
Theoretical Computer Science 414 (2012) 1–8

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Randomized truthful algorithms for scheduling selfish tasks on parallel
machines✩

Eric Angel a, Evripidis Bampis b, Nicolas Thibault c,∗
a IBISC, Université d’Évry, France
b LIP6 UMR 7606, Université Pierre et Marie Curie (Paris 6), France
c ERMES EA 4441, Université Panthéon-Assas (Paris 2), France

a r t i c l e i n f o

Article history:
Received 15 June 2010
Received in revised form 5 October 2011
Accepted 9 October 2011
Communicated by X. Deng

Keywords:
Scheduling
Algorithmic game theory
Approximation

a b s t r a c t

We study the problem of designing truthful algorithms for scheduling a set of tasks,
each one owned by a selfish agent, to a set of parallel (identical or unrelated) machines
in order to minimize the makespan. We consider the following process: at first the
agents declare the length of their tasks, then given these bids, the protocol schedules
the tasks on the machines. The aim of the protocol is to minimize the makespan, i.e. the
maximum completion time of the tasks, while the objective of each agent is to minimize
the completion time of its task and thus an agent may lie if by doing so, his task may finish
earlier. In this paper, we show the existence of randomized truthful (non-polynomial-time)
algorithms with an expected approximation ratio equal to 3/2 for different scheduling
settings (identical machines with and without release dates and unrelated machines) and
models of execution (strong or weak). Our result improves the best previously known
result Angel et al. (2006) [1] for the problem with identical machines (P ∥ Cmax) in the
strong model of execution and reaches, asymptotically, the lower bound of Christodoulou
et al. (2007) [5]. In addition, this result can be transformed to a polynomial-time truthful
randomized algorithm with an expected approximation ratio 3/2 + ϵ (resp. 11

6 −
1
3m) for

Pm ∥ Cmax (resp. P ∥ Cmax).
© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, there are many systems involving autonomous entities (agents). These systems are organized by protocols,
trying to maximize the social welfare in the presence of private information held by the agents. In some settings, the
agents may try to manipulate the protocol by reporting false information in order to maximize their own profit. With false
information, even themost efficient protocol may lead to unreasonable solutions if it is not designed to copewith the selfish
behavior of the agents. In such a context, it is natural to study the efficiency of truthful protocols, i.e. protocols that are able
to guarantee that no agent has incentive to lie. This approach has been considered in many papers of past few years (see [4]
for a recent survey).

In this paper, we study the problem of designing truthful algorithms for scheduling a set of tasks, each one owned by
a selfish agent, to a set of parallel (identical or unrelated) machines in order to minimize the makespan. We consider the
following process: before the start of the execution, the agents declare the length of their tasks, then given these bids, the

✩ A preliminary version of this paper has been presented in the 9th Latin American Symposium (LATIN), Oaxaca, Mexico, LNCS 6034, 38–48, 2010.
∗ Corresponding author. Tel.: +33 06 81 50 14 07.

E-mail addresses: Eric.Angel@ibisc.fr (E. Angel), Evripidis.Bampis@lip6.fr (E. Bampis), Nicolas.Thibault@u-paris2.fr, nicolasvincentpierre@gmail.com
(N. Thibault).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.10.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81948193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2011.10.006
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:Eric.Angel@ibisc.fr
mailto:Evripidis.Bampis@lip6.fr
mailto:Nicolas.Thibault@u-paris2.fr
mailto:nicolasvincentpierre@gmail.com
http://dx.doi.org/10.1016/j.tcs.2011.10.006

2 E. Angel et al. / Theoretical Computer Science 414 (2012) 1–8

protocol schedules the tasks on the machines. The aim of the protocol is to minimize the makespan, i.e. the maximum
completion time of the tasks, while the objective of each agent is to minimize the completion time of its task and thus an
agent may lie if by doing so, his task may finish earlier. We focus on protocols without side payments that simultaneously
offer a guarantee on the quality of the schedule (its makespan is not arbitrarily far from the optimum) and guarantee that
the solution is truthful (no agent can lie and improve his own completion time).

