Dehydration-inducible changes in expression of two aquaporins in the sleeping chironomid, *Polypedilum vanderplanki* ☆

Takahiro Kikawada¹, Ayako Saito¹, Yasushi Kanamori, Mika Fujita, Katarzyna Śnigórska ², Masahiko Watanabe, Takashi Okuda *

Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634 Japan

Received 19 June 2007; revised 2 November 2007; accepted 7 November 2007

Available online 22 November 2007

Abstract

Aquaporin, AQP, is a channel protein that allows water to permeate across cell membranes. Larvae of the sleeping chironomid, *Polypedilum vanderplanki*, can withstand complete dehydration by entering anhydrobiosis, a state of suspended animation; however, the mechanism by which water flows out of the larval body during dehydration is still unclear. We isolated two cDNAs (*PvAqp1* and *PvAqp2*) encoding water-selective aquaporins from the chironomid. When expressed in *Xenopus* oocytes, *PvAQP1* and *PvAQP2* facilitated permeation of water but not glycerol. Northern blots and *in situ* hybridization showed that expression of *PvAqp1* was dehydration-inducible and ubiquitous whereas that of *PvAqp2* was dehydration-repressive and fat body-specific. These data suggest distinct roles for these aquaporins in *P. vanderplanki*, i.e., *PvAqp2* controls water homeostasis of fat body during normal conditions and *PvAqp1* is involved in the removal of water during induction of anhydrobiosis.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Aquaporin; Anhydrobiosis; *Polypedilum vanderplanki*; Water transport; Desiccation-resistance; Desiccation-avoidance; Desiccation-tolerance; Dehydration-inducible gene; Dehydration-repressible gene

1. Introduction

Water is obviously one of the most fundamental molecules for all organisms to live. Two distinct strategies have evolved to cope with a water deficiency. One involves physiological and morphological adaptations to reduce water loss, i.e. a “desiccation-avoidance strategy”. The African lungfish, for example, constructs a waterproof cocoon with mucus to prevent over-dehydration [1]. The other involves withstanding a dehydrated state, i.e., a “desiccation-tolerance strategy”. An extreme example for the latter strategy is anhydrobiosis, when metabolic activity is reversibly at a standstill upon almost complete dehydration [2], seen in organisms such as orthodox seeds, bacteria, yeast, nematodes, and tardigrades [3].

The sleeping chironomid, *Polypedilum vanderplanki*, which inhabits temporary rock pools in semi-arid regions in Africa, is one of the largest anhydrobiotic animals known [4,5]. For successful entry into anhydrobiosis, the rate of dehydration is of importance, i.e., slow dehydration over 48-h is required in the laboratory [6,7]. In our procedure, water content decreases gradually from ca. 80% to 75% during the first 16 h, is maintained at the level over the succeeding 16 h, and then rapidly reduced to less than 3% during the last 16 h of the desiccation process [6]. The molecular mechanisms associated with such a drastic change in water content in *P. vanderplanki* larvae are obscure.

Water slowly permeates across the phospholipid bilayer of the cell membrane by simple diffusion; however, aquaporin (AQP), a passive transport channel for water, facilitates the permeation process [8]. AQPs are widespread in almost all organisms, and the structure forming 2 tandem repeats each
containing 3 membrane-spanning domains connecting 5 loops (Loop A–E) is highly conserved [9]. Loops B and E have signature NPA (Asn-Pro-Ala) motifs [10] which are located in steric contiguity with the ar/R (aromatic/arginine) constriction region formed by four amino acids (Phe-56, His-180, Cys-189 and Arg-195 in human AQP1) [11]. In particular, Phe, His and Arg are highly conserved in orthodox AQPs. The NPA motif and ar/R region are involved in size selectivity for substrates and proton exclusion. AQPs are classified into two subgroups: water-selective aquaporins (substrate: water only) and aquaglyceroporin (substrates: water, glycerol, urea, CO2 gas, etc) [12–15].

In insects, molecular cloning of AQP genes has been reported from Cicadella viridis (AQPic) [16], Rhodnius prolixus (Rp-MIP) [17], Haematobia irritans exigua (BWCI1) [18], Aedes aegypti (AeaAQP) [19], Pyrocoelia rufa [20], and Drosophila melanogaster (Drip, BiB) [21]. By altering activity, tissue-distribution and expression of these AQP isoforms, homeostasis of water content is maintained in response to internal and/or external environmental change. It is therefore probable that AQPs play important roles in the desiccation process en route to anhydrobiosis.

