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Abstract 

Bruaset, A.M. and A. Tveito, RILU preconditioning; a computational study, Journal of Computational and 
Applied Mathematics 39 (1992) 259-275. 

We present a computational study of the RILU preconditioning strategy applied to finite-difference discretiza- 
tions of self-adjoint elliptic boundary value problems with highly discontinuous coefficients. The behaviour of 
the eigenvalues of the preconditioned system, the numerical stability of the factorization process and the 
efficiency of the preconditioning strategy are discussed. 
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1. Introduction 

In this paper we are concerned with the numerical solution of an elliptic partial differential 
equation of the form 

-v ’ (K(k Y) Vu(x, Y)) =f(x, Y), (1) 

combined with suitable boundary conditions. Here K is a strictly positive and bounded 
function. A standard finite-difference approximation of this equation leads to a linear system of 
the form 

Ax=b, (2) I 

where A E UP” is a symlqetric positive definite matrix and X, b E R”. Since A has only a few 
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nonzero diagonals, this system is well suited for solution by an itcrntivc method. For such 
methods a significant gain in efficiency is achieved when solving the equivalent system 

where the nonsingular matrix M E R”*” in a certain scnsc tlpproximates A 1 p nQ+-~~;,, wt; 

want the preconditioning matrii Aa’ +fi ?X +ai se, symmetric and positive definite. 
Over the past years incomplete LU factorizations have become very popular preconditioners 

for discretizations of elliptic partial differential equations. There are several reasons for this 
pularity. First of all they constitute efficient preconditioners with moderate storage require- 

ments, cf. [I,$] for a review of the convergence properties of these methods. Secondly, the 
methods seem to be robust, cf. [6,7] for self-adjoint problems and [Ii,121 for non-self-adjoint 
prcblems. Thirdly, these preconditioners are easy to implement for arbitrary sparsity patterns, 
cf. 1171. We refer to [l] for a general introduction to the theory of this field. For numerical 
experiments we refer to a comprehensive study [9], in which different preconditioning strategies 
based on incomplete block factorizations are compared. 

The purpose of this paper is to study the behaviour of the Preconditioned Conjugate 
Gradient (PCG) method as applied to linear systems of the form (2) arising from equation (1) in 
the case of highly discontinuous K-functions. In particular, we study the behaviour of the PCG 
method in conjunction with preconditioners based on the Relaxed Incomplete LU factorization 
(RILU) proposed in [2,3]. This preconditioning strategy is a combination of the Incomplete LU 
factorization (I! I.0 introduced in [18] and the Modified Incomplete LU factorization (MILU) 
suggested in [ 14-161, cf. also [lo]. The ILU factorization is computed by performing a naive 
Gaussian elimination, except that the fill-in generated during the elimination process is left out. 
In the MILU factorization the fill-in terms are added to the main diagonal. The RILU 
factorization combines these two approaches by multiplying the fill-in by a relaxation parameter 
w E [0, 11. Thus RILU with o = 0 is identical with the ILU algorithm and RIL’U’ w-f;h ti = 1 
gives the MILU algorithm ‘. 

The theory developed for these factorizations is mainly concerned with the case of constant- 
coefficient elliptic operators, cf. [S]. In this case it is well known that the MILU factorization 
reduces the spectral condition number of the coefficient matrix from @‘(h-‘) to @(h- ‘), thus 
for a given accuracy decreasing the number of iterations from @‘( n1i2) to 6’( n1i4). A similar 
reduction in the condition number is not present for the ILU factorization, but numerical 
experiments show a significant decrease in the number of iterations needed to achieve the 
specified accuracy also when using ILU. 

In Section 2 we formulate the RILU factorization algorithm for a family of test problems. In 
Section 3 we present the results of numerical experiments with the method. We discuss the 
question of fiuding an optimal value of w, and we present the spectral condition number K of 
M- ‘A for several grid sizes. On the basis of the computed values of K, we discuss the usefulness 
of the traditional convergence theorem for th,: PCG method. An alternative estimate intro- 
duced in [3] is also discussed. 