1.1. Formal definition

There are n agents, represented by the set {1, 2, . . . , n} and m parallel machines.

Variants of the problem. Depending on the type of the machines and the job characteristics, we consider three different
variants of the problem.

- Identical parallelmachines (P||Cmax).All themachines are identical and every task i has a private value ti that represents
its length. We assume that an agent cannot shrink the length of his task (otherwise he will not get his result), but if he
can decrease his completion time by bidding a value larger than the real one (bi ≥ ti), then he will do so.

- Identical parallel machines with release dates (P|ri|Cmax). All the machines are identical and every task i has now a
private pair (ti, ri), where ti is the length of task i and ri is its release date. Every task imay bid any pair (bi, rbi) such that
bi ≥ ti and rbi ≥ ri. A task i may not bid a release date smaller than its real release date i.e. rbi < ri, because otherwise,
the task may be scheduled before ri and thus the final schedule may be infeasible.

- Unrelated parallel machines (R||Cmax). The machines are here unrelated. Every task i has a private vector (t1i , . . . , t
m
i),

where t ji , 1 ≤ j ≤ m, is the processing time of task i if it is executed onmachine j. Every task i bids any vector (b1i , . . . , b
m
i)

with b1i ≥ t1i , . . . , b
m
i ≥ tmi .

Models of execution. Before describing the two models of execution that we will consider here, let us recall the process:
first, every agent i bids a length bi for its task and second, given these bids, the protocol constructs a schedule. An agent
could either underbid, or overbid. However, if, say, agent i underbids by declaring a length bi < ti, then the execution of
his task will never be completed because in the schedule an interval of only bi units of time will be reserved for his task.
Therefore, no agent has incentive to underbid in such a context and so we may consider that the agents may lie, only by
overbidding, i.e. that for every agent i, his bid bi is always greater than or equal to its real length ti. Let us now define the
models of execution that we will study.

• The strong model of execution: task i bids any value bi ≥ ti and its execution time is ti (i.e. task i is completed ti units of
time after it starts even if i bids bi ≠ ti).

• The weak model of execution: i bids any value bi ≥ ti and its execution time is bi (i.e. task i is completed bi units of time
after it starts).

Notice that an alternative way to define these two models would be to say that in the strong (respectively, weak) model of
execution, task i is allowed to both under- and overbid and is completed min{bi, ti} (respectively, max{bi, ti}) units of time
after its starting time. However, for simplicity reasons, and given that the agents will never have incentive to underbid, we
only consider the possibility of overbidding in the following.
Another thing that should be clear is the motivation of examining these two models. The strong model corresponds to a
situation where the agents have the opportunity to follow ‘‘on screen’’ the execution of their task (and thus get the result at
the completion of the ‘‘real’’ part of their task), while the weak model corresponds to an execution in a batch mode where
the agents get the result at the completion of their task (both ‘‘real’’ and possibly ‘‘fake’’ parts included).
Notation. By Ci, we denote the completion time of task i. The objective of the protocol is to determine a schedule of the
tasks minimizing the maximum completion time of the tasks or makespan, denoted in what follows by Cmax. We say that
an algorithm is truthful, if and only if, for every task i, 1 ≤ i ≤ n and for every bid bj, j ≠ i, the completion time of task
i is minimum when i bids bi = ti. In other words, an algorithm is truthful if truth-telling is the best strategy for a player i
regardless of the strategy adopted by the other players.

