. Let us 

then suppose R,K > 0. We set m = min(R,K) > 0. One has that for any integer i 
such that O<i<m one has fW(i)ai+l. Indeed, from Eq. (2) since for all i E [O,m- 11, 

so(i) = 0 one has: 

fW(i)>fW(i-l)+l, i=l,..., m, 

so that since fW(0) = 1, by iteration, the assertion follows. 
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Let us now first suppose R <K. One has then m = R and then f,(R) >R + 1. 

Moreover, from Proposition 4.3 we have that f,(R) = f,(K) = N - K + 1. From 

this one derives N >R + K. Let us now suppose R > K. In such a case m = K and 

f,(K) >K + 1. From Proposition 4.3 one has f,(K) d f,(R) = N - R + 1. From this 

it follows again N > R + K. 

In a symmetric way one can prove that if w E d* is a word of length N, Then 

N>L+H. (14) 

Proposition 4.7. Let w be a word of length N, m = min{R,K} and M = max{R,K}. 

One has that N = R + K if and only if 

&(i)=i+l for i=O,l,..., in, 

&(i+l)= fW(i) for i=m,...,M-1, 

fW(i+ 1) = fW(i) - 1 for i =M,...,N. 

Moreover, f,(R) = f,(K) and the maximal value of fW is m + 1. 

Proof. The result is trivial if card(alph(w)) 6 1. Let us then suppose that card(alph(w)) 

> 1. We first suppose that R d K so that m = R and A4 = K. In such a case we know 

that fW is strictly increasing in the interval [0, R], fW is constant in the interval [R,K] 
and strictly decreasing in the interval [K,N]; moreover, 

fw(n + 1) = fw(n) - 1, for n E [K,N]. (15) 

Hence, we have to prove only that fW(i) = i + 1, for i = 0, 1,. . . , R. Since fW(0) = 1, 

one has then fW(i) > i + 1 for i = 0, 1, . . . , R. Thus f,(R)> R + 1. Let us now prove 

that f,(R) = R + 1. Indeed, from Eq. (15) and the hypothesis R = N - K one derives 

1 = f,(N) = f,(K) -N + K = f,(K) -R. 

Since f,(K) = f,(R) one obtains f,(R) = R + 1. This implies that fW(i) = i + 1, 

for i = O,l,... , R. Indeed, if by contradiction, there exists io < R for which fW(io) > 

io + 1, then from the basic recursive formula (cf. Eq. (2)) fW(io + k) 2 fW(io) + k with 

k=l ,. . . ,R - io. Hence, f,(R) = fW(io) + R - io > R + 1 which is absurd. 

Let us now consider the case K < R, so that m = K and A4 = R. In this case fw is 

strictly increasing in the interval [0, K], nondecreasing in the interval [K, R] and strictly 

decreasing in the interval [R,N]; moreover, for 12 E [R,N] 

.Mn+l)=fw(n)-1. 

The maximal value of fW is reached in R, having, since N = R + K, 

f,(R)=N-R+l =K+l. 
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Since K < R one has f,(K) >K + 1, so that f,(R) = f,(K) = K + 1. By using an 

argument similar to that used in the preceding case it follows that 

fw(i) = i+ 1 for i = O,...,K. 

Conversely, suppose first that K < R. By hypothesis fw(i) = i + 1 for i = 0,. . . , K, so 

that f,(K) = K + 1. Moreover, since fw(i + 1) = fw(i) for i E [K, R - l] it follows 

f,(K) = f,(R). Finally, by the condition fw(i + 1) = fw(i) - 1 for i E [R,N], one 

derives f,(R) = N-R+l. Hence, K+l = N-R+l, i.e. N = K+R. Let us now suppose 

K 3 R. One easily derives from the hypothesis that f,(R) = Rf 1 = f,(K) = N-K + 1 

that implies N = K + R. 

By a symmetric argument one can prove a dual proposition of Proposition 4.7, in 

which R is replaced by L and K by H. 

The following proposition shows that if a word w of length N is such that N = R+K, 

thenN=L+H. 

Proposition 4.8. Let w be a word of length N. If N = R + K, then 

min{R, K} = min{L, H} 

andN=L+H. 

