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Abstract

Temporal reasoning has always been a major test case for knowledge representation formalisms. In this paper, we develop an
inductive variant of the situation calculus in ID-logic, classical logic extended with inductive definitions. This logic has been
proposed recently and is an extension of classical logic. It allows for a uniform representation of various forms of definitions,
including monotone inductive definitions and non-monotone forms of inductive definitions such as iterated induction and induction
over well-founded posets. We show that the role of such complex forms of definitions is not limited to mathematics but extends to
commonsense knowledge representation. In the ID-logic axiomatization of the situation calculus, fluents and causality predicates
are defined by simultaneous induction on the well-founded poset of situations. The inductive approach allows us to solve the
ramification problem for the situation calculus in a uniform and modular way. Our solution is among the most general solutions
for the ramification problem in the situation calculus. Using previously developed modularity techniques, we show that the basic
variant of the inductive situation calculus without ramification rules is equivalent to Reiter-style situation calculus.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

ID-logic1 [5,8,10] is an extension of classical logic with inductive definitions (ID). In mathematical texts, inductive
definitions are usually represented as collections of rules, which represent the base case and inductive cases. Inductive
rules may be monotone or non-monotone. An example of the latter is the following rule in the definition of the truth
relation |=:

I |= ¬ψ if I �|= ψ,

which states that I satisfies ¬ψ if I does not satisfy ψ . It is well known that in general, inductive definitions cannot
be represented in first-order logic (FO). ID-logic extends classical logic with a construction that allows for a uniform
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1 The term ID-logic was introduced by the first author in [5] to denote a logic of sets of classical first-order logic sentences and definitions.
This logic was extended to its current definition in [8] and in [7], where it was called NMID-logic in order to emphasize that the logic deals with
non-monotone inductive definitions (NMIDs).
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representation of different sorts of inductive definitions; moreover, this representation preserves the rule-based nature
of definitions in mathematical texts. The semantics of this new construct is based on the well-founded semantics of
logic programming [41]. This semantics correctly formalizes the semantics of different types of definitions that can
be found in mathematics, e.g. recursion-free definitions, monotone inductive definitions, and non-monotone inductive
definitions such as inductive definitions over well-founded orders and iterated inductive definitions [4,6].

ID-logic occupies an interesting place in the spectrum of logics used in mathematics, computer science and knowl-
edge representation. As an extension of classical logic with a fixpoint semantics for inductive definitions, it can be
viewed as a new element in the family of fixpoint logics. Monotone fixpoint logics have their origin in the logical
study of monotone inductive definitions [1,28]. The contribution of ID-logic is that it formalizes two non-monotone
inductive principles (i.e., inductive definition over a well-founded order and iterated inductive definition), which differ
from the non-monotone principle based on the inflationary fixpoint studied in the inflationary fixpoint logic IFP [16].
ID-logic is similar to description logics [2] in its separation of definitional and assertional knowledge, but it allows
definitions for n-nary predicates and non-monotone inductive definitions. In addition, ID-logic is formally an exten-
sion of Logic Programming and its variants such as Abductive Logic Programming and Datalog. In this way, ID-logic
induces an alternative informal semantics for logic programming, solidly based on the mathematical principle of in-
ductive definitions. As such, the study of semantical and computational aspects of ID-logic can lead to synergy and
integration of all these different areas.

On the computational level, ID-logic has recently been proposed as the underlying language for a constraint pro-
gramming framework [27]. This framework is based on ideas from descriptive complexity theory and is similar in
some respects to Answer Set Programming [20,29]. A problem instance is a finite structure, and a problem specifica-
tion is an ID-logic formula defining the relationship between an instance and its solutions. Solving a problem amounts
to expanding the structure with new relations to satisfy the formula. Depending on the expressiveness allowed, the
framework captures various complexity classes, including P and NP. Several ID-logic solvers have been developed
[21,30].

The focus of this paper is on knowledge representation and modeling in ID-logic. Although diverse forms of
inductive definitions occur frequently in mathematics, there is little awareness in the logic and KR community of
non-monotone forms of inductive definitions and of the potential role of inductive definitions for knowledge repre-
sentation. Thus, a central aim of this paper is to clarify and illustrate these types of definitions. We provide examples
of monotone definitions, definitions by induction over well-founded order and iterated inductive definitions and relate
these to other knowledge representation principles such as completion and circumscription. Moreover, we show that
the role of these complex forms of definitions is not limited to mathematics but extends to commonsense knowledge
representation.

A second major purpose of the paper is to illustrate the use of a “tool set” from [8,42] for analyzing definitions,
consisting of different modularity theorems, totality theorems and translation theorems. Our experiment demonstrates
the effectivity of the tool set for breaking up large complex definitions into conjunctions of smaller and simpler
ones, for translating definitions into classical logic, and for proving consistency and correctness of ID-logic theo-
ries.