1.2. Related works

Theworks that aremore closely related to ours are those in [1–3,5]. In the paper by Auletta et al. [3], the authors consider
the variant of the problem ofm related machines in which the individual function of each task is the completion time of the
machine on which it is executed, while the global objective function is the makespan. They consider the strong model of
execution by assuming that each task may declare an arbitrary length (smaller or greater than its real length) while the load
of each machine is the sum of the true lengths of the tasks assigned to it. They provide equilibria-truthful mechanisms that
use payments in order to retain truthfulness. In [1], the authors consider a different variant with m identical machines in
which the individual objective function of each task is its completion time and they consider the strong model of execution
(but here the tasks may only report values that are greater than or equal to their real lengths). Given that for this variant the

E. Angel et al. / Theoretical Computer Science 414 (2012) 1–8 3

SPT (Shortest Processing Time) algorithm1 is truthful, they focus on the design of algorithms with a better approximation
ratio than that of the SPT algorithm. The rough idea of their approach is a randomized algorithm in which they combine
the LPT (Longest Processing Time) algorithm,2 which has a better approximation ratio than SPT but is not truthful, with a
schedule (DSPT) based on the SPT algorithmwhere some ‘‘unnecessary’’ idle times are introduced between the tasks. These
unnecessary idle times are introduced in the SPT schedule in order to penalize more the tasks that report false information.
Indeed, in theDSPT schedule such a task is doubly penalized, since not only is its execution delayed by the other tasks but also
by the introduced idle times. In such a way, it is possible to find a probability distribution over the deterministic algorithms,
LPT and DSPT which produces a randomized algorithm that is proved to be truthful and with an (expected) approximation
ratio of 2−

1
m+1 (

5
3 +

1
3m), i.e. better than the one of SPT which is equal to 2−

1
m . An optimal truthful randomized algorithm

and a truthful randomized PTAS for identical parallel machines in the weak model of execution appeared in [2]. The idea
of these algorithms is to introduce fake tasks in order to have the same completion time in all the machines and then to
use a random order in each machine for scheduling the tasks allocated to it (including the eventual fake one). These results
have been also generalized in the case of related machines and the on-line case with release dates. Another related work,
presented in [5], gives some new lower and upper bounds. More precisely, the authors proved that there is no truthful
deterministic (resp. randomized) algorithm with an approximation ratio smaller than 2 − 1/m (resp. 3/2 − 1/2m) for the
strong model of execution. They also provide a lower bound of 1.1 for the deterministic case in the weak model (form ≥ 3)
and a deterministic 4

3 −
1
3m truthful algorithm based on the idea of bloc schedule where after inserting fake tasks in order

to have the same completion time in all the machines, instead of using a random order on the tasks of each machine, the
authors proposed to take the mirror of the LPT schedule.

1.3. Our contribution

In the first part of the paper, we consider the strong model of execution. Our contribution is a new truthful randomized
non-polynomial algorithm that we call Starting Time Equalizer (STE), presented in Section 2, whose approximation ratio for
the makespan is 3

2 for P||Cmax. This new upper bound asymptotically closes the gap between the lower bound 3
2 −

1
2m of [5]

and the previously best known upper bound of 2 −
1

m+1

 5
3 +

1
3m

for this problem [1]. We also give two polynomial-time

variants of algorithm STE, respectively with approximation ratios 3
2 + ϵ for Pm||Cmax and 11

6 +
1
3m for P||Cmax (we underline

that 11
6 +

1
3m is better than the previous upper bound of 2 −

1
m+1

 5
3 +

1
3m

for m large). In the second part of the paper,

we consider the weak model of execution. We give in Section 3.1, a new truthful randomized non-polynomial algorithm,
called Mid-Time Equalizer (MTE) for the off-line problem with release dates, where the private information of each task is
not only each length, but also its release date (P|ri|Cmax). Finally, we consider the case of scheduling a set of selfish tasks on a
set of unrelated parallel machines (R||Cmax) for the weak model of execution (Section 3.2) where we propose a new truthful
randomized non-polynomial algorithm that we call Completion Time Equalizer (CTE). Table 1 gives a summary of the upper
and lower bounds on the approximation ratio of truthful algorithms for the considered problems (with † we give the results
obtained in this paper).