2. Results

2.1. Cloning of PvAQP1 and 2 cDNAs

To obtain AQP genes from *P. vanderplanki*, we carried out RT-PCR using cDNA from larvae desiccated for 12 h. We used degenerate primers designed from conserved regions such as the

![Fig. 1. Comparison of amino acid sequences for PvAQP1, PvAQP2, and orthodox AQPs (human AQP1, human AQP2, rat AQP4 and spinach AQP (SoPIP2;1)). Green boxes indicate the spanning region revealed by crystal structure analysis. Blue boxes indicate the spanning region predicted by the TMpred. Orange boxes indicate amino acids residues constituting the ar/R constriction region. Purple boxes indicate the NPA motif. Orange ovals are phosphorylation sites. Open orange ovals are potential phosphorylation sites in PvAQP1 and PvAQP2. Purple oval is the His residue involved in capping.](image-url)
NPA motif (PvAQP1-F1) and 6th-transmembrane (TM-6) region (PvAQP1-R1), resulting in specific amplification of predicted 450-bp fragments. After performing 5′- and 3′-RACE, we acquired a full-length cDNA clone designated as \(\text{PvAqp1} \) (cDNA: 1227 bp; deduced protein: 261 amino acids, 27.8 kDa). The overall homology between \(\text{PvAQP1} \) and \(\text{PvAQP2} \) was 33.2%. By Pfam search (http://www.sanger.ac.uk/Software/Pfam), both \(\text{PvAQPs} \) possessed a MIP superfamily domain. TMpred (http://www.ch.embnet.org/software/TMPRED_form.html) predicted that both \(\text{PvAQPs} \) possess 6 transmembrane helices with the N- and C-termini located on the cytosol side. A potential N-glycosylation site is located in loop C (Asn-117 for \(\text{PvAQP1} \); Asn-123 for \(\text{PvAQP2} \)). Moreover, both \(\text{PvAQPs} \) contain the NPA motif in loop B and E. The amino acids forming the ar/R constriction region also exist in \(\text{PvAQP1} \) (Phe-56, His-181 and Arg-196) and in \(\text{PvAQP2} \) (Phe-48, and Arg-189 except for Ala-174 instead of His) (Fig. 1). These characteristics indicate that the structures of \(\text{PvAQP1} \) and \(\text{PvAQP2} \) correspond well with conserved regions of other AQPs.

2.2. Activity of \(\text{PvAQP1} \) and \(\text{PvAQP2} \) proteins

To confirm the biological activity of the \(\text{PvAQPs} \), we performed a swelling assay using a \(\text{Xenopus} \) oocyte expression system. Both \(\text{PvAQP1} \) and \(\text{PvAQP2} \) showed more than 6-fold higher water transport activity than control water-injected oocytes (sham treatment) (Fig. 2A). The water transport activity was completely inhibited by 3 mM \(\text{HgCl}_2 \), and was restored by a reducing agent, 5 mM 2-mercaptoethanol, as well as by injection of human \(\text{AQP2} \) (hAQP2) (Fig. 2B). From an Arrhenius plot of osmotic water permeability (\(P_f \)) at 0° and 20 °C, the apparent activation energy (\(E_a \)) for \(P_f \) was 12.4 and 14.4 kJ/mol (=3.0 and 3.4 kcal/mol) for \(\text{PvAQP1} \) and \(\text{PvAQP2} \), respectively, whereas it was 51.3 kJ/mol (=12.3 kcal/mol) for sham injection (data not shown), indicating that water movement across the cellular membrane when expressing \(\text{PvAQP1} \) or \(\text{PvAQP2} \) is faster than the simple diffusion. However, neither \(\text{PvAQP} \) could facilitate permeation of glycerol (Fig. 2C). These results strongly indicate that \(\text{PvAqp1} \) and \(\text{2} \) encode water-selective aquaporins.
2.3. Expression of PvAqp1 and 2 mRNA

To analyze changes in expression patterns of PvAqp1 and 2 genes during desiccation, we carried out Northern blot hybridization. A low level amount of PvAqp1 mRNA was present in normal hydrated larvae, but it started to accumulate at 6 h of desiccation and reached a plateau at 12 h (Fig. 3, left). On the other hand, a significant amount of PvAqp2 mRNA was present in normal hydrated larvae, but it decreased and reached a minimum level at 6 h of desiccation (Fig. 3, left). We previously demonstrated in P. vanderplanki that hypersalinity can mimic desiccation in terms of trehalose synthesis and induction of transcription for desiccation-inducible genes such as PvLea1, PvLea2, PvLea3 [22] and PvTret1 [23]. Expression patterns of PvAqp1 and PvAqp2 genes after NaCl treatment corresponded well with those after desiccation (Fig. 3, right).