The domain of application selected for our study is temporal reasoning. Since the early days of AI, temporal rea-
soning, in particular the situation calculus, has been a major test case for knowledge representation languages. In [25],
McCarthy and Hayes exposed the famous frame problem, showing the difficulty of axiomatizing actions and causa-
tion in classical logic. This problem has (partly) motivated the development of the area of non-monotonic reasoning,
leading to non-monotone logics such as default logic [32] and non-monotone reasoning techniques in classical logic
such as circumscription [23] and completion [3]. Many different temporal reasoning formalisms were developed. Cur-
rently, the most widely adopted formalization of situation calculus is the one in classical logic developed by Reiter and
his collaborators in the nineties [18,31,34]. Other well-known solutions are Event calculus [35], Fluent calculus [39],
non-monotonic logic approaches such as the (many extensions of) the language A [14] and non-monotonic causal
theories [15,22].

We present here a formalization of situation calculus in ID-logic, which we call the inductive situation calculus.
Temporal reasoning is a natural application for using inductive definitions on the set of situations. In Reiter’s situ-
ation calculus for example, the description of the initial state may be viewed as the base case, and successor state
axioms may be seen the inductive case. By axiomatizing situation calculus in ID-logic, we explicitate the definitional
structure underlying situation calculus. The main component of the inductive situation calculus will be a definition
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of fluent and causality predicates by simultaneous, non-monotone, iterated induction in the well-founded set of situ-
ations. This definition and its components are natural illustrations of each of the above mentioned types of inductive
definitions.

A first benefit in explicitating the definitional structure of situation calculus, is that we considerably gain on the
representational level. In particular, the inductive situation calculus is more expressive and modular than Reiter’s
classical logic version. On the level of modularity, in the inductive situation calculus it is possible to represent ef-
fects of specific actions on specific fluents in specific circumstances by individual effect rules. It is well-known that
increased modularity may improve elaboration tolerance [24]. On the level of expressivity, the inductive situation
calculus can handle recursive ramifications, where an effect to one fluent may cause an effect to another fluent and
vice versa. The challenge in handling such recursive ramifications is to avoid erroneous models in which the re-
lated fluents “cause” each other and become true simultaneously without external cause. By interpreting effect rules
as definitional rules, such spontaneous generation of effects is avoided. As a consequence, the inductive situation
calculus currently provides the most general solution of the ramification problem. It also provides the most general
solution for defining fluents in situation calculus, since fluents can be defined by monotone or non-monotone inductive
definitions.

We also prove a range of correctness results of the inductive situation calculus, which are obtained using the above
mentioned tool set. Our strategy will be to break up the large simultaneous inductive definition of all fluents in a
conjunction of small component definitions, to prove their totality and to translate them into classical logic. The main
results are the following:

• We use the tool set to prove equivalence between Reiter’s situation calculus and a subformalism of the inductive
situation calculus. More precisely, our techniques allow us to translate this subformalism into classical first-order
logic theories, closely related and provably equivalent to Reiter style situation calculus.

• Extending the previous result, we show that a much broader class of inductive situation calculus theories can
be translated into extensions of Reiter’s situation calculus in first- or second-order logic, without using the in-
ductive definition construct of ID-logic. However, the advantage of using explicit inductive definitions is that
different effect and ramification theories, which can be modeled in a uniform way in the inductive situation
calculus, require different translation policies, using different combinations of predicate completion and circum-
scription.

• We will prove an initial state expansion property for the inductive situation calculus. This theorem guarantees that
for each model satisfying the subtheory that axiomatizes the initial situation, and each extension of this model
interpreting the action symbols, there is a unique way to extend this structure into a model of a complete inductive
situation calculus theory. To demonstrate the importance of this property, we discuss two of its implications. First,
the inductive situation calculus satisfies the well-known property of relative satisfiability [31]: a theory in it is sat-
isfiable if and only if the subtheory of the initial state is satisfiable. Satisfiability of a first-order or ID-logic theory
is, in general, an undecidable property. The initial state expansion property thus reduces the problem of proving
satisfiability of an inductive situation calculus to the smaller problem of proving satisfiability of the theory of the
initial situation.
Second, this proposition shows that the inductive situation calculus correctly solves the frame problem. Recall
from [25] that, put simply, the frame problem is the problem of representing what does not change as a result of
performing actions. In first order logic, it turned out that a “naive” situation calculus theory, consisting merely
of effect and inertia formulas, provides only a weak, highly incomplete axiomatization of the temporal reasoning
domain, in the sense that the theory accepts many unintended models which differ from the intended models by
the fact that fluents become true spontaneously or are caused by the wrong type of action. To find elegant and
general solutions for this problem turned out to be challenging. Recall Hank and McDermot’s famous Turkey
Shooting experiment [17], in which all early non-monotone approaches to temporal reasoning were shown to be
too weak, in the sense of accepting unintended models. Ultimately, it took the knowledge representation com-
munity about two decennia to come up with sufficiently general theories that avoid these unintended models. In
the inductive situation calculus, this problem is excluded from the start, because successor states are defined in
terms of the initial state; hence, an initial state, together with a choice of actions, can be extended in exactly one
model. This model is constructed using the effect rules and correctly captures the state transitions of the dynamic
system. Thus, the initial state expansion property guarantees that there are no unintended models of an inductive