Proof. The result is trivial if card(alph(w)) < 1. Let us then suppose that 

card(alph(w)) > 1. Let us first show that 

min{L, H} < min{R, K}. (16) 

Indeed, by Corollary 4.1 and Eq. (14) one has 

N = R + K = min{R, K} + max{R, K} = min{R, K} + max{L, H} > L + H, 

so that min{L, H} d min{R,K}. 

Let us now suppose that L <H. One has, by Corollary 4.1, H = max{R, K} and from 

Eq. (16), L Q min{R, K). Since L < H from Proposition 4.7 and the dual of Proposition 

4.2, one has that fw(L) = f,(H) = f,(R) = f,(K) = min{R,K} + 1. This implies that 

min{R, K} <L d max{R, K}. Hence, L = min{L, H} = min{R, K}. 

Let us suppose that H<L = max{R,K}, so that by Eq. (16) one has Hd min{R,K}. 

Let us set in the following m = min{R,K}. By Proposition 4.7 for any i E [O,m] one 

has 

fw(i) = i + 1. (17) 

This implies that card(alph(w)) = 2 so that we set alph(w) = {a,b}. Moreover, for 

any n E [O,m - l] there is only one right special factor of length n and for any 

n t [O,H - l] there is only one left special factor of length n. We shall now prove 

that for any n E [H - 1, ~fl - 1] there is a unique left special factor of length II. The 

proof is by induction on the value of n. For n = H - 1 the statement is true. Let us 
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then prove it for H - 1 < n <m - 1. Suppose then that there exist two left special 

factors u and u such that u # u and In] = 1 VI = n. This implies that 

au, bu, au, bv E F(w). (18) 

Let us write u = U’X, u = ~‘y with x, y E {a, b}. Since U’ and 21’ are left special factors 

of w of length II - 1, then by the inductive hypothesis u’ = v’ = s. Moreover, since 

u # V, then x # y. Thus from Eq. (18) one has 

asx, bsx, asy, bsyE F(w). 

This shows that as and bs are two right special factors of w of length n which is a 

contradiction. Hence, for any p1 E [H - 1,m - l] there is a unique left special factor of 

length n. This implies by Eq. (17) that &,(m) = &(m- 1) = m which is a contradiction. 

Hence, H = min{R,K}. The remaining part of the proof is trivial. 

Proposition 4.9. The maximal complexity C(w) of a word w satisjies the inequality 

C(w)> min{R,K} + 1. 

The lower bound is reached if and only if [WI = N = R + K. 

Proof. We know (cf. Eq. (13)) that C(w) = N - max{R,K} + 1. From Proposition 

4.6, N ZR + K; hence C(w)ZR + K - max{R, K} + 1. Now R + K - max{R,K} = 

min{R, K}, so that C(w)> min{R, K} + 1. Moreover, C(w) = min{R,K} + 1 if and 

only if N - max{R,K} = min{R,K}, i.e. N = R f K. 

5. Repetitions in a word 

Let w be a word on the alphabet d. In w there is a repetition of a factor u of w if 

in w there are two distinct occurrences of u. More formally, w has a repetition of the 

factor u if 

i.e. there exist words A., p E d* and cr,b E Se+ such that 

w = ?tf/l with f = MU = fiu. 

Note that the two occurrences of the repeated factor u can, in general, overlap. If they 

do not overlap, then we can simply write 

w E d*ud*u&*. 

We say that in w there is a repetition of length k if there is a repetition of a factor 

u of w such that ]uI = k. To each word w one can associate the quantity T(W) defined 

as the maximal length of a repetition of a factor of w, i.e. 

r(w) = max{]ul I w E d*(ud+ n d+u)d*}. 
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Note that this quantity is always defined since, obviously, r(w) < N, where N is the 

length of w. If w = uN, with a E &, then r(w) = N - 1. 

Theorem 5.1. Let w E d+. One has 

r(w) = max{R,K} - 1. 

Proof. If R = 0, then there are no special factors of w, so that w E a* with a E A!‘. 
This implies K = N and r(w) = N - 1. Let us then suppose that R > 0. Let u be 

a right special factor of maximal length, i.e. Iu( = R - 1. Then u has to occur in w 

followed by two distinct letters. Hence, r(w) 2R - 1. Moreover, we know that the 

suffix s of w of length K - 1 has to occur in w followed, on the right, by one letter 

of &‘. Hence, r(w) 2K - 1. Hence, 

r(w)> max{R,K} - 1. (19) 

Let us now prove the inverse inequality. We first suppose that K < R. Let u be a 

repeating factor of maximal length, i.e. 1~1 = r(w). We prove that there exist two letter 

x, y E d such that M, uy E F(w). Suppose, by contradiction, that this is not the case. 

