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In the last decade, the indentation test has become a useful tool for probing mechanical properties of
small material volumes. In this context, little has been done for rubber-like materials (elastomers),
although there is pressing need to use instrumented indentation in biomechanics and tissue examination.
The present work investigates the quasi-static normal instrumented indentation of incompressible rub-
ber-like substrates by sharp rigid cones. A second-order elasticity analysis was performed in addition to
finite element analysis and showed that the elastic modulus at infinitesimal strains correlates well with
the indentation response that is the relation between the applied force and the resulting vertical dis-
placement of the indentor’s tip. Three hyperelastic models were analyzed: the classic Mooney–Rivlin
model, the simple Gent model and the one-term Ogden model. The effect of the angle of the cone was
investigated, as well as the influence of surface friction. For blunt cones, the indentation response agrees
remarkably well with the prediction of linear elasticity and confirms available experimental results of
instrumented Vickers indentation.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The response of material substrates to indentation by rigid
indentors in the form of spheres, cones and pyramids is referred
to as ‘‘hardness” testing. ‘‘Hardness” has been classically referred
to the indentation of metal substrates and implies a permanent
dent on the surface of the substrate upon unloading. This cannot
be observed on rubber-like surfaces at ambient temperatures, be-
cause of the complete rebound of the surface as soon as the inden-
tor is withdrawn. Currently, hardness testing of elastomers is
based on the, so called, Shore test (after A.F. Shore who suggested
the test in 1907, Lysaght and DeBellis, 1969) that uses the durom-
eter (a measuring device of a hardened indentor with an accurately
calibrated spring, a depth indicator and a flat presser foot). The
‘‘Shore hardness” is a number between 0 and 100, which has no
obvious correlation with any fundamental mechanical property
of the material (e.g. elastic modulus, uniaxial stress–strain re-
sponse, etc.) and is defined by various standards, e.g. ASTM D
2240, BS 903, ISO 7619, etc. (ASTM, 2003; BS 903, 1997; ISO
7619-I and II, 2004). Elastomers have a Shore hardness number be-
tween 30 and 90. The development and standardizing hardness
test methods and instruments for rubber materials over the years
are in the books of Soden (1951) and Brown (2006). Indentation
‘‘hardness” has been known in rubber technology to be a measure
of the elastic modulus (Davey and Payne, 1964; Eirich, 1978; Gent,
1992).
ll rights reserved.

agiotopoulos).
The mechanical behavior of elastomers involves large geometric
changes of their initial shapes and strong non-linearity between
the stresses and strains that develop upon loading. Such mechani-
cal behavior is modeled adequately by hyperelasticity (Green and
Adkins, 1970; Ogden, 1984; Antman, 1995). In the context of
hyperelasticity, the stress–strain relations are deduced from a sin-
gle function, W, which describes the elastic strain energy density in
the undeformed configuration and is represented by a variety of
models which conform with uniaxial tension experiments up to a
certain level of straining. At this point, it is worth mentioning that
hyperelasticity models serve well in the description of certain bio-
materials, including soft tissues, cells and the DNA ( Fung, 1993,
1994). This is not very surprising, since the biological molecules
are mainly long chains of covalently bonded carbon and hydrogen
atoms can be modeled by entropic elasticity (Treloar, 1975). Path-
ological soft tissues show different elastic behavior, as compared to
healthy tissues. For example, the cancerous tissue is 3–7 times stif-
fer than the normal tissue (Krouskop et al., 1998). Diabetes can in-
crease the stiffness of the soft tissues of feet, causing pain in the
region of the heel (Zheng et al., 2000).

An extension of the classic hardness test is the instrumented
indentation test, where the applied force on the indentor, P, is
recorded simultaneously with the vertical displacement, D, of
the indentor’s tip into the substrate of the material to be tested.
There are clear advantages of the indentation tests in probing
mechanical properties of very small volumes of materials and
during the last decade there have been strong advancements
on the measuring devices performing micro and nano-indenta-
tion (Fisher-Cripps, 2002). To interpret the P–D response, there

https://core.ac.uk/display/81948136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dimpanagiot@yahoo.com
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


Fig. 1. Schematic of the conical indentation problem.
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must be a robust and meaningful contact analysis, which can
provide relations of the P–D response with the mechanical prop-
erties. Such relations do not exist so far for cone indentation of
rubber materials; the problem is not easy because rubbers do
not obey simple constitutive laws. Experiments presenting
results of instrumented cone indentations of rubber substrates
can be found in rather few references (Sabey, 1958; Greenwood
and Tabor, 1958; Crawford and Stephens, 1985; Briscoe et al.,
1994; Vallet and Barquins, 2002; Lim and Chaudhri, 2004). The
problem is difficult and there are few analytical solutions, even
for the non-linear Boussinesq problem (a compressive point
force normal to the surface) (Simmonds and Warne, 1994; Gao,
2001; Lee et al., 2004).

To the best of our knowledge, there has been no systematic
finite element analysis of the cone indentation of rubber materi-
als. There have been, however, a few papers dealing with finite
element analysis of spherical and flat punch of rubber materials.
It is important to state briefly the basic findings of these papers,
keeping in mind that there can be many pitfalls that accompany
these calculations, as discussed by Jabareen and Rubin (2007).
They have examined the response of commercially available
codes and have detected possible hourglass buckling modes of
deformation, especially if little care is taken for the incompress-
ibility constraint. Chang and Sun (1991) investigated the spheri-
cal indentation of a simple Ogden material. They found good
correlation with the Hertzian solution and a very small effect
of the friction at the interface (friction coefficient up to 1). Bus-
field and Thomas (1999) also examined the spherical indentation
of a power law Neo-Hookean material. They investigated the ef-
fect of finite thickness and of friction. They found that friction
renders a stiffer indentation response for very soft materials
and for large penetration depths. Gent and Yeoh (2006) investi-
gated a flat circular punch on a nearly incompressible Neo-Hook-
ean material. They found that the way the outer boundaries are
constrained influences the indentation response. Constrained
vertical sides away from the contact area produce stiffer
response than that predicted by linear elasticity. They also
examined the effect of pre-compression of the substrate.