M. Denecker, E. Ternovska / Artificial Intelligence 171 (2007) 332–360 335
situation calculus unless its initial situation is an unintended model of the subtheory of the initial situation. The
initial state expansion property is, in this respect, an important correctness property of formalizations of situation
calculus.

• Our results imply that the initial state expansion property and all its implications are satisfied by Reiter’s
situation calculus as well, since this formalism is (equivalent to) a subformalism of the inductive situa-
tion calculus. To our knowledge, this is the first time that such a theorem was proven for situation calcu-
lus.

There are other topics in this paper which are of wider interest for the history of knowledge representation and the
philosophy of logic.

• ID-logic achieves a coherent and conceptually clean integration of classical monotonic logic and logic pro-
gramming, two knowledge representation paradigms which so far seemed to be incompatible. Our experiment
illustrates the different roles of these formalisms. In particular, integrating (extended forms of) logic programs
with classical logic compensates for the latter’s representational weakness on inductive definability.

• In a similar spirit, ID-logic is also a clean and coherent integration of monotone and non-monotone logic and
displays both monotone and non-monotone behaviour. ID-logic extends classical logic with a new type of atomic
formulae, the definition, which is a set of definitional implications. As such, ID-logic is a monotone logic, in the
sense that adding an ID-logic formula to an ID-logic theory preserves all logical consequences of the original the-
ory. On the other hand, extending an ID-logic definition with a new definitional implication has a non-monotone
effect and does not preserve logical consequences. For instance, adding the rule ∀x(p(x) ← x = b) to the defini-
tion {∀x(p(x) ← x = a)} deletes the logical consequence ¬p(b). Consequently, the definitional implications are
the non-monotone modules of ID-logic.2

• The definitional implication is an interesting, non-standard sort of conditional which, to the best of our knowledge,
has not been studied from a philosophical logic perspective. The properties of this non-monotone, non-truth-
functional connective are nicely illustrated in the inductive situation calculus, where definitional implications
are used to represent effects of specific actions on specific fluents in specific circumstances. Interestingly, these
rules are very similar to the so called effect rules in Reiter’s situation calculus. Semantically however, there is an
important difference between these rules in the two formalisms. In Reiter’s situation calculus, they are interpreted
as material implications, and must be completed by additional axioms to obtain the final axiomatization in terms of
successor state axioms. In the inductive situation calculus, effect rules are interpreted as definitional implications,
which entail the corresponding material implications, but are not equivalent to them. As a consequence, we obtain
an axiomatization which is equivalent to Reiter’s solution to the frame problem in a natural way, without adding
anything to our effect rules. In this sense, we claim that Reiter’s situation calculus makes hidden use of inductive
definitions.

• The natural and effective use of definitional rules for representing effects (including recursive ramifications!)
also suggests an unexpected and intriguing relationship between inductive definitions and causality. In retrospect,
this is not so surprising at all, since an inductive definition can be understood as a description of a mathematical
construction process, where the definitional implications represent atomic operations executed during the process.
But this is exactly the role of an effect rule in a causal theory. This topic deserves a deeper investigation, which
might lead to a better understanding of the role of inductive definitions and logic programming in knowledge
representation and philosophical logic.

The paper is structured as follows. In the next section, we define ID-logic and present the modularity, totality and
translation theorems that form the tool set using which we will analyze the inductive situation calculus. In Section 3,
we review the more traditional variant of the situation calculus, which is similar to [34]. In the rest of the paper,

2 Be aware that in this paper the term monotonicity is used in two different meanings, one stemming from inductive definability, the other from
knowledge representation. A “monotone” inductive definition is—roughly—a definition without negation in rule bodies but the subformalism of
“monotone” inductive definitions is non-monotone in the knowledge representation sense, since adding (monotone) definitional rules to such a
definition is a non-monotone operation, as illustrated by the example.
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we present the formalism of the inductive situation calculus, address the ramification problem and consider several
detailed examples.

This paper extends the conference version [7].

2. Preliminaries

2.1. Preliminaries from logic

We begin by fixing notation and terminology for the basic syntactic and semantic notions related to first- and
second-order logic.