This can occur only if u is a suffix of the word and, moreover, 1~1 < K < R. This 

contradicts the fact that, by Eq. (19), r(w)aR - 1. Thus ux,uy E F(w). If x = y, then 

one would contradict the maximality of 1~1. Let us assume that x # y. The factor u is 

then right special so that 

r(w)= lul<R- 1. 

Let us now suppose R <K. Let u be a factor of w such that there is a repetition of 

u and lu] = r(w) > K - 1. The factor u cannot be obviously a suffix of w. Thus 

there exist there exist two letter x, y E A? such that ux, uy E F(w). If x = y, then one 

contradicts the maximality of the length of U. Hence, x # y and u is a right special 

of length Iu] > K - 1 >R - 1 which is a contradiction. Hence, r(w)< max{R,K} - 1, 

which concludes the proof. 

Corollary 5.1. Let w E d+ be a word of length N. One has 

C(w) = N - r(w). 

Proof. Trivial from Eq. (13) and Theorem 5.1. 

Corollary 5.2. Let w E d+ be a word of length N. Then 

r(w)a[logd N] - 1. 

Proof. From Corollary 4.2 we know that max{R, K} 2 [log, N]. Thus from Theorem 

5.1, r(w) = max{R,K} - 1 >[log, N] - 1. 



A. de LucaITheoretical Computer Science 218 (1999) 13-39 29 

Proposition 5.1. Let w be a word of length N and p be its minimal period. One has 

p2N-K+l. 

Proof. Let u be the s&Ix of w of length K. One can write 

w = 124 with IE&*. 

The subword u cannot have any other occurrence in w. Since w has the period p and 
the first letter of u is in the position N - K + 1, the preceding condition implies that 

N-K+l-pcl, (20) 

or N-K < p. 

Corollary 5.3. Let w be a word of length N and p its minimal period. One has 

p>R+ 1. 

If p=R+l, then N=R+K. 

Proof. From the preceding proposition one has p>N - K + 1. By Proposition 4.6, 
R < N - K, so that p 2 R + 1. If we make the hypothesis that p = R + 1, then by 
Proposition 5.1 it follows N < R + K, so that from Proposition 4.6 the result follows. 

Example. Let d = {a, b,c}. The word w = ababacbcabacba has K = 3 and R = 6. 

One has r(w) = 5. Indeed, w has the right special factor abacb and this is the factor of w 
of maximal length which has a repeated occurrence in w. The word w = aacbcabcacbca 
has K = 6 and R = 3. Hence, r(w) = 5. The factor acbca, which is not right special, 
occurs once inside the word and another time as suffix of w. 

Corollary 5.4. Let w be a periodic Jinite word of length N and minimal period p, 
One has 

R<[N/21- 1, Ka[N/2] + 1, 

and then K BR + 2. Moreover p<K - 1. 

Proof. Let w be a periodic finite word having minimal period p. Thus p < [N/2]. From 
Corollary 5.3 one has paR + 1 and then R < [N/2] - 1. Moreover, from Proposition 
5.1, p a:N - K + 1, so that K >N - [N/2] + 12 [N/2] f 1. Hence, K >,R + 2. Since 
p < [N/2] there is in w a repetition of length p. Thus p < max{R, K} - 1 = K - 1. 

Let us observe that, by a symmetric argument, one can replace in Proposition 5.1 
and Corollaries 5.3 and 5.4, R with L and K with H. As a consequence one derives 
that if w is a word having length N and minimal period p then 

p>N - min{K,H} + 1. 