In order to solve the problem of indentation of a rubber sub-
stance by a rigid cone, we used a non-linear analysis of second
order and derived closed form results that connect the indenta-
tion depth D, the contact radius a, the half-angle of the cone
p/2 � u and the applied vertical load P. We confirmed and ex-
tended the analytic results with finite element analysis using
three well-known constitutive models (Mooney–Rivlin, simple
Gent and one-term Ogden). We also examined the influence of
Coulomb friction. To the best of our knowledge such analysis
has never been undertaken in the past. The results of our analyt-
ical efforts were compared with available instrumented indenta-
tion tests with steel conical indentors of different angle. The
paper concludes with direct comparison of the different models.
Finally, we discuss the findings and propose an inverse method-
ology to predict mechanical properties of rubber materials from
conical instrumented indentation tests.

2. Approximate analysis

The equations of equilibrium and the boundary conditions for
an elastic body in the absence of body and inertia force, neglecting
terms of higher degree than the second of the space derivative of
the displacements ui can be formulated according to Rivlin
(1953). The starting point is an elastic strain density energy func-
tion W in the reference configuration, of the form suggested by
Murnaghan (1951)

W ¼ a1J2 þ a2J2
1 þ a3J1J2 þ a4J3

1 þ a5J3; ð1Þ
where a1,a2,a3,a4,a5 are constants and J1, J2, J3 are invariants of the

Lagrange strain tensor cij ¼ 1
2

@ui
@xj
þ @uj

@xi
þ @uk

@xi

@uk
@xj

� �
, where xi are the

Cartesian coordinates of a material point in the undeformed config-
uration. The function W describes a compressible material. When
expressed in terms of principal stretches k1,k2,k3, the invariants are

J1 ¼ I1 � 3; J2 ¼ I2 � 2I1 þ 3;
J3 ¼ I3 � I2 þ I1 � 1 ¼ ðI3 � 1Þ � ðJ1 þ J2Þ: ð2Þ
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2
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2
3 ð3Þ

Note that the constants a1 and a2 are related with the Lame con-
stants k, l of the linear elasticity, at small deformations (ki ? 1)

k ¼ 4ða1 þ 2a2Þ; l ¼ �2a1 ð4Þ

with a1 < 0, a2 > 0 and a1 + 4a2 > 0.
As we will show later, there is a question as to how the limit of a

compressible analysis will describe adequately the incompressible
rubber. We let the total displacements be decomposed as

ui ¼ ti þwi; ð5Þ

where ti and wi are the first and the second-order displacements,
respectively.

2.1. Contact problem of a rigid cone indentor

We consider the contact problem of a rigid indentor whose axis
of symmetry is normal to the contact plane. We choose cylindrical
polar coordinates (r,h,z) such that the contact plane is z = 0 (Fig. 1).
In this section, the polar coordinates are taken as material coordi-
nates (undeformed configuration). Although adhesion can be
important at low indentation loads and friction may be important
at certain cone angles, we will ignore both for the sake of simplicity
in this analysis. Friction will be discussed later when full finite ele-
ment analysis will be presented.

We consider the case of the half space z P 0 deformed by the
normal penetration of a rigid cone of angle 2(p/2 � u) as shown
in Fig. 1. For this problem, we take e = tanu,

f ðrÞ ¼ r tan u ¼ er: ð6Þ

For convergence, e = tan/� 1) /� p/4.
The total load P required to produce penetration D � f(r) for

r < a is given by integrating the nominal tractions at the contact
region, tzz(r,0),
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P ¼ �2p
Z a

0
rtzzðr;0Þdr: ð7Þ

The displacements and the stress field for the linear problem are gi-
ven by Johnson (1985) and Sneddon (1972) and depend on

l ¼ �2a1; n ¼ a1 þ 2a2

a1 þ 4a2
; ð8Þ

which are the shear modulus and the Poisson ratio, respectively, at
zero straining.

Note that, at the tip of the cone, the first-order stresses that de-
pend on the Poisson ratio, Eq. (8), show a logarithmic singularity.
This will create problems in the second linear problem. However,
the region of the singularity is small and, as Choi and Shield (1981)
suggested, it may not be a major problem for obtaining the overall
force-depth-contact relations. On the other hand, Picu (1996) inves-
tigated the elastic stress singularity of the axisymmetric problem at
the vertex of a conical sector attached to a conical notch, where the
shear stress is zero at the interface. He found a power type of stress
singularity that becomes more intense as the angle of the cone be-
comes sharper. A power type of stress was also found by Gao and
Mai (2002), however, their analysis implies singular stretches at
the surface. We will show later the nature of the singularity at the
cone tip, as predicted by detailed finite elements. At the moment,
it is sufficient to accept this singularity for blunt cones.