We assume an infinite supply of distinct symbols, which are classified as follows:

1. Logical symbols:
(a) Parentheses: (,);
(b) Logical connectives: ∧, ¬;
(c) Existential quantifier: ∃;
(d) Binary equality symbol: = (optional);
(e) Two propositional symbols: t and f.

2. Non-logical symbols:
(a) countably many object symbols. Object symbols are denoted by low-case letters;
(b) for each positive integer n > 0, countably many n-ary function symbols of arity n. Function symbols are

denoted by low-case letters;
(c) for each positive integer n, countably many n-ary relation symbols, also called predicate or set symbols of

arity n. We use upper-case letters to denote predicates.

As usual, we identify object symbols with 0-ary function symbols and propositional symbols with predicate symbols
of arity 0.

Remark 1. In most parts of this paper, we do not make a formal distinction between variable and constant symbols.
Symbols occurring free in a formula can be viewed as constants. Symbols in the scope of a quantifier are viewed
as variables. In examples, we tend to quantify over x, y, X, Y , and leave c, g, f and P , Q free and treat them as
constants. This convention allows us to simplify the exposition by considering several cases at once.

We define a vocabulary as any set of non-logical symbols. We denote vocabularies by τ, τ o
Δ, . . . . We use σ , σ1,

σ2 etc., to refer to an arbitrary symbol of the vocabulary. We write σ̄ to denote a sequence of symbols (σ1, σ2, . . .)

or, depending on the context, the set of symbols {σ1, σ2, . . .}. Likewise, X̄ denotes a sequence or a set of relational
symbols (i.e., set variables or constants), and x̄ is used to denote a sequence or a set of object symbols, etc.

A term is defined inductively as follows:

– an object symbol is a term;
– if t1, . . . , tn are terms and f is an n-ary function symbol, where n � 1, then f (t1, . . . , tn) is a term.

A formula is defined by the following induction:

– if P is an n-ary predicate constant or variable, and t1, . . . , tn are terms then P(t1, . . . , tn) is a formula, called an
atomic formula or simply an atom;

– if φ,ψ are formulas, then so are ¬φ,φ ∧ ψ ;
– if x is an object symbol, f a function symbol, X is a predicate symbol and φ is a formula, then ∃x φ, ∃f φ and

∃X φ are formulas.
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A bounded occurrence of symbol σ in formula φ is an occurrence of σ in a sub-formula ∃σψ of φ. A free
occurrence of σ in φ is an unbounded occurrence. The set of symbols which occur free in φ is denoted free(φ). This
set can also be defined inductively:

– If φ is atomic, say of the form A(t1, . . . , tn) then the set free(φ) is the set of all object, relational and functional
symbols occurring in φ;

– free(¬φ) := free(φ) ;
– free(φ ∧ ψ) := free(φ) ∪ free(ψ);
– free(∃σφ) := free(φ) \ {σ }.

A relation symbol X has a negative (positive) occurrence in formula F if X has a free occurrence in the scope of an
odd (even) number of occurrences of the negation symbol ¬.

A formula φ is a formula over vocabulary τ if its free symbols belong to τ (free(φ) ⊆ τ ). We use SO[τ ] to denote
the set of all formulas over τ ; and we use FO[τ ] to denote the set of first-order formulas over τ , that is those without
quantified predicate or function variables.

We use (φ ∨ ψ), (φ ⊃ ψ), (φ ≡ ψ), ∀xφ, ∀f φ and ∀Xφ, in the standard way, as abbreviations for the formulas
¬(¬φ ∧ ¬ψ), ¬(φ ∧ ¬ψ), ¬(φ ∧ ¬ψ) ∧ ¬(ψ ∧ ¬φ), ¬∃x(¬φ), ¬∃f (¬φ), ¬∃X(¬φ), respectively.

Having defined the basic syntactic concepts, we define the semantic concepts. Let A be a non-empty set. A value
for an n-ary relation (function) symbol σ of vocabulary τ in A is an n-ary relation (function) in A. A value for a
0-ary function symbol, i.e., an object constant or variable, is an element of the domain A. A value for a 0-ary relation
symbol Y is either ∅ or {( )}, the singleton of the empty tuple. We identify these two values with false, respectively
true. The value of the equality symbol is always the identity relation on A. The value of t is {( )} (true) and the value
of f is ∅ (false).

A structure I for a given vocabulary τ (in short, a τ -structure) is a tuple of a domain dom(I ), which is a non-
empty set, and a mapping of each symbol σ in τ to a value σ I in dom(I ). If σ ∈ τ and I is a τ -structure, we say that
I interprets σ . We also use letters J , K , L, M to denote structures. Given I , τI denotes the set of symbols interpreted
by I .