The lower bounds for truthful deterministic algorithms in the weak model for P|ri|Cmax and R||Cmax are simple
implications of the lower bound for truthful deterministic algorithms solving P||Cmax. Up to our knowledge, there is no
interesting lower bounds for truthful randomized algorithms (resp. upper bound for truthful deterministic algorithms) for
R||Cmax and P|ri|Cmax (resp. R||Cmax). The upper bound 2 −

1
m for P|ri|Cmax in the weak model holds only if we consider that

each task can be identified by an identification number (ID). With this assumption, we just have to consider the on-line
algorithm which schedules the tasks when they become available with (for instance) the smallest ID first. This algorithm is
then trivially truthful, because task iwill not have incentive of bidding (bi > ti, rbi > ri) (bi has no effect on theway inwhich
tasks are scheduled and bidding rbi > ri can only increase Ci). Moreover, as this algorithm is a particular case of Graham’s
list scheduling (LS) algorithmwith release dates, it is (2−

1
m)-competitive (because algorithm LS is (2−

1
m)-competitive for

P|on-line-list|Cmax, [7]).

2. Strong model of execution

Identical machines

2.1. Algorithm STE

We consider in this section the problem with identical machines (P||Cmax) in the strong model. Every task i has a private
value ti that represents its length and it has to bid any value bi ≥ ti.

1 Where the tasks are scheduled greedily following the increasing order of their lengths (its approximation ratio is 2 − 1/m).
2 Where the tasks are scheduled greedily following the decreasing order of their lengths (its approximation ratio is 4/3 − 1/(3m)).

4 E. Angel et al. / Theoretical Computer Science 414 (2012) 1–8

Table 1
Bounds form parallel machines.

Deterministic Randomized

Lower bound Upper bound Lower bound Upper bound

P||Cmax
strong model 2 −

1
m [5] 2 −

1
m [6] 3

2 −
1
2m [5]

3
2 †

(non-polynomial
algorithm)

11
6 +

1
3m †

(polynomial
algorithm)

Pm||Cmax
strong model

3
2 + ϵ †

(polynomial
algorithm)

P||Cmax
weak model ifm = 2 then

1 +

√
105−9
12 > 1.1

ifm ≥ 3 then
7
6 > 1.16 [5]

4
3 −

1
3m [5] 1 [2] 1 [2]

R||Cmax
weak model unknown

unknown

3
2 †

(non-polynomial
algorithm)

P|ri|Cmax
weak model 2 −

1
m [7]

3
2 †

(non-polynomial
algorithm)

Algorithm STARTING TIME EQUALIZER (STE)

1. Let COPT
max be the makespan of an optimal schedule OPT for P||Cmax.

Let OPTj be the sub-schedule of OPT on machine j.
Let bj1 ≤ · · · ≤ bjk be the bids (sorted by increasing order)
of the k tasks in OPTj.

2. Construct schedule S1 as follows: for every machine j (1 ≤ j ≤ m),
every task ji (1 ≤ i ≤ k) in OPTj is executed on machine j by
starting at time

k
l=i+1 bjl .

3. Construct schedule S2 as follows: for every machine j (1 ≤ j ≤ m),
every task ji (1 ≤ i ≤ k) in OPTj is executed on machine j by
starting at time COPT

max −
k

l=i+1 bjl .

4. Choose schedule S1 or S2 each with probability 1/2.

Fig. 1 illustrates the construction of schedules S1 and S2 in algorithm STE on machine j.
The main idea of algorithm STE is to make equal the expected starting times of all the tasks. More precisely, we prove

below that the expected starting time of every task in the final schedule constructed by STE, which is the average between
its starting time in S1 and its starting time in S2, will be equal to COPT

max
2 (i.e. the same value for every task). This property will

be used in the proof of Theorem 1 to show that STE is truthful. In the example given in Fig. 1, the expected starting time of
the four tasks is COPT

max
2 and it is equal to 5.5.