In the original formulation of the second-order analysis (Rivlin,
1953; Sabin and Kaloni, 1983), the limiting case of incompressible
material was to take n ? 0.5 and the constants to take the limiting
forms

a1 ¼�
l
2
; a2 ¼

lð1�nÞ
4ð1�2nÞ ; a3 ¼

lð5�6nÞ
8ð1�2nÞ ; a4 ¼

�3lð1�nÞ
16ð1�2nÞ ; a5 ¼

�3l
4

:

ð9Þ

A problem, however, appears using the above limit. The normal
traction at the surface predicts a 1/r singularity at the contact cen-
ter. This means that close to the tip of the cone, contact with the
surface will be lost, suggesting the presence of an expanding region,
as Gao (2001) predicted for the case of a concentrated load. Unless
we assume the presence of a liquid that can fill the gap between the
tip and the surface, the above limit is not valid, see also Lee et al.
(2004). It is clear that the problem stems from the way that the
incompressible limit was taken, resulting to second-order body
forces.

Selecting the constants as

a1 ¼ �
l
2
; a2 ¼ 0; a3 ¼ 0; a4 ¼ 0; a5 ¼

�3l
4

; ð10Þ

the strain energy density approaches the Mooney–Rivlin incom-
pressible model with equal constants

W ¼ c1J2 þ 3c1J1 ¼ c1ðI1 � 3Þ þ c1ðI2 � 3Þ: ð11Þ

In this case, l = 4c1 is the shear modulus at zero straining. Shield
(1967) proved that the energy density described by (11) leads to
second-order problem without the influence of the artificial body
forces, see also Choi and Shield (1981). Using the limits (10), we
obtain

tzzðr; 0Þ ¼ �2le ln aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2
p� �

=r
h i

; 0 6 r 6 a; ð12Þ

D ¼ D1 ¼ ae
p
2
¼ a

p
2

tan /) a0 ¼
2D

p tan /
; ð13Þ

P ¼ 2pla2e ¼ 8lD2

p tan /
¼ 8ED2

3p tan /
¼ C0D2; ð14Þ

where E = 3l is the elastic modulus at infinitesimal strains. This
solution retains the logarithmic singularity of the stresses at the
cone tip. As will be shown later, for blunt cones, the finite element
results indicate that this is a reasonable approximation. The macro-
scopic response summarized by Eqs. (13) and (14) suggests that the
linear elasticity results hold true for blunt cone indentors and sub-
strates that follow the particular Mooney–Rivlin response, as of Eq.
(11). These unexpected results were confirmed for blunt cones by
finite elements, as will be shown below.

2.2. Second-order incompressible elasticity

The previous results indicate the need for a second-order
incompressible elasticity analysis that bypasses the limit of a com-
pressible elasticity solution. The works of Chan and Carlson (1970),
Hill (1973b), Fosdick (1971) and Selvadurai and Spencer (1972)
will be used in the present approach. We will denote by r and z
the material coordinates in the radial and the vertical directions,
respectively. The first step in this case is to establish the first-order
solution, using a displacement potential w(r,z):

tr ¼
z

4pl
@w
@r
; ð15Þ

tz ¼ �
1

4pl
w� z

@w
@z

� �
: ð16Þ

The function w(r,z) must be harmonic:

r2w ¼ @2

@r2 þ
1
r
@

@
þ @2

@z2

 !
w ¼ 0: ð17Þ

The hydrostatic pressure is

pHðr; zÞ ¼
rrr þ rzz þ rhh

3
¼ 1

2p
@w
@z

ð18Þ

and the corresponding Cauchy stresses are

rrr ¼ pH�
z

2p
@2w
@r2

; rzz ¼ pH�
z

2p
@2w
@z2 ; rhh ¼ pH�

z
r
@w
@r
; rrh ¼�

z
2p

@2w
@r@z

:

ð19Þ

Note that at the surface (z = 0)

v rðr; 0Þ ¼ 0; vzðr;0Þ ¼ �
1

4pl
wjz¼0; ð20Þ

rhhðr;0Þ ¼ rrrðr;0Þ ¼ rzzðr;0Þ ¼ pHjz¼0; rrhðr; 0Þ ¼ 0: ð21Þ

The results indicate that the first-order solution at the surface pre-
dicts a deformation gradient of pure rotation. The first-order solu-
tion satisfies the Signiorini compatibility condition (Hill, 1973a).
Far away from the contact region, the solution should tend to the
results of a concentrated point force P acting along the z-direction.
In this case, the function w is given by

wðr; zÞ ¼ P

ðr2 þ z2Þ1=2 : ð22Þ

At the surface: @tz/@xjtj = 0, @tz/@z = 0, @2tz/@xjtj = 0, @tz/@xk = �@tk/
@z. Then, these conditions lead to absence of second-order normal
stresses, provided that the strain energy density function is a sym-
metric function of the principal strain invariants, W(I1, I2) = W(I2, I1),
as for example the particular form of the Mooney–Rivlin case
shown by Eq. (11). Using the particular form of Eq. (11), we can
compute the second-order displacements at the surface. After some
extensive calculations, we obtain

wrðr; 0Þ ¼ �
1

ð4plÞ2
w
@w
@r

� �
z¼0
; wzðr;0Þ ¼ 0; ð23Þ

indicating that the first-order vertical surface displacements are re-
tained to second order. The above analysis confirms that the macro-
scopic results found by Eqs. (13) and (14) hold true within the
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context of the second-order analysis and for the particular form of
the Mooney–Rivlin model (11).