Let us introduce notation for constructing and modifying structures with a shared domain A. Let I be a τ -structure,
and σ̄ be a tuple of symbols not necessarily in τ . Structure I [σ̄ : v̄] is a τ ∪ σ̄ -structure, which is the same as I , except
symbols σ̄ are interpreted by values v̄ in dom(I ). Given a τ -structure I and a sub-vocabulary τ ′ ⊆ τ , the restriction
of I to the symbols of τ ′ is denoted I |τ ′ . Vice versa, I is called an extension of Io if I |τIo

= Io.
Let t be a term, and let I be a structure interpreting each symbol in t . We define the value t I of t under I by the

usual induction:

– if t is an object symbol σ , then t I is σ I , the value of σ in I ;
– if t = f (t1, . . . , tn), then t I := f I (tI1 , . . . , tIn ).

Next we define the satisfaction or truth relation |=. Let I be a structure and let φ be a formula such that each free
symbol in φ is interpreted by I . We define I |= φ (in words, φ is true in I , or I satisfies φ) by the following standard
induction:

– I |= X(t1, . . . , tn) if (tI1 , . . . , tIn ) ∈ XI ;
– I |= ψ1 ∧ ψ2 if I |= ψ1 and I |= ψ2;
– I |= ¬ψ if I �|= ψ ;
– I |= ∃σψ if for some value v of σ in the domain dom(I ) of I , I [σ : v] |= ψ .

Note that the truth of a formula φ is only well-defined in a structure interpreting each free symbol of φ. We shall
denote the truth value of φ in I by φI , i.e., if I |= φ then φI is true and otherwise, it is false.

We use notation φ(x1, . . . , xn) to emphasize that symbols x1, . . . , xn are distinct and are free in φ. Sometimes, we
wish to investigate the truth value of a formula φ as a function of the values assigned to a specific tuple of symbols σ̄ .
We then call these symbols the parameters of φ and denote the formula by φ(σ̄ ). Let I be some structure and let v̄

be a tuple of values for σ̄ in the domain dom(I ). We often write I |= φ[v̄] to denote I [σ̄ : v̄] |= φ. If X is an n-ary
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relation symbol and d̄ is an n-tuple of elements of some domain A, then X[d̄] is a domain atom in A. For I a structure
with domain A, the value of X[d̄] in I is true if d̄ ∈ XI ; otherwise it is false. For a vocabulary τ , we define AtτA as the
set of all domain atoms in domain A over relation symbols in τ .

For a set X̄ of relation symbols, we define AtX̄A as the set of all domain atoms in domain A over relation symbols

in X̄. In general, for a given vocabulary τ with predicates X̄, we denote AtX̄A as AtτA.

2.2. ID-logic

In this subsection, we describe ID-logic [10]. ID-logic was introduced by the first author in [5] as a logic of sets of
first order logic sentences and definitions. In [8] and in [7], this logic was extended to its current definition by allowing
arbitrary boolean combinations of atoms and definitions.

Let us fix some vocabulary τ . A new binary connective ← is called the definitional implication. A definition Δ is
a set of rules of the form

∀x̄(X(t̄) ← ϕ),

where x̄ is a tuple of object variables, X is a predicate symbol (i.e., a predicate constant or variable) of some arity r ,
t̄ is a tuple of terms of length r of the vocabulary τ , ϕ is an arbitrary first-order formula of τ , which may contain
free object or relational variables. The definitional implication ← must be distinguished from material implication
denoted ⊃.

Note that in front of rules, we allow only universal quantifiers. In the rule ∀x̄(X(t̄) ← ϕ), X(t̄) is called the head
and ϕ is the body of the rule. A defined symbol of Δ is a relation symbol that occurs in the head of at least one rule of
Δ; other relation, object and function symbols are called open. Let τ be a vocabulary including all free symbols of Δ.
The subset of defined symbols of definition Δ is denoted τ d

Δ. The set of open symbols of Δ in τ is denoted τ o
Δ. The

sets τ d
Δ and τ o

Δ form a partition of τ , i.e., τ d
Δ ∪ τ o

Δ = τ , and τ d
Δ ∩ τ o

Δ = ∅ .
A well-formed formula of ID-logic over vocabulary τ is defined by the following (monotone) induction:

(1) If X is an n-ary predicate symbol, and t1, . . . , tn are terms then X(t1, . . . , tn) is a formula.
(2) If Δ is a definition then Δ is a formula.
(3) If φ,ψ are formulas, then so is (φ ∧ ψ).
(4) If φ is a formula, then so is (¬φ).
(5) If φ is a formula, then ∃σφ is a formula (σ can be either a first- or second-order symbol).

A formula φ is an ID-logic-formula over vocabulary τ if the set of free symbols of φ is a subset of τ . It is a FO(ID)[τ ]-
formula if it does not contain any second-order quantifiers, and it is a SO(ID)[τ ]-formula otherwise.