’ The MILU factorization as defined in [14-161 is applied to the perturbed coefficient matrix A + cl, where c >, 0 
usually depends on the grid size of the discretization. Using o = 1 in the RILU algorithm is identical to computing 
the MILU factorization of A itself, i.e., c = 0. 
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2. RILU factorization for the model problem 

We consider the following elliptic boundary value problem: 

c,u(x, Y) +%a,(& Y) =g(x, Y), (x, y) Elm. (3) 

Here In = [0, l] x [0, 11, 30 denotes the boundary of 0 and n is the unit outward normal 
vector. Throughout this paper we require K(x, y) to satisfy the inequality 

O<K,<K(x, Y)d&, +, Y)EG (4) 

where K, and K, are finite constants. 
We shall discretize (3) by a finlte-difference method on a uniform 4 x q grid. Depending on 

the boundary conditions we choose either a point-centered or a block-centered grid, cf. [19]. 
To begin with we look at problems with Dirichlet conditions on 30, i.e., cr = 1, c2 = 0. 

Figure 1 shows the point-centered grid which is used for such problems. Since the solution u is 
known in all boundary nodes, contributions from these nodes will only influence the right-hand 
side of (2). Thus we need to solve only for the inner nodes (Xi, y,), whele Xi = ih and yi = jh for 
i, j = 1, 2,. . . , q, and where h = l/(4 + 1). 

Denoting the finite-difference approximation to U(Xi, Yj) by Ui,j and letting Ki+r/z,j repre- 
sent K(xi+ l/29 Yj), we use the following difference approximations: 

1 
Yz --‘K. 

i,j h2 L ( . l+i/?,j ‘i+lJ - ui,j) - K,- 1/2,j(‘i,j - ui- l.j>] 7 

1 
z i[Ki,j+l,2(Ui.!+l -zti,j) -~~,j-.,;,2(Ui,j-‘i.j-*)]. 

i,j L ’ 

(5) 

These approximations give rise to a sparse linear system of equations of the form Ax = b of 
order N = q2, where the vector x contains the unknowns Ui,j, and where b contains contribu- 

Eig. 1. The point-centered grid for h = l/(q + l)= i. We want to compute the numerical solution to (3) for all nodes 
insidt: the dashed box. The remaining nodes ( 0) lie on the boundary S! and are subject to Dirichlet conditions. 



242 A.M. Bnraset, A. Twit0 / RlLUpreconditioning 

tions from the functions f and g in (3). The coefficient matrix is symmetric and has the form 
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(6) 

After scaling the matrix and right-hand side by h’, the matrix entries for the Dirichlet case are 
given by 

-Ki.j;l/29 i WV -Ki+l/2,jV i +qV 
aij = .= 

0, i=s, p- 0 
1-J 

( 9 i=q, 

Yi.j = Ki- 1,Z.j + Ki+ 1/2,j + Ki,j- l/2 + Ki,j+l/2. 

The indices i and j vary from 1 to (I, 
If Cl =OandcZ= 1 in (31, we have a Neumann problem. Just like in the Dirichlet case we 

can approximate the differential equa’rion in (3) using the finite differences (5), but we have to 
take some extra precautions due to the new boundary conditions. For such problems it is 
common to USC’ a block-centered grid as shown in Fig. 2. The nodes (Xi, Yj) in this grid have 
coordinates Xi = (i - i)h and y; = (j - i)h, i, j = 1,2,. . . , q, where h = l/q. The Neumann 

i 

t 
+h* 

&So 2,S" 3,5O 4,S" 

i,$ + 

h 

5,3O 
t 

5,2' 

5,1° 
c 
i 

Fig. 2. The block-centered grid for h = 1 /CJ = f . Using artificial nodes (0) placed outside R we are ab!e to 
implement the Neumann conditions by means of finite differences. 
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type boundary conditions can now be implemented as centered differences by introducing 
. . . . 

artifrcral nodes outside 0. In this- case the ~)a+- - ~-~~+TE zmtrix _A of the form (6) has the following 
entries: 

CY- .= 1 .I l -Ki,j+l/,9 j #:4, i + 49 .= -Ki+ i/&j 

0, j=q, 
P- 19’ 

t 0, 
. 
1= 43 (8) 

Y- .=- Q 
1.1 ( i,j-1 + Pi-l,j + Pi;j + “i.j)y 

for i, j = 1, 2,. . . , 4, where ai,o =pO,j = 0. 
One problem associated with the use of difference approximations like (5) is that we have to 

evaluate the coefficient function K in midpoints (Xi+ l/2, Yi) and (Xi, Yj+ i,& In many applica- 
tions the function K is known only in the nodes (Xi, Yj), and the values Ki+r/z,j and Ki,j+ 1,2 
have to be estimated by some procedure. Auother complicating factor is that K can have jump 
discontinuities. In such cases it is common to use harmonic mean values as K-values in the 
midpoints, 

Ki+ 1/2,j = 

2Ki,jKi+ 1,j 
K- . 