From the previous analysis, Eq. (23), the surface deformation
(z = 0) is the same as that of the first-order analysis

uz ¼
p
2
� r

a

� �
a tan / ðr 6 aÞ; ð24aÞ

uz ¼ sin�1 a
r
þ r2

a2 � 1
� �1=2

� r
a

 !
a tan / ðr > aÞ; ð24bÞ

where r,a denote the material radial coordinate and the projected
contact radius to the horizontal surface. In the absence of surface
stretching, the second-order contact pressure is essentially a second
Piola–Kirchhoff stress (Cauchy stress rotated by the angle / from
cone geometry):

tzz ¼ �
4
6

E tan /cosh�1 a
r

� �
: ð25Þ

If we integrate the in the region, we obtain the total load as a func-
tion of, confirming the macroscopic result of Eq. (14), that is C = P/
D2 � C0.
3. Finite element analysis

3.1. Basic considerations

We will distinguish the material (R,Z) and the current (r, z) coor-
dinates, using the displacements

r ¼ Rþ urðR; ZÞ and z ¼ Z þ uzðR; ZÞ: ð26Þ

The projected contact radius in the undeformed configuration is A
ð0 6 A <

ffiffiffiffiffiffiffiffiffi
P=l

p
Þ. In the deformed configuration, the projected con-

tact radius is

a ¼ Aþ urðA;0Þ: ð27Þ

In the contact area (0 6 R < A, Z = 0), the deformation is described as

uzðR;0Þ ¼ D� ðRþ urðR;0ÞÞ tan /: ð28Þ

At the tip of the cone, the vertical displacement is D and the ra-
dial displacement is zero. At the contact perimeter, the amount of
sinking-in is uz(A,0) = D � a tan/. In the contact area, the Cauchy
(true) stresses are constrained

rrzðR; 0Þ ¼
rrr � rzz

2
sinð2/Þ ð29Þ

due to the assumed frictionless contact and

rrzðR; 0Þ sinð2/Þ ¼ pN � ðrrr sin2 /þ rzz cos2 /Þ ð30Þ

due to the adhesionless contact where the contact pressure
pN 6 0. Outside the contact area (R P A, Z = 0)

rrrðR; 0Þ ¼ rzzðR;0Þ ¼ rrzðR;0Þ ¼ 0: ð31Þ

Along the axisymmetry line (R = 0), the angle of rotation is zero.
In the frictionless case, this would lead to the relation @ur/
@r ? +1. In the case of friction, @ur/@z = @uz/@r < 0. Both of these
results were verified by the finite element calculations. Also,
along the axisymmetry line, ur(0,Z) = 0. The far field solution is
given by the point force incompressible linear elasticity. Accord-
ing to Kikuchi and Oden (1988), the problem can be solved by
minimization of the energy function

P ¼ 2p
Z þ1

0

Z þ1

0
WRdRdZ þ 2p

Z A

0
½ðrrrðR; 0Þ sin /

þ rrzðR; 0Þ cos /ÞurðR; 0Þ þ ðrrzðR;0Þ sin /

þ rzzðR; 0Þ cos /ÞuzðR; 0Þ�RdR; ð32Þ
where W is the strain energy density function. The existence of the
solution is discussed by Curnier et al. (1992) and Ciarlet (1988). The
finite element analysis will be based on the computational proce-
dures described by Wriggers (2006). Due to linearity of the contact
surface, the positive definiteness of the local tangent stiffness is
guaranteed. We investigated three classic strain energy density
functions: the Mooney–Rivlin, the Gent and the simple Ogden
models.

The well-known Mooney–Rivlin model (Mooney, 1940) is valid
up to moderate levels of strain. This model has been proven ade-
quate for modeling uniaxial strains in tension and compression
up to 45%. Its explicit relation with the strain invariants is

W ¼ c1ðI1 � 3Þ þ c2ðI2 � 3Þ; ð33Þ

where c1 and c2 are constants (Pa) with c1 + c2 > 0. If c2 = 0 (highly
swollen rubbers), the model reduces to the Neo-Hookean one. The
shear modulus at zero straining is l = 2(c1 + c2). An excellent discus-
sion on the origin of the c2 term in rubber elasticity has been given
by Waggner (1994), who proved that it is due to the non-affined
deformation of the entanglement network due to the increasing lat-
eral restriction of the neighboring molecular chains. For small val-
ues of c1 (e.g. less than 0.1 MPa for natural rubber), c1 = c2.

To investigate the influence of a limiting value for the first strain
invariant (i.e. the existence of a locking stretch in uniaxial tension,
kL > 1), we examined a simple strain energy density suggested by
Gent (2005)

W ¼ �lJm

2
ln 1� J1

Jm

� �
; ð34Þ

where l > 0 is the shear modulus at zero straining and Jm is the
maximum value of J1 and depends on the uniaxial locking stretch
as Jm ¼ ð2k4

L þ 1Þ=ðk2
L Þ � 3. For large values of the locking stretch,

kL ? +1, the model reduces to the Neo-Hookean model. Similar
to Gent, there are other models (e.g. Arruda and Boyce, 1993) that
capture well the characteristic S-shaped load versus stretch curve
in uniaxial tension tests, involving locking stretches of 2–3. The
present model was selected for simplicity in order to investigate
the basic response.

A simple model that can also capture the S-shape response of uni-
axial tests (without the locking stretch) is the simple Ogden model

W ¼ 2l
f2 ðk

f
1 þ kf

2 þ kf
3 � 3Þ; ð35Þ

where l > 0 is the shear modulus at zero straining and f > 1 is the
power law constant that controls the S-shape of the uniaxial tension
response. Note that for f = 2, the model reduces to the Neo-Hookean
model.