This implies also that p > max{R, L} + 1. 
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6. Complexity index of a finite word 

In this section we shall give a simple formula which allows us to compute the 
complexity index of a finite word in terms of the length N of the word, the value of 
K and the distribution of right special factors. More precisely, let us define for each 
j = 2,... ,d the quantity 

Qj = 5 ng&,n). 
n=O 

One has: 

(21) 

Theorem 6.1. Let w be a word of length N and d = card(d). One has 

C(W)=l+(N+K)(N-K+l) 

2 

Proof. IfR=O,thenw=aN,aEd,andK=N.Moreover, Qj=O, j=2 ,..., d, 

so that c(w) = 1 + N. Let us then suppose R > 0. We recall that 

c(w) = z$ofw(i)- 

We can decompose this sum in two parts 

c(w) = 5 Mi) + 5 Ui). 
i=O i=R+l 

Let us compute the first term. From Eqs. (4) and (1) we can write 

5 &(i) = R + 1 + ‘2’ 5 5 g&, h) - ‘5’ 5 s,(O, h). 
i=O n=O h=O j=2 n=O h=O 

Let us set 

R-l n d 

.z’ = C C C s&h). 
n=O h=O j=Z 

One has 

By Eqs. (21) and (8) one derives 

Z’=RkPj- &sZ,. 
j=2 j=2 

By Eq. (7) one has 

Z=R(N-K)-kSZ,. 
j=2 
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We can then write 

C(W)=1+R(N-K+1)-~Gtj+ $J f~(i)pR~l~S~(O,h). 

j=2 i=R+l n=O h=O 

In order to prove our result we have to distinguish two cases: 

Case 1. R>K: Let us evaluate CLR+,fw(i). We recall that, by Proposition 4.2, fw 

is strictly decreasing in the interval [R,N], and, moreover, for n E [R,N] 

“w + 1) = &J(n) - 1. 

Moreover, by Proposition 4.3, f,(R) = N - A + 1. Hence, 

fi: fw(i) = :g;i = 
(N-R)(N-R+l) 

i=R+l 2 

Let us now evaluate Ctzt Ci=, s,(O, h). One has 

R-l n R-l n R-l 

n~oh~osr(O,h)= C C 1 =nFK(n-K+l)= (R-K)(;-K+l). 
n=K h=K 

By a simple calculation one derives that 

R(N-K+l)+ 
(N-R)(N-R+l) (R-K)(R-K+l) - 

2 2 

= (N+K)(N-K+l) 

2 
3 

so that in this case the result is proved. 

Case 2. K > R. In this case we have that fw is constant in the interval [R,K], strictly 

decreasing in the interval [K,N], and, moreover, for n E [K,N - l] 

fw(n+l)=fw(n)-1. 

Hence, f,(R) = f,(K) = N - K + 1. Let us compute first cf,,, &(i). One has 

$5 
i=R+l 

fw(i) = iz.l h(i) + i=$+i A(i). 

In the interval [R + 1, K], &(i) takes the constant value N - K + 1, so that 

i=$+l hi(i) = (K - RW - K + 1). 

Moreover, 

i=g+l fw(i) = yKj = CN - K)(; - K + l). 
j=l 

Hence, 

2 fw(i) = (N-K+l)(N+K-2R). 

i=R+l 2 
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In this case, since R <K, one has 

R-l n 

nIO *gmh) = 0. 

By a simple calculation one derives: 

R(N-K+l)+ 
(N-K+l)(N+K-2R) = (N-K+l)(N+K) 

2 2 3 

which proves our assertion. 

Proposition 6.1. Let w be a word of length N. If N = R + K, then the complexity 
index of w is 

c(w) = (R + l)(K + 1). 

Proof. The result is trivial if R = 0 or K = 0. Indeed, in such a case w = #, a E ~2, 

and K = N, so that c(w) = N + 1. Let us then suppose R,K > 0. By Proposition 

4.7 one has that &(i) = i + 1 for i = 0,l , . . . , m where m = min{R, K}. We prove 

that for any length n in the interval [O,R - l] there is only one right special factor 

whose right-valence is 2. The result is, trivially, true if K 2R. Let us then suppose 

that K < R. Our assertion is, obviously, true for n E [l,K - 11. For it E [K, R - l] is 

a consequence of the fact that &(n) = f,(K) = f,(R) and s,(O,n) = 1 in the interval 

[K,R - 11. 

Hence, in our case one has 

From Theorem 6.1 and the fact that N = R + K, one derives 

c(w)=(R+l)(K+l). 

7. Finite Sturmian words 

Sturmian words are infinite words w whose subword complexity fw is such that 

j&l) = n + 1 

for all IZ >O, so that they have the minimal possible value for subword complexity 

without being ultimately periodic (cf. [9,3]). Moreover, since fw( 1) = 2 one has that 

these words are in a two-letter alphabet. It is worth noting that between ultimately 

periodic and Sturmian words there are no other words. We shall denote by St the set 

of the factors of all Sturmian words. 