2Ki,jKi,j+ 1 

Ki,j + Ki+l,j ’ 
rJ+1/2 = < 

i,j + Ki,j+ly 
(9 

where Ki,j = K(xi, Yj). See [4] for more details. 
Now that we have a linear system of equations of the form Ax = b, we want to find the RILU 

factorization of A which can be user! qF __a a precondi&nzi in a combination with the PCG 
method. The general RILU algorithm is r&iy A. 

e 
accr;bed in [2], but we wii’l give u v vIvIv._ a rl-cbn which 

is adapted to problems where the coefficient matrii has the structure described above. 
Allowing fill-in from the elimination process only in the :: +tions corresponding to the five 
nonzero diagonals of A, the following algorithm wiii LM-Q-!C ble nonzero entries of the 
matrices A!. and E? such that A = LU - R. The sparsity structure of A is maintained in both L 
and U, 

Algorithm 1 (RZLU factorization of pentadiagonal matrices). Given a matrix A E Wn by (4). Let 
o E [0, 11. The RILU factorization is defined by the following algorithm. 

Cl,1 := Yl,l 

for i := 1 to q do 
:= P* Yil 

for f’:= 1 to q - 1 do 
begin 

for i := 1 to q - 1 do 
begin 

b i,j ‘= Pi,j/cij 

c- . r-k 1.1 := i-ii+ 1,j - bi,j(Pi,j + wai,j) 
a. . ‘= cYi,j/Ci,j 

Pi::+ 1 ‘= Yi,j+ 1 - ai,j(‘Yi,j + wpi,j) 

end 
b q,j ‘= p4,j/‘q.j 

‘l,j+ 1 ‘=Pl,j+l - bq,j(Pq,j + Ocyq,j) 

a . ‘= ‘y,,j/Cq,j 
q,J 
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Q+. := C! .I?” 
4.1’ - 4.1 

Pqj + 1 ‘= Yq. j + 1 - aq,j(aq,j + @Pq,j) 

end 
for i := 1 to q - 1 do 
begin 

b i.q ‘= isi,q/ci.q 
c i% 1.q ‘.= Pi% 1.q - 6,,q8i,q 

end 

For our model problem, the factors L and V computed by gorithm 1 have the form 
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. . 0 . 

. . k-z- 14 

0’ %, 
The subdiagonal entries of L not equal to zero are defined by 

ai j 
Qij q 

Ki.j+ l/2 
=-=- 

Cij ’ 

b _ Pi-i - 

i,J 
z-z 

i 

k’i+ 1,2-J 

C.. * 
i+4, 

‘i j 
1-J 7 

ci j . . 1 
0, 

. 
z= 49 

(10) 

. 

(12) 

for i, j = 1, 2,. . . , q. The nonzero superdiagonal entries of V, CQ and pi,i, are still given by (7) 
or (8) for Dirichlet and Neumann problems, respectively. 
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We are going to use M = LU as a preconditioner for the system (2), and we are therefore 
concerned with the existence and stability of RILU factorizations. Analyzing Algorithm 1, we 
observe that the only critical points in the _actorization process are when we calculate the 
fractions ‘yii/Ci,~ and Pi,j/ci,j. It is known that under mild restrictions on A we obtain Ci,j # 0, 
cf. [1,2,16,18]. Although this property implies the existence of RILU factorizations in a 
mathematical sense, we have no guarantee that the algorithm is numerically stable. The 
computations may break down due to overflow or underflow caused by ci,j assuming a very 
small or very large value. Inspired by these observations we use the following definition of a 
stable factorization. 