Following Hill (1973a), we can find the exact expressions of the
principal Cauchy stresses in the undeformed configuration. Denote
by

k ¼ 1þ ur=R and I ¼ I1 � k2: ð36Þ

Then, the principal stresses are the ones in the plane (r, z) and the
hoop stresses

r1;3 ¼ pþ I �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 � 4

k2

s !
U
2
; ð37Þ

r2 ¼ rhh ¼ pþWk2: ð38Þ

In case of a Mooney–Rivlin material

U ¼ 2ðc1 þ k2c2Þ and W ¼ 2ðc1 þ ðI � k�4Þc2Þ: ð39Þ

The hydrostatic pressure must be singular at the tip of the cone so
that locally the stress state to be hydrostatic and have infinite princi-
pal planes (of zero shear traction). At the surface, outside the contact



Fig. 2. (a) Overall view of the finite element mesh used in the analysis. The dark
area corresponds to a very fine uniform mesh. The triangles denote rolling
constraints, with line of rolling the free side of the triangle. (b) Mesh refinement
alongside the axis of symmetry.

Table 1
Material model: Mooney–Rivlin. Friction coefficient: 0. Cone angle: 140.6�.

c1/(c1 + c2) C/C0 a/a0 Stretches at the cone-tip

k1 k2 k3

0.2765 1.0502 1.0189 1.4227 1.3836 0.5099
0.5000 1.0357 1.0264 1.4237 1.3850 0.5091
0.7234 1.0210 1.0377 1.4244 1.3862 0.5085
0.9985 1.0025 1.0472 1.4245 1.3874 0.5083

Table 2
Material model: Mooney–Rivlin. Friction coefficient: 0. Cone angle: 120�.

c1/(c1 + c2) C/C0 a/a0 Stretches at the cone-tip

k1 k2 k3

0.2765 1.0527 1.0242 2.2610 2.0282 0.2181
0.5000 1.0308 1.0364 2.3089 2.0686 0.2093
0.7234 1.0069 1.0424 2.3800 2.1291 0.1973
0.9985 0.9763 1.0515 2.5738 2.2964 0.1691
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region, the principal stresses in the (r,z) plane are zero, r1 = r3 = 0.
Then, I = 2/k, leading to rhh = r2 = � p + UI/2 and p = UI/2.

The angle of rotation n is given by

tan n ¼ @ur=@z� @uz=@r
2� @ur=@r � @uz=@z

: ð40Þ

As we approach the cone tip, a singularity of @ur/@r arises and (40)
gives two angles of rotation, depending on how we approach the
cone-tip: n ? / as Z = 0 and R ? 0�, n ? 0 as R = 0 and Z ? 0�.

We have implemented the above strain energy density func-
tions to the ANSYS finite element code (ANSYS, 2006), with 4-
noded axisymmetric, hybrid elements, with bi-linear isoparametric
interpolation for the incremental displacement field, in conjunc-
tion with constant hydrostatic pressure and constant dilatation
over the current configuration. The deformation gradient is split
into volume preserving and dilatational parts. The mixed formula-
tion is constructed based on the linear Hu-Washizu principle
method, as suggested by Simo et al. (1985). The cone indentor
was modeled as a rigid surface. The cone angles were 140.6� (cor-
responding to the well-known Vickers indentation test), 120� and
60�. The finite element mesh is shown in Fig. 2. The outer bound-
aries of the mesh was chosen to be at least 20 times the maximum
contact radius, A � 20

ffiffiffiffiffiffiffiffiffi
P=l

p
. The boundary conditions are shown

in Fig. 1 as rollers. We have used 40,187 to 53,611 elements, with
90–130 elements resolving the contact region at maximum load.
The loading was applied in 200 equal displacement steps and re-
quired 2–3 iterations per load step, with standard Newton–Raph-
son procedure and convergence in the energy norm with a
tolerance of 10�14. Increasing the steps to 400, did not affect the re-
sults. The incompressibility tolerance was 10�7. The Hughes
procedure was used, taking the rotation matrix at half the loading
step (Hughes, 1980). The Lagrange multiplier method was used for
the normal contact and was enforced at all iterations, sacrificing
speed for accuracy. The return mapping method was used for
friction (Giannakopoulos, 1989). A full check for ‘‘hourglass” modes
was performed at the end of each load step to be sure of the quality
of the solution. Another check was made to confirm that the inden-
tation depth and the contact radius were advancing monotonically
with load.

3.2. Results of the frictionless analysis

We are interested in the macroscopic results, that is, the force-
depth and the contact radius-depth relations. We report these re-
sults as ratios with the classic linear elasticity results, Eqs. (13)
and (14), that were proven for the particular Money–Rivlin model
(in the FEM model we used Eq. 33). Table 1 summarizes the results
for a cone angle of 140.6� (equivalent to the well-known Vickers
pyramid indentor) indenting a Mooney–Rivlin material. The princi-
pal stretches at the cone tip are extreme and are also reported in
Table 1. The maximum stretch is in the radial direction, followed
by the circumferential direction. The smallest stretch is in the ver-
tical direction, as expected. It is clear that the strains are of the order
of 50%, in the range that the Mooney–Rivlin model is valid. It is
astonishing to find that, although the problem predicts large
strains, the analytic linear elasticity works for all types of Moo-
ney–Rivlin materials within more than 95% accuracy. It is also
astonishing to observe that the strains are almost invariants for
any combination of the ratio c1/(c1 + c2). The above conclusions hold
for blunt cones, as is evident from Tables 2 and 3 that report similar
quantities for cone angles of 120� and 60� (equivalent to the well-
known Rockwell indentor). In this case, the strains are increased
dramatically and the Mooney–Rivlin model may not be appropri-
ate. Finally, the analysis showed that the constant c2 > 0, otherwise
there cannot be any solution for the indentation problem.