Theorem 1. STE is a randomized, truthful and 3
2 -approximate algorithm in the strong model of execution for P||Cmax.

Proof. As STE is a randomized algorithm, to prove it is truthful, we have to show that the expected completion time of each
task is minimum when it tells the truth. By definition of STE, the expected completion time Ci of any task i is the average
between its completion time in schedule S1 and its completion time in schedule S2. In the strong model of execution, every

E. Angel et al. / Theoretical Computer Science 414 (2012) 1–8 5

Fig. 1. An illustration of execution of algorithm STE on machine j. We give an example of schedules S1 and S2 with four tasks in OPTj such that bj1 = 1,
bj2 = 1.5, bj3 = 3, bj4 = 4 and COPT

max = 11.

task i is completed ti units of time after its starting time. Thus,

Ci =
1
2

ti +

k
l=i+1

bjl

+

ti + COPT

max −

k
l=i+1

bjl

= ti +

COPT
max

2
.

For every task i, the completion time of task i is Ci = ti+
COPT
max
2 and it reaches itsminimum valuewhen i tells the truth because

ti does not depend on the bid bi and because COPT
max obviously does not decrease if i bids bi > ti instead of bi = ti. Thus, STE

is truthful in the strong model of execution. Given that STE is truthful, we may consider in the following that for every i, we
have bi = ti. Given also that STE is a randomized algorithm choosing with probability 1/2 schedule S1 and with probability
1/2 schedule S2, its approximation ratio will be the average between the approximation ratios of schedules S1 and S2. In S1,
all tasks end before or at time COPT

max . Thus, as for every i, bi = ti, COPT
max is the makespan of an optimal solution computed with

the true types of the agents, S1 is optimal. In S2, on every machine j, all tasks end before or at time COPT
max except task jk, which

finishes at time COPT
max + tjk . Given that tjk ≤ COPT

max , all tasks in S2 end before or at time 2COPT
max . Thus, S2 is 2-approximate. Hence,

the expected approximation ratio of STE is 1
2 (1 + 2) =

3
2 . �

2.2. Polynomial-time variants of algorithm STE

Given that algorithm STE requires the computation of an optimal solution for P||Cmax and as this problem is NP-hard, it is
clear that STE cannot be executed in polynomial time. Nevertheless, it is interesting for two reasons. First, it asymptotically
closes the gap between the lower bound 3

2 −
1
2m of any truthful algorithm and the previously best known upper bound of

2 −
1

m+1

 5
3 +

1
3m

. Second, by using approximated solutions instead of the optimal one, we can obtain polynomial-time

variants of STE. To precise these variants, we first need to define what we call an increasing algorithm.

Definition (Increasing Algorithm [2])). Let H and H ′ be two sets of tasks ordered in non-increasing order with respect to
their execution times {T1, . . . , Tn} and {T ′

1, . . . , T
′
n} respectively. We denote by H ≤ H ′ the fact that for every 1 ≤ i ≤ n,

we have l(Ti) ≤ l(T ′

i) (where l(T) is the length of task T). An algorithm A is increasing if for every pair of sets of tasks H and
H ′ such that H ≤ H ′, it constructs schedules such that Cmax(H) ≤ Cmax(H ′) (where Cmax(X) is the makespan of the solution
constructed by algorithm A for the set of tasks X).

As LPT (Longest Processing Time) is an increasing algorithm (see [2]) and as there exists an increasing PTAS for Pm||Cmax
(see [2]), we get the following two theorems.

Theorem 2. By using LPT instead of an optimal algorithm, we obtain a polynomial-time, randomized, truthful and (11
6 −

1
3m)-

approximate variant of STE in the strong model of execution for P||Cmax.