Definition 2. The RILU factorization of the model problem described by Algorithm 1 is called 
a stable factorization if there exist two constants c,, CM, 0 < c, < CM < 00, independent of the 
mesh size h such that 

Ci,jE [Cm9 CM], i, j= 1, 2,..-, 4. 

In [7] it is shown that the RILU factorization for o < 1 - 8th) applied to the Dirichlet case 
of our model problem with a smooth K-function is stable according to Definition 2. This result 
is in [6] extended to the general case of positive, bounded K-functions and all o E [O, I]. 

3. Numerical experiments with RILU 

In this section we will investigate the performance of the RILU preconditioner combined 
with the PCG method for four different test problems of the form (3). This combination of 
RILU and PCG is for easy reference denoted by RILUCG; 

We will not discuss details of the PCG method in this paper, for such information, see [13]. 
However, it should be mentioned that in all experiments we use X(O) = 0 as start vector, and 
unless otherwise stated the iterations are halted when 

II r’% < 4 r(“)l!2, (13) 
where E = lo-“, and rtk) = b - AXck) is the residual computed in iteration k. 

For all four test problems we solve the corresponding system of equations for several grid 
sizes h and for a number of different relaxation parameters w. In this way we estimate the 
optimal choice of o with respect to minimization of the number of iterations needed by the 
PCG algorithm. This optimal value will vary for each problem and grid size. Whenever the 
smallest number of iterations is achieved for more than one value of w, the optimal w is chosen 
as the value giving the least relative residual error in terms of (13). 

All solutions are computed on a RISC based DECstation 3100. If nothing else is said, all 
computations are done in double precision. 

3.1. Problem 1: Discontinuities along grid lines 

For a very simple test problem we apply the coefficient function 

K(x, Y) = 
4 (x, Y)E~‘= [$, fl x [$, $1, 

I, (x, Y)EO\fl’, 
(14) 
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Table I 
Number of iterations for Problem 1 

d=l d=103 --+105 --- - 

n = 5476 n = 10816 n=22201 n=5476 n= 10516 n= 22201 n=5476 n= 10816 n=22201 

0 35 49 69 60 81 114 75 103 142 

0.5 30 41 58 52 71 
0.9 22 29 41 36 50 
0.95 20 26 35 34 43 
0.96 20 25 34 33 42 
0.97 19 24 32 33 41 
0.98 18 23 30 32 40 
0.99 18 22 29 31 39 
0.991 18 * 22 28 31* 38 
0.992 18 22 * 28 31 38 
0.993 18 22 28 31 37 * 
0.996 19 22 26 * 31 37 
0.999 21 25 28 35 39 
1 23 28 35 32 43 

98 65 88 123 
66 45 63 86 
59 42 53 74 
58 41 52 72 
54 42 51 67 
51 39 * 51 63 
49 40 47 59 
48 40 46 57 
48 40 46 * 5s 
47 40 46 57 
45 * 41 4s 55 * 
46 45 51 61 
54 40 50 60 

Estimated optimal values of o are marked with the symbol *. 

for a given constant d. Furthermore, the right-hand side of (3) is set to f(x, y) = 1, and we let 
c* = 1, c-2 = 0 and g(x, y) = 0 giving homogeneous Dirichlet conditions on the boundary. We 
will use three different values of d including d = 1 which reduces the problem to the standard 
Poisson equation. 

For the particular problem given by (14) all discontinuities are along lines parallel to the x- 
or y-axis. This observation puts us in a position where we can easily construct a grid for which 
the discontinuities are located along grid lines. We achieve this effect by choosing q = 3m - 1 
for m E N. 

In Table 1 we list the number of iterations needed by RILUCG to find the solution with the 
accuracy requirements described above. The optimal parameter o = mopt marked with the 
symbol * is estimated for each combination of system size tz = q* and d. We note that as n 
increases, mopI tends towards o = 1 for all values of d. This observation coincides with results 
reported in [2]. It suggests that aopt = 1 - 6h for some positive constant 6, and for d = lo3 and 
E = 10V7 it is reported that 6 = 1.8. However, our experiments show clearly that the number of 
iterations increase only a small amount when using other o-values reasonably close to the 
optimal choice. In fact, o = 1 is a rather good choice, which can also reduce the number of 
multiplications in the RILU algorithm. 