Table 3
Material model: Mooney–Rivlin. Friction coefficient: 0. Cone angle: 60�.

c1/(c1 + c2) C/C0 a/a0 Stretches at the cone-tip

k1 k2 k3

0.2765 1.2009 1.1273 8.8375 4.4371 0.0256
0.5000 1.1299 1.1455 9.3092 4.6693 0.0231
0.7234 1.0482 1.1455 10.135 5.0784 0.0195
0.9985 0.9047 1.1591 20.227 10.115 0.0049

Table 4
Material model: Gent. Friction coefficient: 0. Cone angle: 140.6�.

kL C/C0 a/a0 Stretches at the cone-tip

k1 k2 k3

2.75 1.0069 1.0377 1.4206 1.3803 0.5115
2.25 1.0105 1.0377 1.4146 1.3422 0.5163
1.75 1.0229 1.0189 1.3732 1.3208 0.5516
1.20 1.0472 1.0170 1.2744 1.2461 0.6347
1.11 1.0988 0.9811 1.1988 1.1766 0.7191

Table 5
Material model: Ogden. Friction coefficient: 0. Cone angle: 140.6�.

f C/C0 a/a0 Stretches at the cone-tip

k1 k2 k3

0.5 1.0236 1.0185 1.498 1.435 0.486
1.5 1.009 1.0185 1.497 1.432 0.487
2.5 0.9962 1.0288 1.497 1.428 0.490
3.5 0.9849 1.0288 1.495 1.423 0.491

Table 6
Material model: Ogden. Friction coefficient: 0. Cone angle: 120�.

f C/C0 a/a0 Stretches at the cone-tip

k1 k2 k3

0.5 1.0066 1.0438 4.128 3.578 0.114
1.5 0.9852 1.0522 3.162 2.742 0.156
2.5 0.9682 1.0606 2.796 2.424 0.185
3.5 0.9553 1.0606 2.589 2.245 0.207
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To investigate the influence of the locking stretch, kL, we used
the Gent model. Table 4 summarizes the results for a cone angle
of 140.6�. It is surprising to find once more that the macroscopic
response follows linear elasticity, even for rather low locking
stretches. In this case, the results are almost indistinguishable from
those predicted by the Mooney–Rivlin model. For very low locking
stretches (below 1.2), the indentation response becomes stiffer and
the stretches try to become equal.
Fig. 3. Isobars of the principal stretches for the Mooney–Rivlin model, frictionless case an
(R/A, Z/A), where A is the reference contact radius.
Tables 5 and 6 present the macroscopic results, that is, the
force-depth and the contact radius-depth relations for the simple
Ogden model, for different values of the parameter f. We report
these results as ratios with the classic linear elasticity results,
Eqs. (13) and (14), for cone angles 140.6� and 120�, respectively.
It is astonishing to observe that for cone angles 140.6� the strains
are almost invariants for any value of the parameter f and agree
closely to those of the Mooney–Rivlin model. For cone angles of
120� the strains are increasing dramatically with decreasing f.
d cone angle 140.6�. The contour plots are in the normalized reference configuration
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Some further results of the basic form of the Mooney–Rivlin
model are worth presenting. In Fig. 3, the isobars of the stretches
k1, k2 and k3 were plotted in the undeformed configuration for cone
angle of 140.6�. Due to incompressibility, k1k2k3 = 1, as expected.
The stretches are bounded from the far-field expected value of 1
and the maximum values at the cone-tip (which are finite). The re-
sults are almost the same for any ratio c1/(c1 + c2). The finite ele-
ment results indicate that the deviatoric Cauchy stresses are
finite everywhere and the pressure exhibits singularity at the
cone-tip. The deviatoric stresses in the radial and the circumferen-
tial direction are nearly proportional with the Lagrangian strains.
The calculations showed that Fig. 3 is almost the same for all
Ogden models, as well as for the Gent models with sufficiently
large locking stretch (>1.7).

Another revealing figure is Fig. 4, which shows the maximum
principal stretch k1, along the contact radius, at the surface
(Z = 0) for cone angles 140.6� and 120�. The material radial distance
R is normalized by the corresponding reference contact radius A.
Note that outside the contact region, the principal stretch ap-
proaches the far-field value of 1, as expected. The distributions
for the two cone angles are similar; however, the values are higher
for the sharper indenter. We can conclude that for the Mooney–
Rivlin model, the surface is extended a lot as the cone angle is
decreasing, suggesting a possible puncturing of the surface.

Fig. 5 shows the radial displacement, ur, at the surface (Z = 0) for
cone angles 140.6� and 120� and for all material properties of the
Mooney–Rivlin model shown in Tables 1 and 2. Both the material
Fig. 4. (a) The maximum principal stretch along the contact radius, at the surface,
for two different cone angles (140.6� and 120�) and for the Mooney–Rivlin model.
(b) The maximum principal stretch along the axis of symmetry, for the same cone
angles and material model. The material radial direction R and axial direction Z are
normalized by the material contact radius A.
radial coordinate and the radial displacement are normalized by
the corresponding material contact radius A. The radial displace-
ments take negative values in the outer contact region and they
are zero at two points of the contact region: R/A=0 and R/
A � 0.8 � 0.9. Far away from the contact region, R/A > 7, the radial
displacement approaches the far-field value of 0, as expected. The
radial displacement distributions are similar and depend on the
cone angle and the ratio c1/(c1 + c2). The radial displacement distri-
bution takes the limiting value 0, as the cone angle approaches
180� and increases in amplitude as the cone angle decreases.