Fig. 4. PvAqp1 is expressed ubiquitously in desiccating larva whereas PvAqp2 is expressed in the fat body before desiccation. In situ hybridization using specific antisense or sense probes for PvAqp1 or PvAqp2 in cross sections at middle of the larva before (0 h) or at 24 h of desiccation (24 h). Ep: epidermis; FB: fat body; Mg: midgut; Mu: muscle.
supporting our hypothesis that desiccation stress and salinity stress promote a common signal transduction system in \textit{P. vanderplanki}.

We also investigated the tissue-distribution of \textit{PvAqp1} and \textit{PvAqp2} mRNAs by \textit{in situ} hybridization. Using an antisense probe for \textit{PvAqp1}, significant signals were detected in almost all tissues including epidermis, midgut, fat body and muscle at 24 h of desiccation, but were undetected before desiccation (Fig. 4, upper). In contrast, using an antisense probe for \textit{PvAqp2}, significant signals were detected only in fat body before desiccation, but were no longer detectable at 24 h of desiccation (Fig. 4, lower). Such differences in the expression patterns on dehydration and the tissue-specificity suggest that \textit{PvAQP1} and \textit{PvAQP2} play distinct physiological roles in \textit{P. vanderplanki}.

3. Discussion

In this paper, we reported cloning of \textit{PvAqp1} and \textit{PvAqp2} cDNAs encoding 6-transmembrane proteins containing 2 of NPA motifs and the ar/R region, a structure typical of AQP. Using a \textit{Xenopus} oocyte expression system, we demonstrated that \textit{PvAQP1} and \textit{PvAQP2} reduced \textit{Ea} showing that water but not glycerol passes through the cell membrane, indicating that they are water-selective AQPs. Expression of \textit{PvAqp1} was ubiquitous and dehydration-inducible whereas that of \textit{PvAqp2} was fat body-specific and repressed during dehydration.

The ar/R constriction region forms a selective pore by substrate size exclusion [13,24,25]. In other words, a mutation in the ar/R constriction region that expands the pore causes an alteration in substrate selectivity. Indeed, in aquaglyceroporin, a His residue in the ar/R constriction region is usually replaced by a Gly residue [26]. The ar/R constriction region in \textit{PvAQP1} is consistent with a typical water-selective AQP such as human AQP1 (Fig. 1). On the other hand, in \textit{PvAQP2}, in which the position equivalent to His is replaced by Ala, the constriction accorded imperfectly with the typical ar/R region. This observation implies that the size of the hole of \textit{PvAQP2} may be wider than that of a typical AQP. However, analysis of point mutations in the ar/R region of rat AQP1 showed that replacement of His-180 by an Ala residue (AQP1-H180A) allows water but not urea and glycerol to pass [25]. Therefore, the minor discordance in the ar/R region in \textit{PvAQP2} does not contradict the experimental result that \textit{PvAQP2} is a water-selective AQP.

Both \textit{PvAQP1} and \textit{PvAQP2} showed mercury-sensitive properties. \textit{HgCl}_2 binds to cysteines of the AQP protein, leading to steric occlusion of the water pore structured by the 6-spanning domains and the two conserved NPA motifs [10]. In \textit{PvAQP1}, of 6 cysteine residues, Cys-73 lies adjacent to an NPA motif in the amino-terminal half, and the other Cys residues (Cys-39, Cys-42, Cys-102, Cys-153 and Cys-158) are present in spanning regions. In \textit{PvAQP2}, of 7 cysteine residues, all (Cys-13, Cys-27, Cys-30, Cys-45, Cys-147 and Cys-148) except for Cys-121 are located in the spanning regions. Therefore, \textit{Hg}^{2+} should bind to some cysteine residues in the vicinity of the water pore, causing the inhibition of \textit{PvAQP1} and \textit{PvAQP2} water transport activity.