As an example, in the language of the natural numbers, the following SO(ID)[τ ] formula, where τ = {0, s/1},
expresses that there is a set which is the least set containing 0 and closed under taking successor numbers, and which
contains all domain elements. It is equivalent to the standard induction axiom and to the domain closure axiom:

∃N

[{∀x (N(x) ← x = 0),

∀x (N(s(x)) ← N(x))

}
∧ ∀xN(x)

]
. (1)

Note that this formula contains an existential quantification over the second-order variable N . The second-order
quantification can be avoided by skolemizing N and using a predicate constant instead. In fact, all examples of
second-order quantification that appear in this paper, are of the same kind as in this example and can be eliminated in
the same way, by skolemization of the existentially quantified second-order variable.

The semantics of the ID-logic is an extension of classical logic semantics with the well-founded semantics from
logic programming [6,12,40]. We now define the well-founded model of a definition Δ extending a τ o

Δ-structure Io.
For each defined symbol X of Δ, we define

ϕX(x̄) := ∃ȳ1(x̄ = t̄1 ∧ ϕ1) ∨ · · · ∨ ∃ȳm(x̄ = t̄m ∧ ϕm), (2)

where x̄ is a tuple of new variables, and ∀ȳ1(X(t̄1) ← ϕ1), . . . , ∀ȳm(X(t̄m) ← ϕm) are the rules of Δ with X in the
head. For every defined symbol Y , we introduce a new relation symbol Y ′ of the same arity. We obtain ϕ′

X from ϕX(x̄)

by substituting Y ′ for each negative occurrence of each defined symbol Y .
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For any pair of τ -structures I, J extending Io, define IJ as the extension of Io which interprets each defined symbol
X of Δ as XI , the value of X in I , and each new symbol X′ as XJ , the value of X in J . The basis of the construction
of the well-founded model extending Io is the operator TΔ which maps pairs I, J of extensions of Io to a structure
I ′, also extending Io, such that for each defined symbol X, XI ′ := {ā | IJ |= ϕ′

X[ā]}. Thus, the operator TΔ evaluates
positive occurrences of defined symbols in rule bodies by I , and negative occurrences of defined symbols by J .

In the lattice of τ -structures extending Io, the operator TΔ is monotone in its first argument and anti-monotone
in its second argument. Define the stable3 operator STΔ as follows: STΔ(J ) := lfp(TΔ(·, J )). This stable operator is
anti-monotone, hence its square is monotone and has a least and largest fixpoint. We define Io

Δ↓ := lfp(ST 2
Δ), and

Io
Δ↑ := gfp(ST 2

Δ).
For an intuitive explanation of the well-founded semantics and an argument why it formalizes different forms of

inductive definitions, we refer to [6].

Definition 1. Definition Δ is total in τ o
Δ-structure Io if Io

Δ↓ = Io
Δ↑. When this is the case, Io

Δ↓ (or Io
Δ↑) is called

the Δ-extension of Io and is abbreviated as Io
Δ. More generally, Δ is total in a structure Ko interpreting a subset of

τ o
Δ if Δ is total in each τ o

Δ-structure extending Ko. Δ is total in a theory T over τ o
Δ if Δ is total in each τ o

Δ-model
of T .

The aim of an inductive definition is to define its defined symbols. This is the case only when Io
Δ↓ = Io

Δ↑.
Therefore, a natural quality requirement for a definition is that it is total.

Definition 2 (φ true in structure I ). Let φ be a ID-logic-formula and I any structure interpreting all free symbols
of φ. We define I |= φ (in words, φ is true in I , or I satisfies φ, or I is a model of φ) by the following induction:

(1) I |= X(t1, . . . , tn) if (tI1 , . . . , tIn ) ∈ XI ;
(2) I |= Δ if I = Io

Δ↓ = Io
Δ↑, where Io is the restriction of I to τ o

Δ;
(3) I |= ψ1 ∧ ψ2 if I |= ψ1 and I |= ψ2;
(4) I |= ¬ψ if I �|= ψ ;
(5) I |= ∃σψ if for some value v of σ in the domain dom(I ) of I , I [σ : v] |= ψ .

Given an ID-logic theory4 T over τ , a τ -structure I satisfies T (is a model of T ) if I satisfies each φ ∈ T . This is
denoted by I |= T .

Definition 2 is a prototypical example of a non-monotone inductive definition, more specifically a definition over
a well-founded poset, namely the set of ID-logic formulas ordered by the sub-formula relation. It contains non-
monotone recursion in rule 4. This is an example of the sort of induction formalized in ID-logic.

As mentioned before, the definitional implication should be distinguished from material implication. Rule
∀x̄(X(t̄) ← ϕ) in a definition does not correspond to the disjunction ∀x̄(X(t̄)∨¬ϕ), although it implies it. Intuitively,
the definitional implication should be understood as the “if” found in rules in inductive definitions (e.g. Definition 2
consists of 5 such rules).