Theorem 3. By using the increasing PTAS in [2] instead of an optimal algorithm, we obtain a polynomial-time, randomized,
truthful and (3

2 + ϵ)-approximate variant of STE in the strong model of execution for Pm||Cmax.

Theorem 2 (resp. Theorem 3) can be proved in a similar way as in Theorem 1. Indeed, as the completion time of each task
will be Ci = ti +

CLPT
max
2 (resp. Ci = ti +

CPTAS
max
2) instead of Ci = ti +

COPT
max
2 and as LPT (resp. the PTAS in [2]) is increasing, the

variant of STE in Theorem 2 (resp. Theorem 3) is truthful. Moreover, as LPT is (4
3 −

1
3m)-approximate for P||Cmax (resp. the

PTAS in [2] is (1 + ϵ)-approximate for Pm||Cmax), we obtain that the expected approximation ratio of the variant of STE in
Theorem 2 (resp. Theorem 3) is 1

2 (
4
3 −

1
3m +

4
3 −

1
3m + 1) =

11
6 −

1
3m (resp. 1

2 (1 + ϵ + 1 + ϵ + 1) =
3
2 + ϵ).

3. Weak model of execution

3.1. Identical machines with release dates

We consider in this section P|ri|Cmax in the weak model. Every task i has now a private pair (ti, ri) (its type), where ti is
the length of task i and ri its release date. Each task i may bid any pair (bi, rbi) such that bi ≥ ti and rbi ≥ ri. Notice here that

6 E. Angel et al. / Theoretical Computer Science 414 (2012) 1–8

Fig. 2. An illustration of execution of algorithm MTE on machine mi . We give an example of schedules OPT and OPTmirror with four tasks on machine mi
such that (b1 = 1, r1 = 0), (b2 = 1.5, r2 = 5), (b3 = 3, r3 = 7), (b4 = 4, r4 = 2), max1≤j≤n{rbj } = 8 and COPT

max = 11.

we consider that task i may not bid a release date smaller than its real release date i.e. rbi < ri, because otherwise, the task
may be scheduled before ri in the final schedule and thus, the final schedule may be infeasible.

Algorithm MID-TIME EQUALIZER (MTE)

1. Let COPT
max be the makespan of an optimal schedule OPT for P|ri|Cmax.

Letmi be the machine where Task i is executed in OPT .
Let Ci(OPT) be the completion time of Task i in OPT .

2. Construct Schedule OPTmirror in which every task i is executed on
machine mi and start at Time max1≤j≤n{rbj } + COPT

max − Ci(OPT).

3. Choose Schedule OPT or OPTmirror each with probability 1/2.

Fig. 2 illustrates the construction of schedules OPT and OPTmirror in algorithm MTE on any machinemi.
The main idea of algorithm Mid-Time Equalizer (MTE) is to make equal the expected time at which every task has

executedhalf of its total length.More precisely,weprove below that the expectedmid-timeof every task in the final schedule
constructed by MTE is the average between its mid-time in OPT and in OPTmirror and it is equal to 1

2

max1≤j≤n{rbj } + COPT

max

(i.e. the same value for every task). This property will be used in the proof of Theorem 4 in order to show that MTE
is truthful in the weak model of execution. In the example given in Fig. 2, the expected mid-time of the four tasks is
1
2

max1≤j≤n{rbj } + COPT

max

and it is equal to 8+11

2 = 9.5.
Note that as we consider that for every i, we have rbi ≥ ri, we get max1≤j≤n{rbj } ≥ max1≤j≤n{rj}. Moreover, as

Ci(OPT) ≤ COPT
max , every task i starts in schedule OPTmirror at time max1≤j≤n{rbj } + COPT

max − Ci(OPT) ≥ max1≤j≤n{rj} ≥ ri.
Thus, schedule OPTmirror respects all the constraints of the release dates.

Theorem 4. MTE is a randomized, truthful and 3
2 -approximate algorithm in the weak model of execution for P|ri|Cmax.