Let us observe that the condition &(n) = n + 1 for any n >U is equivalent to the 
statement that for any length n 20 the word w has exactly one right special factor. 
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Proposition 7.1. Let w E St be a word of length N. Then 

N=R+K. 

Proof. Let w E St and m = min{R, K} and A4 = max{R,K}. One has that for i E 
[O,m], fW(i) >i+ 1. However, since w is a factor of a Sturmian word then &(i) <i+ 1. 

Thus &(i) = i + 1 for i E [O,m]. Moreover, in the interval [m,M] one has fW(i + 1) = 

fW(i). This is obvious if R < K. In the case R 2K one has to observe that for any 

n in the interval [K, R - l] there is one factor of length n which cannot be prolonged 

on the right and one and only one right special factor of length n. Indeed, n < R 
and w is a factor of an infinite Sturmian word. Hence, in any case f,(R) = f,(K). 
From the general behaviour of the function fw we know that fw is strictly decreasing 

in the interval [M, N], and, moreover, for n E [M, N], f&n + 1) = &(n) - 1. Thus by 

Proposition 4.7 the result follows. 

The following example shows that the above condition, i.e. N = R + K does not 

characterize finite Sturmian words. 

Example. Consider the word w = aaabab of length N = 6 which is not Sturmian. One 

has R = K = 3 so that N = R + K. The word w = aaabbbb of length N = 7 is not 

Sturmian and such that R = 3 and K = 4. 

Let us now consider the set PER of all words w having two periods p,q such that 

gcd( p, q) = 1 and 1 WI = p + q - 2. Thus, a word w belongs to PER if it is a power of 

a single letter or is a word of maximal length for which the theorem of Fine and Wilf 

(cf. [18]) does not apply. In the sequel, we assume that E E PER. This is, formally, 

coherent with the above definition if one takes p = q = 1. The importance of the set 

PER for Sturmian words is due to the following result (cf. [9]): 

St = F(PER), 

i.e. the set of all finite factors of all infinite Sturmian words coincides with the set of 

all factors of the set PER. The set PER has several characterizations based on quite 

different concepts (cf. [lo, 3,9]). We mention here the following [lo]. Let Stand be 

the set of all finite standard Sturmian words. One has 

Theorem 7.1. 

Stand = {a, b} U PER{ab, ba}. 

We recall the following important structure result on the set PER whose proof is 

in [9]. 

Proposition 7.2. Let w be a word such that card(alph(w)) > 1. Then w E PER if 
and only if w can be uniquely represented as 

w = PxyQ = QyxP, 
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with x, y fixed letters in {a, b}, x # y and P,Q E PAL. Moreover, gcd(p,q) = 1, 

where p = IPI + 2 and q = IQ1 + 2 are periods of w. 

Proposition 7.3. Let w E PER and N = 1 WI. One has 

R=p-1 and K=q-1, 

where p is the minimal period of w and q = N + 2 - p. Moreover, if p > 1 then 
the prejix (sufJix) of w of length p - 2 is the unique right (left) special factor of w 

of maximal length. 

Proof. Let us first suppose that card(alph(w))< 1, i.e. w = &‘. In such a case the 

result is trivially true since one has p = 1, q = N + 1, K = N and R = 0 (note 

that in this case the empty word E is not a special factor). Let us then suppose that 

card(alph(w)) > 1. From Proposition 7.2 one has 

w = PxyQ = QyxP, (22) 

with X, y fixed letters in {a, b}, x # y and P, Q E PAL and IPI < /Ql. From Proposition 

5.1 one has p > R + 1. We shall now prove that P is a right (left) special factor of w. 

Since IQ1 > IPI + 1 one has from Eq. (22), Q = Pxi, C E {a,b}*, and 

w = PxyPxl = [“XPYXP. 

Thus Px, Py E F(w) so that P is a right special factor. Hence, IPI <R - 1. Since IPI = 

p - 2 it follows p <R + 1. Thus, by Corollary 5.3, we have proved that p = R + 1. 

From Corollary 5.3, or from Proposition 7.1, one has N = R + K. By the fact that 

N = p + q - 2 it follows K = q - 1. From Proposition 4.7 one has that P is the unique 

right (left) special factor of maximal length. 