Fig. 6 shows the vertical displacement, uz, at the surface (Z = 0)
for cone angles 140.6� and 120� and for all material models shown
in Tables 1–6. Both the material radial coordinate and the vertical
displacement are normalized by the corresponding material con-
tact radius A. Far away from the contact region, R/A > 7, the vertical
displacement approaches the far-field value of 0, as expected. It is
very interesting to find that the vertical displacement distributions
are almost similar and depend basically on the cone angle. The fig-
ure also includes the linear elasticity prediction of Eq. (24), which
fits all the results very well, confirming the validity of the second
order theoretical approximation.

Turning our attention to the contact pressure, we show in Fig. 7
the first Piola–Kirchhoff contact pressure for cone angle 140.6�,
Fig. 5. The radial displacement along the contact radius, at the surface, for two
different cone angles (140.6� and 120�) and for the Mooney–Rivlin model. Both the
material radial direction R and the radial displacement are normalized by the
material contact radius A.

Fig. 6. Normalized vertical displacement as a function of the normalized reference
radial direction. The normalizing length is the reference contact radius A.



Fig. 7. The first Piola–Kirchhoff contact pressure, for cone angle 140.6� and for the
Mooney–Rivlin model. The prediction of linear elasticity is also shown. In this case,
P = 18.5 kN and E = 7.5 MPa.
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applied force P = 18.5 kN and Mooney–Rivlin material withffiffiffiffiffiffiffiffiffi
P=l

p
¼ 8:2 cm. The prediction of the linear elasticity is also

shown in Fig. 7. It is clear that the linear elasticity approximation
is good. However, the asymptotic nature of the contact pressure
close to the cone-tip was investigated in more detail.

Fig. 8 shows the normalized true contact pressure pN/l versus
the normalized material radius R/A for cone angles of 140.6� and
120�. Fig. 8a gives the results in a semi-logarithmic plot, whereas
Fig. 8b gives the results in a log–log plot. From these figures, we
can conclude that the logarithmic singularity dominates in blunt
cone (140.6�) indentations and power-law singularity dominates
in sharp cone (120�) indentations.
Fig. 8. Investigation of the cone-tip asymptotic behavior of the true contact presure, for co
normalized by the shear modulus and the material radius by the contact radius in the u
logarithmic plot for cone angle 140.6�. (c) Log–log plot for cone angle 120�. (d) Log–log
Fig. 9 shows the principal directions of the stretches on the
deformed configuration for sharp cone (120�) indentation of the
Mooney–Rivlin material. Note that close to the cone-tip, there is
a double value of the angle of rotation (0,/) and, as expected, the
rotation matrix is not single valued. The rest of the material points
have unique angle of rotation.

Fig. 10 shows the isobars of the hydrostatic pressure, normal-
ized to the initial modulus l, in the reference configuration, nor-
malized by the corresponding material contact radius A. For
blunt cones (140.6�), the results are almost invariant of the model
(except for the Gent model with low locking stretches) and a
typical result is given in Fig. 10a for the Mooney–Rivlin model.
For sharp cones (120�), the results change drastically with the
material parameters, as shown in Fig. 10b for the Gent model with
locking stretch 1.2.

3.3. Effects of friction

The friction between the indentor and the elastomer is a complex
physical phenomenon, Person (2000). Friction depends on the con-
tact velocity and the temperature. In the present analysis we were
confined on the simple Coulomb type of friction that depends on
the surface displacements and the contact tractions. Typical values
of the dry friction coefficient between metal and rubber is 0.15–
4.00. In the present analysis we used values of friction 0.2, 1 and
10. For sufficiently high friction coefficient, the surface sticks com-
pletely at the indentor. In this case, the stress singularity at the cone
tip changes significantly (Keer and Parihar, 1978). Schallamach
(1971) showed that surface instability causes wrinkles on the sur-
face of soft rubber which undergoes frictional sliding. Best et al.
(1981) investigated the origin of Schallamach’s waves and showed
ne angles 140.6� and 120� and for the Mooney–Rivlin model. The contact pressure is
ndeformed configuration. (a) Semi-logarithmic plot for cone angle 120�. (b) Semi-
plot for cone angle 140.6�.



Fig. 9. Principal stretch directions for the Mooney–Rivlin model. (a) Reference
configuration. (b) Deformed configuration. The cone angle is 120�. The friction
coefficient is 0.0. In this case, P = 18.5 kN and E = 7.5 MPa.

Fig. 10. Hydrostatic pressure normalized by the initial shear modulus. The contour
plots are in the normalized reference configuration (R/A, Z/A). (a) Mooney–Rivlin
model and cone angle 140.6�. (b) Gent model (kL = 1.2) and cone angle 120�. The
friction coefficient is 0.0. In this case, P = 18.5 kN and E = 7.5 MPa.

Fig. 11. The first Piola–Kirchhoff contact pressure, for cone angle 140.6� and for the
Mooney–Rivlin model. The results include friction coefficients 0.0, 0.2, 1.0 and 10.0.
In this case, P = 18.5 kN and E = 7.5 MPa.
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that they can explained as instability of the surface due to high com-
pressive strains tangential to the surface. They used the Mooney–
Rivlin model and found a critical surface stretch of 0.54. As was clear
from the finite element calculations, such surface (compressive)
strains were never encountered in our solutions, even for very high
friction coefficients.

Some further results of the basic form of the Mooney–Rivlin
model are worth presenting. Fig. 11 shows the first Piola–Kirchhoff
contact pressure for cone angle 140.6�, applied force P = 18.5 kN
and Mooney–Rivlin material with

ffiffiffiffiffiffiffiffiffi
P=l

p
¼ 8:2 cm. The results in-

clude friction coefficients 0.0, 0.2, 1.0 and 10.0. It is interesting to
note that no appreciable difference was detected, indicating the
macroscopic results (force-depth and depth-radius) for the cone
angle 140.6� are not influenced by friction. The macroscopic results
for sharp cones (60�), however, are influenced by friction, as shown
clearly in Table 7. The presence of friction reduces the contact
radius and increases the contact stiffness, however, these effects
level for friction coefficient greater than 1.