Another noteworthy observation is that the number of iterations increases slowly as a 
function of n and d. It is quite remarkable that the number of iterations is only roughly 
doubled when the ratio KM/K, Azfined by (4) grows from 1 to 105. 

When using the PCG method, we know that the relative error measured in “A-norm” is 
reduced by a factor of E within 

iteratioirs, cf. [l]. Herz lcll is the preconditioning matrix and K( M- ‘A) is the spectral condition 
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number of W iiQ. This convergence estimate motivates a study of the condition number 
K(M-%) as a function of $ and n. Using a Lanczos method implemented in the LAS0 
package *, we have computed the extreme eigenvalues of M-IA for 6) = 0, w,_,*, 1. All 

computations are done in double precision on a Sun 4/260. The results are shown in Table 2. 
The numbers in parentheses are the actual values for wQpt used in each case. 

The most striking effect shown in Table 2 is that the condition number is huge when d is 
large and o < 1. On the other hand, for o = 1 the condition number is reasonably small, and is 
slowly increasing as a function of the jump d. Assuming that K( M- ‘A) = 8(P), we have used 
linear regression to estimate the growth rate ar for w = 0, 1 and fixed values of d. These results 
are given in the bottom rows of each part of the table. 

Restricting our attention to the largest value of n, we see a clear relation between the 
condition number and the values of d. For w = 0 and o = mopt = 0.996 the condition numbers 
K(iw-?td) grow at approximately the same rate as d. For o = 1 the behaviour is quite different. 
Increasing d from 1 to lo3 gives a modest rise in the condition number from 48 to 280. Going 
further and using d = 105, we get K(M’%I) = 284. 

From the numbers in Table 2 and the convergence estimate (15) we would expect w = 1 to 
be the optimal value. However, we have already observed that this is not the case. Also, since 
the real mopt is rather close to one, the large difference in condition numbers for w = tiopt and 
o = 1 is interesting. Using n = 5476 and o = wept = 0.99 the estimate (15) yields the maximum 
number of iterations k = 4468, which is an exaggerated figure compared to the actual number 
of iterations k = 31. This example shows that the traditional estimate is not very useful for 
problems involving variable coefficients with highly discontinuous behaviour. In general, ie we 
examine the distribution of eigenvalues of M?., we will find that some values in one or both 
ends of the spectrum are isolated from the rest. Under such circumstances PCG will converge 
faster than suggested by the traditional estimate. 

In [3] three corrected estimates depending on the shape of the eigenvalue distribution are 
proposed. Let S( M-‘A) = {Ai}i >, 1 denote the subset of disjoint eigenvalues of M- ‘A ordered in 
increasing order. Consider the following three nonuniform distributions of eigenvalues: 

S(fkPA)E[a,b]U ;A:, ( 1 i=l 

S(le4) E ; Ai u [a, b], ( 1 i=l 

b <A:, 

&<a, 

S(M-‘A) E ( 1 (Jhj u[a,b]u (JA;, ( ) h,<a<b<AL, 

i=l i=l 

where A:, i = 1, 2,. . . , s, denotes the s largest eigenvalues in decreasing order. Axelsson and 
Lindskog [3] derive corrected convergence estimates based on Chebysiiev polynomials for 
problems with an eigenvalue distribution of one of the forms (16)-( 18). For such distributions 
the corrected estimates are much more accurate than (15). Examining the eigenvalue distribu- 
tion for our model problem we find that the smallest eigenvalue is isolated from the rest, i.e., 
we have an eigenvalue distribution of the form (17). According to [3] we can then use the 

2 For d&ails about this package we refer to the LAS02 Documentation by D.S. Scott (Cornput. Sci. Dept., Univ. 
Texas, Austin). Both docmentation and source code are available from the NETLIB service. 
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Table 3 
A comparison of estimated and actual number of iterations for Problem 1 with fixed d = 10’ and fixed o = 0.99 

n 4 IlltlXihi Traditional 
estimate 

2500 2.35 - lo-’ 0.80572 8.66908 3008 
3481 1.69 - 1O-5 0.74684 8.74074 3562 
5476 1.08 - lo+ 0.64884 8.79047 4468 
7921 7.5 - 1V 0.5578 1 8.80667 5366 