A definitional implication always contains an atom in the head, never a negative literal. This reflects a general
principle of inductive definitions, which is that one defines a concept by enumerating positive cases, i.e., cases in
which a defined predicate is true. Given such an enumeration, the closure mechanism underlying inductive definitions
yields the negative cases.

2.3. Analysing definitions

In this section, we recall the modularity, totality and translation theorems from [8].
Definitions in ID-logic are non-monotone, in the sense that adding a rule to a definition in general does not preserve

logical consequence. As a consequence, splitting a definition into a conjunction of two or more parts is, in general,

3 This operator is often called the Gelfond–Lifschitz operator and was introduced in [13].
4 By a theory, we mean a finite set of axioms.
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not equivalence preserving. This is quite obviously the case when we split up rules defining the same predicate. For
example, the definition{∀x (P (x) ← x = a),

∀x (P (x) ← x = b)

}

and the conjunction of its partition{∀x (P (x) ← x = a)
}∧ {∀x (P (x) ← x = b)

}
are not equivalent. Indeed, in a Herbrand model I of the definition, P I = {a, b}, and such a model satisfies neither the
first component definition (since P I �= {a}) nor the second (since P I �= {b}).

This motivates the following definition.

Definition 3 (partition of definitions). A partition of definition Δ is a set {Δ1, . . . ,Δn}, 1 < n, such that Δ = Δ1 ∪
· · · ∪ Δn, and if defined symbol P appears in the head of a rule of Δi , 1 � i � n, then all rules of Δ with P in the
head belong to Δi and only to Δi .

Notice that Δi has some “new” open symbols. For instance, if P is defined in Δ, but not in Δi , then it is a new
open symbol of Δi . Of course, it holds that τ = τ o

Δ ∪ τ d
Δ = τ o

Δi
∪ τ d

Δi
, 1 � i � n. Also,

⋃
i τ

d
Δi

= τ d
Δ and τ d

Δi
∩ τ d

Δj
= ∅

whenever i �= j .
Even if we put all rules defining the same predicate in the same module, splitting may not be equivalence preserving.

For example, in the unique model of the definition

{P ← Q,Q ← P }, (3)

P and Q are false, whereas the conjunction

{P ← Q} ∧ {Q ← P }
has two models, one in which P and Q are both false and another in which they are both true. A non-trivial example
of a splittable definition is the following simultaneous inductive definition of even and odd numbers:⎧⎪⎨

⎪⎩
∀x (E(x) ← x = 0),

∀x (E(S(x)) ← O(x)),

∀x (O(S(x)) ← E(x))

⎫⎪⎬
⎪⎭. (4)

In the domain of the natural numbers (interpreting 0 by 0 and S by the successor function Succ), this definition can be
shown to be equivalent to the conjunction{∀x (E(x) ← x = 0),

∀x (E(S(x)) ← O(x))

}
∧ {∀x (O(S(x)) ← E(x))

}
. (5)

By splitting this definition, we obtain two non-inductive definitions, one of even numbers, the other of odd numbers.
Such non-inductive definitions can be translated to classical logic using our translation results:

∀x (E(x) ≡ x = 0 ∨ ∃y (x = S(y) ∧ E(y))) ∧
∀x (O(x) ≡ ∃y (x = S(y) ∧ E(y))).

(6)

This example illustrates the potential use of modularity and translation results for analysis of inductive definitions.
Whether a partition of a definition is equivalent to the original definition depends on whether the split breaks up

circular dependencies between defined facts. For example, in the definition (3), P and Q mutually depend on each
other. Splitting the definition breaks up this cycle, hence the equivalence is lost. In the definition (4), although E and O

are defined in terms of each other, there are no cyclic dependencies at the level of atoms. I.e., an atom E(n) depends
only on O(n − 1), which in turn depends on E(n − 2), etc. So, by splitting the definition, no dependency cycles
are broken and the equivalence is preserved. Below, the intuitive notion of a dependency relation between atoms is
formalized by the concept of a reduction relation.

Assume a definition Δ over τ and a structure Ko with domain A such that τKo ⊆ τ o
Δ. Let AtτA be the set of domain

atoms over τ in domain A, i.e., the set of atoms P [a1, . . . , an] (or P [ā]), where P is relation symbol of τ and
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a1, . . . , an are elements of A. Let ≺ be any binary relation on AtτA. If Q[b̄] ≺ P [ā], we will say that P [ā] depends
on Q[b̄] (according to ≺). For any domain atom P [ā] and any pair I, J of τ -structures with domain A, we define
I ∼=≺P [ā] J if f I = f J for every constant and function symbol f appearing in Δ, and for each atom Q[b̄] ≺ P [ā],
I |= Q[b̄] iff J |= Q[b̄]. We extend this to pairs by defining (I, J ) ∼=≺P [ā] (I ′, J ′) if I ∼=≺P [ā] I ′ and J ∼=≺P [ā] J ′.