Fig. 12. The radial displacement along the contact radius, at the surface, for cone
angle 140.6� and for the Mooney–Rivlin model. The results include friction
coefficients 0.0, 0.2, 1.0 and 10.0. In this case, P = 18.5 kN and E = 7.5 MPa. All
curves with friction coefficient greater than 0.0 are almost identical.

Fig. 13. Principal stretch directions for the Mooney–Rivlin model. (a) Reference
configuration. (b) Deformed configuration. The cone angle is 120�. The friction
coefficient is 1.0. In this case, P = 18.5 kN and E = 7.5 MPa.

Fig. 14. The maximum principal stretch along the surface, for cone angle 140.6� and
for the Mooney–Rivlin model. The results include friction coefficients 0.0, 0.2, 1.0
and 10.0. In this case, P = 18.5 kN and E=7.5 MPa. All curves with friction coefficient
greater than 0.0 are almost identical.

Table 7
Material model: Mooney–Rivlin, c1/(c1 + c2) = 0.5. Cone angle: 60�.

Friction coefficient C/C0 a/a0

0.00 1.1299 1.1455
0.20 1.1783 0.9749
1.00 1.1908 0.9641
10.0 1.1911 0.9636
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Fig. 12 shows the radial displacement for cone angle 140.6�, ap-
plied force P = 18.5 kN and Mooney–Rivlin material withffiffiffiffiffiffiffiffiffi

P=l
p

¼ 8:2 cm. The analysis examined friction coefficients 0.0,
0.2, 1.0 and 10.0. The results show that even for moderate friction
coefficients the surface sticks on the cone and the surface radial
deformation is negative. Contrary to the frictionless case where
@ur/@r ? +1 at the cone-tip, the presence of friction results to a fi-
nite value of @ur/@r at the cone-tip. As a result, the angle of rotation
at the cone-tip is unique, n = 0. Recall that the frictionless case pre-
dicts two values of angle of rotation at the cone tip, n = 0 and n = /,
depending on how the cone-tip is approached (see also discussion
of Eq. (40)).

Fig. 13 shows the principal directions of the stretches on the de-
formed configuration for sharp cone (120�) indentation of the Moo-
ney–Rivlin material, for friction coefficient 1. Note that close to the
cone-tip, there is a single value of the angle of rotation (zero) and,
as expected, the rotation matrix is single valued.

Fig. 14 shows the maximum principal stretch k1, along the con-
tact radius, at the surface (Z = 0) for cone angle 140.6�. The material
radial distance R is normalized by the corresponding reference con-
tact radius A. Note that outside the contact region, the principal
stretch approaches the far-field value of 1, as expected. The stretch
distributions for friction coefficients 0.2, 1.0 and 10.0 are almost
the same. In comparison with the frictionless case, the stretch is
strongly decreasing in the region 0 6 R/A < 0.8 and is mildly
increasing in the region R/A > 0.8. Lim and Chaudhri (2004) took
into account friction through the form1 C/C0 = 1 + lf tan/, suggest-
ing a linear dependence of the contact stiffness with the Coulomb
friction coefficient lf.

This was not confirmed by the present analysis. Although fric-
tion indeed leads to the increase of the contact stiffness, the influ-
ence of the friction constant has a non-linear dependence on the
1 Recall that C = P/D2 for the hyperelastic response including friction effect and C0 is
P/D2 for the linear elastic response without friction (Eq. (14)).
contact stiffness and approaches a plateau for very high values of
the friction coefficient (perfect stick condition).

It is very interesting to note that Eq. (24) fits well the surface
vertical displacements predicted by finite elements, regardless of
the material model and friction, for cone angles larger than 90�.
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Deviations appear for the low-locking-stretch Gent model. For
cone angles smaller than 90�, the surface deformation deviates
from the prediction of (24).

4. Conclusions

We have analyzed the indentation of incompressible rubber
materials by rigid cone and we found a set of analytic expressions
that relate the indentation depth D with the applied vertical force
P, the contact radius a and the angle u. The dominant material
parameter is the shear modulus l at zero straining. For relatively
blunt cones, the analysis predicts that the indentation response
is very close to that predicted by linear elasticity. This unexpected
(approximate) result seems to be independent of the strain energy
density function, but is limited to blunt indentors. Our analytic re-
sults were of second order and were confirmed by finite elements.
Instrumented indentation tests with blunt cones (Lim and Chau-
dhri, 2004) support the present findings. As we increase u (sharper
cones), the macroscopic force-depth response becomes stiffer and
depends on the exact form of the strain energy density function.
Friction plays a small role to the macroscopic response of the blunt
indentors, but is very important for the sharp indentors.

It is not clear at this point whether the results for cone inden-
tors apply to pyramid indentors such as Vickers, Berkovich and
Knoop. We believe that the present results are approximately valid
for such cases as well. Regarding blunt pyramid indentors, the sec-
ond order analysis for the frictionless case leads to the linear elas-
ticity solutions given by Giannakopoulos (2006). Giannakopoulos
also showed experimentally that the imprint of a Knoop indenta-
tion on rubber follows the linear elasticity predictions.

We conclude that in order to solve the inverse problem, which
is finding the shear modulus l from the indentation test, we can
use blunt cones and the results of linear elasticity. If we are inter-
ested in more details of the strain energy density function, we have
to use sharper cones.
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