10816 5.5 - 1o-6 0.47769 8.81204 6268 
22201 2.7 - lo-’ 0.30420 8.81465 8948 

Corrected Actual number of 
estimate (r = 1) iterations 

38 26 
40 27 
44 31 
48 34 
52 37 
68 46 

ctirrected estimate 

2 b 
k = In -+ kin h 

tE i=l i 
(19) 

where u = (1 - dq)/(l + ia>, and in our case r = 1. Table 3 compares the estimates (15) 
and (19) to the actual number of iterations for Problem 1 with fixed d = 10’ and fixed o = 0.99. 
For this purpose we halt the PCG iterations when 

II x - x’k’ll/ij < Eli x - x’“‘llA) 

where 3 the “A-norm” is defined by 11 x llA = (x~AX)~/* and E = 10v4. We see that the new 
convergence estimate gives reasonable results and is a dramatical improvement compared to 
the traditional estimate. 

3.2. Problem 2: Discontinuities along a circle 

In the previous problem we were able to construct a grid such that all discontinuities were 
located along grid lines. However, in general it can be quite difficult to construct such a grid. 
This is clearly seen if we choose the coefficient function 

K(x, Y) = 
d, (x, y)W={(x, y): (x+)‘+(y-;)*<$)r 

1, (x, Y)En\fl’, 
(20) 

where d = 103, 105. As in Problem 1 we use f(x, y) = 1, g(x, y) = 0, c1 = 1 and c2 = 0. 
Table 4 shows the number of iterations used by RILUCG. For comparison with the figures in 

Table 1 we have used the same grid sizes n as we did for Problem 1. It is evident that the 
optimal value of o does not differ significantly from the results reported in Table 1. However, 
in Table 4 the number of iterations for o = mopt has increased due to the fact that the 
discontinuities are no longer located along grid lines. Viewing the number of iterations as a 
function of d, we find that the increase is of the same magnitude as before. 

The most outstanding difference between the two tables is that while o = 1 was a reasonable 
choice in Problem 1, this value is definitely the worst possible in Problem 2. In particular, we 
note that the increase in iterations as we approach o = 1 is very sudden. Note also that for 

3 To get an estimate of x = rim1 L 
11 k 11 

u we soive the system requiring that II r “2 < lo-‘“II r” !I,. 
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Table 4 
Number of iterations for Problem 2 

0 d= IO3 

n = 5476 

d=lO” 

n = 10816 n = 22201 n = 5476 n = 10816 n = 22201 

0 
0.5 
0.9 
0.95 
0.96 
0.97 
0.98 

.99 
0.993 
0.994 
0.999 
1 

65 92 130 
57 80 114 
43 59 85 
39 53 75 
39 52 71 
39 51 68 
37 * 48 66 
39 47 * 59 
40 49 58 
41 47 57 * 
48 56 65 
96 143 222 

78 106 150 
68 32 132 
52 71 100 
48 65 90 
48 * 62 88 
48 62 83 
48 59 80 
51 58 * 74 
53 59 73 * 
53 61 73 
61 72 85 

174 280 466 

Estimated optimal values of o are marked with the symbol *. 

d = lo5 the amount of computational work can be reduced by a factor of six by using RILU 
with a proper value of o instead of MILU (i.e., o = 1). These observations suggest that the 
RILU preconditioner may be unstable with respect to perturbations in w. In Section 3.5 we will 
investigate the stability of the RILUCG method more thoroughly. 

3.3. Problem 3: Rectangular barn-en 

The general probleiii (3) can lead to a model applicable for 
flow of a single fluid in a heterogeneous medium. Let 

K(x, y) = I lo+, (X, y) Ed’= ; pi, 
i=l 

two-dimensional incompressible 

(21) 

where ai, i = 1,. . . , 5, are rectangular barriers with edges parallel to the x- and y-axis. These 
barriers, which in Fig. 3 are drawn with a dark pattern, represent zones of rock with lower 
permeability than the rest of the reservoir. In addition we apply the right-hand side f(x, y) = 0 
and the homogeneous Neumann condition given by g(x, y) = 0, c, = 0 and c2 = 1. The 
injection and production wells are implemented by specifying the value of the pressure tl(x, y) 
in two nodes: 

ZQ,~ =u($h, $h) = 1, 

U 
q-4 

=,(l-$h, l-$h)=O. (22) 

These two extra conditions impose some modifications on the coefficient matrix A defined by 
(6) and (8). On the main diagonal we will have y1 1 = yq q = 1, while the off-diagonal entries 
%~ aq,q-ly P 1.1 and /3,_ l,q are replaced by zeros. in addition, the right-hand side b in (2) is 
modified accordingly. 