Insect AQPs as well as those in other organisms including mammals and plants show histotypic expression to control the water content of each tissue. For example, \textit{AeaAQP} is expressed in tracheolar cells show histotypic expression to control the water content of each tissue. For example, \textit{AeaAQP} is expressed in tracheolar cells involved in water movement in the respiratory system [19], AQPcic is expressed in the filter chamber to modulate water elimination [27], Rp-MIP is specifically expressed in Malpighian tubules (MT) involved in urine formation [17], and Drip is also expressed in both embryonic and adult MT [21]. Hence, a difference in expression patterns between \textit{PvAqp1} and \textit{PvAqp2} genes may imply distinct physiological roles in \textit{P. vanderplanki}: \textit{PvAQP1} is involved in the discharge of water from whole body during induction of anhydrobiosis whereas \textit{PvAQP2} probably regulates water balance in fat body cells during normal conditions. Like other organisms, other AQP isoforms may be expressed in other tissues than fat body under normal conditions.

Integumentary structure of insects is composed of both living (epidermal) and non-living (cuticle) layers. The cuticle of many aquatic insects emphasizes its role for water permeability more than barrier to water loss [28]. As shown in Fig. 2, \textit{PvAQP1} provides more than 6-fold water permeability to cells, and \textit{PvAqp1} expression is ubiquitous, including epidermal cells (Fig. 4). We therefore assume that \textit{PvAQP1} may enhance trans-epidermal cellular movement of water, supporting smooth water loss from the larvae.

In \textit{P. vanderplanki} larvae, upon desiccation, water content decreases gradually to approximately 75% in 16 h of desiccation; this might be explained by residual activity of degrading aquaporins, including \textit{PvAQP2}. Although an effect of vapor pressure could be certainly involved for the dehydration rate, water outflow from the larva almost stops between 16 h and 32 h of desiccation and subsequently reactsivates after 48 h of desiccation [6]; however, accumulation of \textit{PvAqp1} mRNA increased from 6 h of desiccation and reached a plateau after 12 h of desiccation. One possible mechanism to explain the time lag is phosphorylation, which leads to regulation of AQP, causing trafficking or gating. For example, human AQP2 is translocated from intracellular storage vesicles to the apical plasma membrane by phosphorylation with protein kinase A (PKA) or protein kinase C (PKC), rendering the cell water permeable (Fig. 1) [29,30]. In spinach aquaporin, SoPIP2;1, phosphorylation of serine residues surrounding the pore generates opening of the gate (Fig. 1) [31,32]. \textit{PvAQP1} also has potential phosphorylation sites such as Ser-242 for PKC, and Ser-233 and Ser-249 for casein kinase II. Indeed, phosphorylation cascade including PKC is activated during desiccation in the larvae (K.-I. Iwata, \textit{et al.}; unpublished data). Phosphorylation of these sites may govern the activity of \textit{PvAQP1}, resulting in a time lag.

In the desiccating larvae, a large amount of trehalose is accumulated [7,33] to be distributed in whole cells, and eventually vitrified (M. Sakurai, \textit{et al.}; submitted) to protect bio-molecules and cells from its denaturation caused by dehydration. \textit{In vitro}, a faster rate of dehydration of aqueous trehalose solution causes glass of trehalose anhydride whereas a slower rate leads to the formation of a polymorphic crystalline phase (a) of anhydrous trehalose [34], which is no longer able to
act as an anhydro-protectant. The expression of PvAQP1 responsible for a faster rate of dehydration may be favorable to achieve successful anhydrobiosis of *P. vanderplanki*. Furthermore, PvAQP1 might contribute to protect cells against osmotic damage while they are synthesizing large concentrations of trehalose, and facilitate water uptake during rehydration.

To combat dehydration, organisms must adopt strategies such as tolerance or avoidance, or both. Changes in water content of *P. vanderplanki* larvae during desiccation show that they first endeavor to reduce water loss from the body, followed by drastic dehydration, indicating that the strategy switched from avoidance to tolerance against desiccation en route to anhydrobiosis. For *P. vanderplanki*, it appears that PvAQP1 is a “desiccation-tolerance” aquaporin whereas PvAQP2 is a “desiccation-avoidance” aquaporin. However, the actual roles of PvAQP1s in vivo remain to be clearly understood. Therefore, we are undertaking RNA interference of *PvAqp1* and *PvAqp2* to evaluate their physiological roles and demonstrate their effect on water flow from the larval body. We expect that an investigation of this water-gate will be a key to reveal the plot underlying the mechanism of anhydrobiosis in *P. vanderplanki*.