Proof. Let us prove that the expected completion time of every task is minimum when it tells the truth. By definition of
MTE, the expected completion time Ci of any task i is the average between its completion time Ci(OPT) in schedule OPT and
its completion time Ci(OPTmirror) in schedule OPTmirror . In the weak model of execution, every task i is completed bi units of
time after its starting time. Thus, we have

Ci =
1
2

Ci(OPT) + max

1≤j≤n
{rbj } + COPT

max − Ci(OPT) + bi

=

1
2

max
1≤j≤n

{rbj } + COPT
max + bi

.

For every task i, its completion time Ci =
1
2

max1≤j≤n{rbj } + COPT

max + bi

reaches its minimum value when i tells the truth

(i.e. when i bids simultaneously bi = ti and rbi = ri), because

• for every rbi ≥ ri, both COPT
max and bi obviously do not decrease if i bids (bi > ti, rbi) instead of (bi = ti, rbi), and

• for every bi ≥ ti, both max1≤j≤n{rbj } and COPT
max obviously do not decrease if i bids (bi, rbi > ri) instead of (bi, rbi = ri).

It is then clear that MTE is truthful and thus we may consider in what follows that for every i, we have bi = ti and rbi = ri.
The expected approximation ratio ofMTEwill be the average between the approximation ratios ofOPT andOPTmirror . InOPT ,
all tasks end before or at time COPT

max . Thus, as for every i, bi = ti, COPT
max is the makespan of an optimal solution computed with

the types of the agents, and thus, OPT is optimal. In OPTmirror , all tasks end before or at time max1≤j≤n{rj} + COPT
max (because

for every i, rbi = ri by definition of MTE). Given that max1≤j≤n{rj} ≤ COPT
max , all tasks in OPTmirror terminate before or at time

2COPT
max . Thus, OPT

mirror is 2-approximate. Hence the expected approximation ratio of algorithm MTE is 1
2 (1 + 2) =

3
2 . �

E. Angel et al. / Theoretical Computer Science 414 (2012) 1–8 7

Fig. 3. An illustration of execution of algorithm CTE on machine j. An example of schedules S1 and S2 is given with four tasks in OPTj such that bjj1 = 1,

bjj2 = 1.5, bjj3 = 3, bjj4 = 4 and COPT
max = 11.

3.2. Unrelated machines

We consider in this section the case with unrelated machines (R||Cmax) in the weak model of execution. Here, every task
i has a private vector (t1i , . . . , t

m
i) (his type), where t ji (1 ≤ j ≤ m) is the processing time of i if it is executed on machine j.

Every task i bids any vector (b1i , . . . , b
m
i) with b1i ≥ t1i , . . . , b

m
i ≥ tmi .

Algorithm COMPLETION TIME EQUALIZER (CTE)

1. Let COPT
max be the makespan of an optimal schedule OPT for R||Cmax.

Let OPTj be the sub-schedule of OPT on Machine j.
Let bjj1 ≤ · · · ≤ bjjk be the bids (sorted by increasing order)
of the k tasks in OPTj.

2. Construct schedule S1 as follows: for every machine j (i ≤ j ≤ m),
every task ji (1 ≤ i ≤ k) in OPTj is executed on machine j by
starting at time COPT

max −
k

l=i b
j
jl
.

3. Construct schedule S2 as follows: for every machine j (i ≤ j ≤ m),
every task ji (1 ≤ i ≤ k − 1) in OPTj is executed on machine j by
starting at time COPT

max − bjji +
k

l=i+1 b
j
jl
and task jk is executed

on machine j by starting at time COPT
max − bjjk .

4. Choose schedule S1 or S2 each one with probability 1/2.

Fig. 3 illustrates the construction of schedules S1 and S2 in algorithm CTE on machine j.
The intuitive idea of algorithm Completion Time Equalizer is to make equal the expected completion times of the tasks.