A.M. Bruaset, A. Tueito / RIL U preconditioning 271 

X 

Fig. 3. The domain 52 for Problem 3. Inside the rectangular barriers n;, i ; 1,. .., 5, K(x, y) is set to 10T5, while 
K(x, y)= 1 elsewhere. 

Models similar to the one described above are used in [5,19]. 
As discussed in Section 2 we solve the boundary problem on a block-centered grid. Since we 

have rectangular barriers as shown in Fig. 3, we could find an h sufficiently small to place all 
discontinuities along grid lines. However, this would be very difficult or even impossible to do 
for more realistic problems where the barriers can have quite irregular shapes. We therefore 
find it natural not to exploit the regularity of the current problem so that our results will be 
comparable to the results obtained for a more complex geometry. 

From Table 5, which shows the number of iterations needed by RILUCG for Problem 3, we 
see that tiOpt is in this case very close or even equal to one. This observation conforms with the 

Table 5 
Number of iterations for Problem 3 

w n = 4900 n = 10000 n = 22500 

0 137 198 298 
0.5 117 167 252 
0.9 80 115 172 
0.95 69 97 147 
0.96 66 93 139 
0.97 63 88 130 
0.98 58 80 118 
0.99 52 71 101 
0.999 33 46 66 
0.9999 28 * 34 * 45 
1 30 36 45 +. 

Estimated optimal values of w are marked with the symbol *. 
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X 

Fig. 4. The domain J2 for Problem 4. Inside the curved barriers fli, i = 1,. . . , 5, K(x, y) is set to 10e5, while 
K(x, y) = 1 elsewhere. 

tendency we saw in the case of Problem 1, even though the effect is stronger for the current 
problem. For practical purposes one would probably choose the relaxation parameter w = 1 
independent of n. We also note that increasing n from 4900 to 22500 gives a moderate growth 
of approximately 61% in the number of iterations for o = wept. 

3.4. Problem 4: Curued bawiers 

When discussing the modelling properties of the previous problem we mentioned that a real 
reservoir problem would not necessarily have rectangular barriers. In this section we will study 
a problem with curved barriers. We still define the coefficient function by (21), but now 
J2i, i = 1, l l l ) 5, are the curved barriers shown in Fig. 4. As before we use f(x, y) = g(x, y) = 0, 
c,=Oand c2= 1. Injection and production are still implemented by the two conditions in (22). 

Using the same grids and preconditioners as for the previous problem we find the iteration 
counts listed in Table 6. Optimal values for w are still close to one, but not as close as in the 
case of rectangular barriers. We see that mopt approaches one as h tends to zero. 

Comparing Problems 3 and 4 we see that the number of iterations has increased in the latter 
case. The increase in iterations as a function of n is also larger in this case, increasing n from 
4900 to 2’500 gives a growth of 81% in the number of iterations for o = mopt opposed to 61% 
for Problem 3. However, the most remarkable effect introduced by allowing curved barriers is 
that w = 1 is no longer a good choice. In fact, this parameter value is nearly as bad as the worst 
case 0 = 0. It would obviously be unwise to use the simple poblem with rectangular barriers to 
estimate an optimal w for practical reservoir simulations where the coefficient K(x, y ) can 
have almost random behaviour. 



A.M. Bruaset, A. Tceito / RIL U preconditioning 

Table 6 
Number of iterations for Problem 4 

273 

0 n = 4900 n = 10000 n = 22500 

0 139 199 301 
0.5 118 170 257 
0.9 84 121 185 
0.95 74 105 161 
0.96 72 102 153 
0.97 69 96 145 
0.98 65 90 135 
0.99 61 83 120 
0.999 52 * 69 96 
0.9995 53 66 * 96 
0.9997 55 68 94 * 
0.9999 62 75 103 
1 133 182 346 

Estimated optimal values of w are marked with the symbol *. 