Example. Consider the word w = abaababaaba E PER of length 11. One has that the 

right special factor of maximal length is the prefix aba so that R = 4. Moreover, the 

suffix of minimal length which cannot be extended on the right is babaaba, so that 

K = 7. In this case, as one easily verifies, the minimal period p = 5 and q = 8. Let us 

consider the word w = aababaabaab E St of length 11; one easily derives that R = 5, 

K = 6 and p = 8. Note that w #PER. 

Let us recall the following lemma whose proof is in [9]: 

Lemma 7.1. A palindrome word w has the period p < [WI if and only if it has a 
palindrome pre$x (sufix) of length IwI - p. 

Theorem 7.2. Let w be a word of length N having a minimal period p > 1. Then 
w E PER if and only if 

(i) w E PAL, 
(ii) K > R, 
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(iii) The prejx (su$tix) of w of length p - 2 is a right (left) special factor of w of 
maximal length. 

Proof. The ‘only if’ part of the theorem is obviously derived from Proposition 7.3. 

Let us then prove the ‘if’ part. By hypothesis p - 2 = R - 1, so that p = R + 1. By 

Corollary 5.3 one has N = R + K. This also implies, since R > 0, by Proposition 4.7 

that fw( 1) = 2, so that w is a word in a two letter alphabet d = {a,b}. By Lemma 

7.1 the word w has a palindrome suffix Q of length 

lQl=N-p=R+K-p=K-1, 

so that Q is the suffix (prefix) of maximal length which can be extended on the right 

(left) in w. Let us denote by P the prefix of w of length p - 2. We can write, since 

w is palindrome, 

w = PxyQ = QyxP”, 

with x, y E {a, b}. Let us now prove that P is palindrome. Indeed, P is a right special 

factor of maximal length, so that there exists a letter z E d such that z # x and 

Pz E F(w). Since K >R + 1 one has 

N=K+R=K+p-1>2p-1. 

From the p-periodic&y this implies that w has the prefix PxyPx whose length is 2p - 1. 

Hence, yPx E F(w). Moreover Pz can be extended on the left in w. Indeed, since 

w E PAL then H = K, so that lPz\ = R -C H. Thus there exists a letter y’ such that 

y’Pz E F(w). One has that y # y’ otherwise one would have a right special factor of w 

of length > R - 1 which is a contradiction. Since w E PAL then xP” y,zP” y’ E F(w). 
This implies that P” is a right special factor of w. By Proposition 4.7 there can be 

only one right special factor of length IPI so that P = P”. 
Let us now prove that x # y. Let us suppose, by contradiction, that x = y. Then w 

will have the prefix PxxPx. Moreover, Pz can be extended on the left in w only by the 

letter z # x. Thus ZPZ E F(w). The word ZP cannot be a prefix of w. Indeed, otherwise 

one would have ZP = Px which is a contradiction since P is palindrome. Thus ZPZ 
can be extended on the left in w. Due to the p-periodicity one has ZZPZ E F(w) and 

then ZZP E F(w). Thus there exists a prefix f of w such that 

f = Pxxl = /LzzP. 

From this equation one has from the lemma of Lyndon and Schiitzenberger (cf. [ 181): 

pzz = up, XXA = pa, P = (a/?)%, 

with n > 0 and c(, jI E &‘*. Since P is a palindrome one derives ~1, /I E PAL. Hence, 

one has 
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that implies x = z which is a contradiction. Hence, x # y. We can write 

w = PxyQ = QyxP. 

From Proposition 7.2 the result follows. 

The following example shows that in the ‘if’ part of the preceding theorem the 

condition (iii) cannot be replaced with the weaker requirement p - 2 = R - 1. 

Example. The palindrome word w = babaababaabab has R = 4, K = 9, IwI = R+K = 
13 and minimal period p = 5. The word w has the unique right special factor aba of 

length 3, which is not a prefix of w. The word w $ PER. 

Corollary 7.1. Let w E PER and N be its length. One has 

c(w) = pq and C(w) = p, 

where p is the minimal period of w and q = N + 2 - p, 

Proof. Let w E PER and N = Iw 1. From Proposition 7.3 one has R = p - 1 and 

K = q - 1 and N = R + K. By Proposition 6.1 the complexity index of w is c(w) = 

(R + l)(K + 1) = pg. By Propositions 7.1 and 4.9, C(w) = min{R,K} + 1, so that 

from Proposition 7.3, C(w) = p. 