More precisely, the expected completion time of every task in the final schedule constructed by CTE is the average between
its starting time in S1 and its starting time in S2 and it is equal to COPT

max (i.e. the same for all the tasks). This property will be
used in the proof of Theorem 5 to show that CTE is truthful in the weak model of execution. For instance, in the example
given in Fig. 3, the expected completion time of the four tasks is COPT

max and it is equal to 11.

Theorem 5. CTE is a randomized, truthful and 3
2 -approximate algorithm in the weak model of execution for R||Cmax.

Proof. We first show that the expected completion time of each task isminimumwhen it tells the truth. By definition of CTE,
the expected completion time Ci of any task i is the average between its completion time in Schedule S1 and its completion
time in Schedule S2. In the weak model of execution, each task i is completed bi units of time after its starting time on
machine j. Thus, we have

Ci =
1
2

bji + COPT

max −

k
l=i

bjjl

+

bji + COPT

max − bji +
k

l=i+1

bjjl

= COPT

max.

For every task i, Ci = COPT
max reaches its minimum value when i tells the truth because COPT

max obviously does not decrease if for
any i, j, task i bids bji > t ji instead of bji = t ji . Hence, CTE is truthful and so we can consider in the following that for every i, j,
we have bji = t ji . In schedule S1, all tasks finish before or at time COPT

max . Thus, as for every i, j, bji = t ji , C
OPT
max is the makespan of

an optimal solution computed with the types of the agents, S1 is optimal. In S2, on each machine j, all tasks end before or at
time COPT

max +
k

l=2 b
j
jl
. As

k
l=2 b

j
jl

≤ COPT
max , all tasks in S2 end before or at time 2COPT

max . Thus, S2 is 2-approximate. Finally, the
expected approximation ratio of algorithm CTE is 1

2 (1 + 2) =
3
2 . �

8 E. Angel et al. / Theoretical Computer Science 414 (2012) 1–8

References

[1] E. Angel, E. Bampis, F. Pascual, Truthful algorithms for scheduling selfish tasks on parallel machines, Theoretical Computer Science (short version in
WINE 2005) 369 (2006) 157–168.

[2] E. Angel, E. Bampis, F. Pascual, A. Tchetgnia, On truthfulness and approximation for scheduling selfish tasks, Journal of Scheduling (2009)
doi:10.2007/s10951-009-0118-8.

[3] V. Auletta, R. De Prisco, P. Penna, P. Persiano, How to route and tax selfish unsplittable traffic, in: 16th ACM Symposium on Parallelism in Algorithms
and Architectures, 2004, pp. 196–204.

[4] R. Mueller, B. Heydenreich, M. Uetz, Games and mechanism design in machine scheduling — an introduction, Research Memoranda 022, Maastricht:
METEOR, Maastricht Research School of Economics of Technology and Organization, 2006.

[5] G. Christodoulou, L. Gourvès, F. Pascual, Scheduling selfish tasks: about the performance of truthful algorithms, in: 13th International Computing and
Combinatorics Conference, in: Lecture Notes in Computer Science, vol. 4598, Springer, 2007, pp. 187–197.

[6] G. Christodoulou, E. Koutsoupias, A. Nanavati, Coordinationmechanisms, in: Proceedings of the 31st International ColloquiumonAutomata, Languages,
and Programming, ICALP, in: LNCS, vol. 3142, Springer, 2004, pp. 345–357.

[7] R.L. Graham, Bounds for certain multiprocessing anomalies, Bell System Technical Journal 45 (1966) 1563.

http://dx.doi.org/doi:10.2007/s10951-009-0118-8

	Randomized truthful algorithms for scheduling selfish tasks on parallel machines
	Introduction
	Formal definition
	Related works
	Our contribution

	Strong model of execution
	Algorithm STE
	Polynomial-time variants of algorithm STE

	Weak model of execution
	Identical machines with release dates
	Unrelated machines

	References