3.5. Numerical instabilities 

When discussing Problems 2 and 4, we mentioned that the number of iterations used by 
RILUCG increases very sudden as cc) tends to one. This indicates that the RILU precondi- 
tioner is unstable with respect to perturbations in W. In this section we will study this problem 
by comparing two implementations of RILUCG numerically. In the previous computations all 
floating-point operations are carried out in double-precision arithmetic. We will now use the 
same programs except that all calculations in the RILU and PCG algorithms are done in single 
precision. To assure that we solve identical problems in both cases, we still use double precision 
when building the coefficient matrix A. The convergence criterion is as described above, cf. 
(13). 

As previously discussed, the interesting values of o are close to one. We will therefore 
restrict o to the interval [0.96, 11. We also fix n to the largest value for each problem, i.e., 
n = 22201 for Problems 1, 2 and n = 22500 for Problems 3, 4. For the two first problems d is 
fixed at 105. The numbers of iterations used by the two implementations are shown as functions 
of w in Fig. 5. Results obtained with single precision are marked with dashed lines, while the 
solid lines represent the double-precision computations. 

When looking at the curves for Problems 1 and 2, we see that the single-precision solver 
needs a considerably larger number of iterations to reach convergence than its double-precision 
equivalent. This is in particular true for o = 1, e.g., for Problem 2 the difference is 849 
iterations. We also observe that the iteration counts in the case of single precision oscillate for 
these problems. The double-precision solver gives results of a much more monotone behaviour. 
As far as monotonity is concerned, the two implementations give almost identical results for 
Problems 3 and 4. However, there is still a significant difference between the two solvers when 
w reaches one. This difference is again largest when it comes to a problem where the 
discontinuities do not coincide with grid lines. 

We would like to make sure whether the effects reported above are caused by the RULJCG 
method or are a result of a particular implementation of computer arithmetics. TO check this, 
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Fig. 5. A comparison between iteration counts obtained with single- and double-precision implementations of 
FULUCG. Dashed lines represent the single-precision computations, while results from the double-precision solver 

are marked with solid lines. The symbol 0 indicates the number of iterations needed for o = 1. 

we have performed all computations in this section on two different computers and compared 
the results. For every combination of test problem scd floating-point representation the 
numbers of iterations used on a DECstation 3100 are identical to the iteration counts obtained 
with a Sun 4/250. This observation strongly indicates that the effects summarized in Fig. 5 are 
due to the chosen method and are independent of the hardware platform for which this 
method is implemented. 

4. Conclusions 

We have presented a csmputational St&;.’ of the RILU preconditioning strategy applied to 
finite-difference discretizations of four test problems of the form (9, where the coefficient 
function K(x, y) has a highly discontinuous behaviour. In all cases thkX RILU factorizations are 
stable in the sense of Definition 2, and can be used as preconditioners. We have experienced 
that the traditional convergence estimate for PCG is not of much use for our type of problems, 
and that corrected estimates adapted to the eigenvalue distribution of the preconditioned 
difference operator are preferable. 

From a practical point ot view it is interesting to know if we increase the efficiency of the 
prczdnditioner by introducing the parameter W. We have observed 6lat the proper choice of w 
seems to reduce the number ST Iterations. In fact, for one test problem we have seen a 
reduction ir! the number of iterations by a factor of six. Thus we conclude t!~i thrr; are 
problems for which RILLJ with optimal w is more efficient than th< iLU (o = 0) and MILU 
(o = 1) preconditioners. 
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A disadvantage of RILU is that the optimal parameter value mOpt has to be estimated. This 
is a highly nontrivial task due to the fact that RILUCG is numerically unstable with respect to 
perturbations in m. We have shown numerically that when o = 1, the number of iterations can 
vary significantly with small changes of o. Another effect that should be noted is that the 
behaviour of RILUCG is highly dependent on whether we use single- or double-precision 
variables when implementing the method. The number of iterations is in general larger for 
single thaz for double precision, and the actual value of wOP, can be quite different in the two 
implementations. This also indicates that an analytical estimate, if such could be derived, would 
be of limited practical use. 

In all cases we have seen that tiOpt is close to one. However, one should not be tempted to 
uncritically use w = 1 as we have examples where this value is among the worst-possible 
choices. 
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