Example. The word w = abaababaaba E PER of length 11 has p = 5 and q = 8. One 

has &(i) = i+ 1 for O<i<3, &,(i) = 5 for 4<i<7 and fJi) = 12-i for 8<i<ll. 

Thus c(w) = pq = 40 and C(w) = 5. 

8. Tree representation 

Let d be an alphabet of cardinality d. To each finite word w E J&‘* one can associate 

a finite labeled tree T, as follows. One starts with the d-ary general tree Yd. As is 

well known, there exists a one-to-one correspondence between the nodes of this tree 

and the words in a d letter alphabet. We shall consider the case where the branches in 

the tree represent the covering relation of the prefixial ordering. The tree T, is obtained 

from Yd by taking all the nodes which represent factors of the word w. Thus, any 

factor of w will be represented by a node v of T, or, equivalently, by a unique path 

going from the root (representing the empty word) to v. The leaves of T, represent 

factors of w which cannot be extended on the right in w, i.e. elements of the set 

G, = sd*k, n Suf(w), 

where k,,, is the suffix of w of minimal length (= KW) which cannot be extended on 

the right in w. The tree T, has an height equal to the length N of the word w and 

it is not complete. In order to complete T, one has to add to T, a certain number 
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of nodes corresponding to a set F, of words defined as follows. A word u E F, if u 

is not a factor of w, but the prefix of u of length Iu] - 1 is a factor of w. Thus the 

completed tree Ti will have a set of leaves represented by the set 

X,,,=F,uG,. 

This set X, is a prefix maximal code (cf. [4]) so that if we set for all 12 20, 4,(n) = 

card@& n d”), then the Krafi-McMillan equality has to be satisfied: 

~,O&v(W-” = 1. (23) 
, 

In the following we shall suppose that card(alph(w)) = d > 1. 

Proposition 8.1. Let w be a word of length N. Then the subword complexity fW and 
the weighted distribution pr of the right special factors of w satisfy the equality 

N-l 

ngo((d - l)&(n) - pr(n))d-(“+l) = 1 - -&(deK + (d - 2)d-N). 

Proof. Let us observe that for any n 3 0 the following recursive formula holds: 

fw(n + 1) = d(fW(n) - so(n)) - cb& + 1) + so(n + 1). (24) 

One has only to observe that fW(n) gives the number of all nodes at the height n 
in the tree T,. The number of nodes at the height IZ + 1 in the complete tree Ti is 

then d(fw(n) - so(n)). In order to obtain fw(n + 1) one has to subtract the quantity 

&,(n + 1) - so(n + 1) from the preceding number. Moreover, from Eqs. (2) and (12) 

one has 

fwtn + 1) = fwtn) + p,(n) - so(n). (25) 

From Eqs. (24) and (25) one derives 

(d - l)fW(n) - p,(n) = (d - l)so(n) + &An + 1) - so(n + 1). 

Thus, by using Eq. (23), it follows 

N-l 

Lo ((d - 1 )fW(n) - pAn))d-(“+l) 

N-l N-l 
= 1 +(d - 1) C so(n)d- (n+l) _ C so(n + l)d-(“f’) 

?I=0 n=O 

N-l 
= 1 + (d - 1) C d-(“+‘) - 

n=K 

Since (d - 1) Crci d-(“+l)- ~~EKd-” = -(l/(d - l))(deK+(d-2)deN), the result 

follows. 
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In the case of a word w in a two letter alphabet (i.e. d = 2) the preceding proposition 

simply becomes: 

Corollary 8.1. Let w be a word of length N over a two-letter alphabet. Then the 
subword complexity fW and the distribution R, of right special factors satisfy the 

equality 

N-l 
nsO(fW(n) - R,(n))2-(“+‘) = 1 - 2-K. 

Proposition 8.2. The following relation holds: 

card(X,) = (d - I)(c(w) - 1 - N + K) + 1. 

Proof. From Eq. (24) one has 

N-l N-l N-l N-l N-l 

E. fW(n + 1) = d X0 fw(n) - d aTO so(n) - ngo k(n + 1) + ngo so(n + 1). 

Hence, 

N-l 

c(w) - 1 = d(c(w) - 1)) - can-&L) - d C so(n) + n$Kso(n) 
n=K 

=d(c(w)-l)-card(&)-d(N-K)+N-K+l. 

From this the result follows. 
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