4. Materials and methods

4.1. Insect

P. vanderplanki larvae were reared on milk agar under controlled light (13 h light: 11 h dark) at 27° to 28°C. A procedure for desiccation to induce anhydrobiosis was previously described [33]. Briefly, 8 larvae were placed on filter paper with 0.44 ml of distilled water in a glass Petri dish (diameter 65 mm, height 20 mm), which was set in a desiccator (20×20×20 cm) with 1 kg of silica gel. The larvae were incubated in MBS buffer (88 mM NaCl, 1.0 mM KCl, 0.3 mM Ca(NO3)2, 0.41 mM CaCl2, 0.82 mM MgCl2, 2.4 mM NaHCO3, 10 μg/ml penicillin, 10 μg/ml streptomycin, 15.0 mM Tris–Cl, pH 7.6) at 15° C for 72 h, and then subjected to a swelling assay. Osmolarity in the buffer was measured with an osmometer (OM802-D; Vogel, Germany). Osmotic water permeability was measured according to Preston et al. [8]. Briefly, the oocytes were transferred from 210 mOsmol/l to 70 mOsmol/l MBS buffer and oocyte swelling was monitored at 15 s intervals for 3 min at 20° C by videomicroscopy. To estimate oocyte volume, the image data were analyzed with NIH-Image (ver.1.62) or ImageJ (ver.1.33) software. The osmotic water permeability coefficient (P0, in μm/s) was calculated by the equation:

\[
P_0 = \frac{dV}{dt}/[S \times V_o \times \Delta osm]
\]

where \(V_0\) is the initial volume of the oocyte (9×10^{-4} cm^3), \(S\) is the surface area of the oocyte (0.045 cm^3), \(V_o\) is the molecular volume of water (18 cm^3/mol), \(\Delta osm\) is the difference of osmolarity between the inside and the outside of the oocyte (140 mOsmol/l) and \(d(V/V_o)/dt\) is the initial rate of oocyte swelling.

For the Arrhenius analysis, we performed swelling assay at 0 and 20° C. The apparent activation energy (\(E_a\)) was calculated by the equation:

\[
\ln(P_0) = -\frac{E_a}{R} \times \frac{1}{T} + \ln(A)
\]

where \(R\) is the gas constant (8.31 J/K/mol), \(T\) is the temperature (in Kelvin), and \(A\) is the pre-exponential factor.

For glycerol uptake assays, cRNA-injected oocytes were incubated at the ambient temperature in MBS buffer with 1 mM glycerol containing 37 kBq/ml of [1,3-14C] glycerol (specific activity: 1.48 GBq/mmol; American Radiolabeled Chemicals) for 15 min, rapidly rinsed 3 times in ice-cold MBS, solubilized with Soluen-350 (Perkin Elmer) at 60° C overnight, and the radioactivity measured by liquid scintillation counting.

4.5. Northern blot analysis

Total RNA was isolated from dehydrating larvae with TRIzol (Invitrogen). Northern blot analysis was performed as previously reported [22].

4.6. In situ hybridization

In situ hybridization was performed as previously reported [23]. Briefly, 6-μm thick paraffin-embedded sections were prepared from larvae before (0 h) or 24 h of desiccation. Antisense or sense probes for *PvAqp1* and *PvAqp2* were designed based on sequences from position 664 to 929 and from position 350 to 686, respectively, and labeled using a digoxigenin (DIG) RNA Labeling Kit (Roche). Hybridization was carried out at 60° C in the Probe Diluent (Genostaff, Japan). Sections were treated with anti-DIG AP conjugate antibody (Roche) at room temperature and visualized with BM purple AP substrate (Roche). Nuclei were counterstained with Kernechtrot stain solution (Muto Pure Chemicals, Japan).

Acknowledgements

We thank Prof. S. Sasaki and Dr. M. Kuwahara (Tokyo Medical & Dental University) for providing a pXG-ev1 expression vector containing the human AQP2 gene, Dr. K. Kawabata (National Institute of Agrobiological Sciences) for cooperating in start-up of Xenopus oocyte expression system,
and Dr. M. Azuma (Tottori University) for providing valuable informations for cloning of Aqp cDNA. We also thank Profs. M. R. Goldsmith (University of Rhode Island) and M. Sakurai (Tokyo Institute of Technology), and Drs. Y. Nakahara, K.-I. Iwata, R. Cornette (National Institute of Agrobiological Sciences) and T. Furuki (Tokyo Institute of Technology) for giving critical and fruitful comments to this manuscript. This work was supported in part by the Promotion of Basic Research Activities for Innovative Bioscience (PROBRAIN), and by a Grant-in-Aid (Bio Design Program) from the Ministry of Agriculture, Forestry and Fisheries of Japan.

References