Let ϕP [ā] be as in (2).

Definition 4 (reduction relation). A binary relation ≺ on AtτA is a reduction relation (or briefly, a reduction) of a rule

∀x̄ (P (t̄[x̄]) ← ϕ(x̄)) ∈ Δ if for all τ -structures I, J, I ′, J ′ extending Ko, for all tuples ā and d̄ such that ā = t̄ J [x̄:d̄],
if (I, J ) ∼=≺P [ā] (I ′, J ′) then it holds that IJ |= ϕ′[d̄] iff I ′

J ′ |= ϕ′[d̄].
The relation ≺ is a reduction relation of Δ in Ko if for each defined predicate P of Δ, ≺ is a reduction relation of

the rule ∀x̄(P (x̄) ← ϕP ) in Ko.

Intuitively, the definition expresses that ≺ is a reduction relation if the truth of the formulas ϕP [ā] depends only on
the truth of the atoms on which P [ā] depends according to ≺.

Proposition 1. If ≺ is a reduction relation of a rule or of a definition Δ in Ko, then any superset of ≺ is also a
reduction relation of that rule, resp. of Δ in Ko.

Proposition 2. Let ≺ be a reduction relation of each rule in Δ in Ko. Then ≺ is a reduction relation of Δ in Ko.

The above propositions suggest a methodology for constructing reductions of a definition: define reductions for
each of its rules and take the union. We illustrate this for definition (4) in the context of the natural numbers. We
obtain a reduction for this definition as the union of reductions for each of its rules:

∅ ∪{
(E(n),O(n + 1)), | n ∈ N

}∪ (7){
(O(n + 1),E(n + 2)) | n ∈ N

}
.

Recall that a pre-well-founded order is a reflexive and transitive relation such that every non-empty subset contains a
minimal element. The following definition is crucial for two decomposition theorems.

Definition 5 (reduction partition). Call partition {Δ1, . . . ,Δn} of definition Δ a reduction partition of Δ in τ o
Δ-

structure Io if there is a reduction pre-well-founded order ≺ of Δ in Io and if for each pair of defined domain atoms
P [ā], Q[b̄] such that Q[b̄] ≺ P [ā] and P [ā] ≺ Q[b̄], P and Q are defined in the same Δi .

The intuition underlying this definition is that in a reduction partition, if an atom defined in one module depends on
an atom defined in another module, then the latter atom does not depend on the first atom and hence is strictly less in
the reduction ordering.

A partition {Δ1, . . . ,Δn} of Δ is called total in Ko if each Δi is total in Ko.

Theorem 1 (modularity, [10, Theorem 5.20]). If {Δ1, . . . ,Δn} is a reduction partition of Δ in Ko, then for any
τ -structure M extending Ko, M |= Δ1 ∧ · · · ∧ Δn iff M |= Δ.

Theorem 2 (totality, [10, Theorem 5.24]). If {Δ1, . . . ,Δn} is a total reduction partition of Δ in Ko, then Δ is total
in Ko.

It is easy to see that the reduction relation (7) turns the partition in (5) into a reduction partition. Hence, in the con-
text of the natural numbers the definition is equivalent to its partition. Moreover, since the two component definitions
are non-inductive and hence, total, it follows that definition (4) is total. This illustrates the role of these theorems: they
tell us when we can understand a large definition as a conjunction of smaller ones, and they allow us to prove totality
of a large definition given the totality of smaller ones.

Suppose To is a theory over τ o
Δ such that for any τ o

Δ-model Mo of To, {Δ1, . . . ,Δn} is a reduction partition of Δ

in Mo. Under this assumption, two important corollaries hold:
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Corollary 1. To ∧ Δ and To ∧ Δ1 ∧ · · · ∧ Δn are logically equivalent.

Corollary 2. If in addition, {Δ1, . . . ,Δn} is a total partition in To, then Δ is total in To.

Now we consider two special cases of definitions and explain how to translate them into classical logic. Let Δ be a
positive definition, i.e., with only positive occurrences of defined symbols in rule bodies, defining the symbols P̄ . Let
Xi and Pi have the same arity. Define

PID(Δ) :=
∧

Δ ∧ ∀X̄
(∧

Δ[P̄ /X̄] → P̄ ⊆ X̄
)

and

CIRC(Δ) :=
∧

Δ ∧ ∀X̄
(∧

Δ[P̄ /X̄] → (X̄ ⊆ P̄ → P̄ ⊆ X̄)
)
.

Here,
∧

Δ is the conjunction of formulas obtained by replacing definitional with material implications in Δ, Δ[P̄ /X̄]
is the definition obtained by substituting Xi for each defined symbol Pi and P̄ ⊆ X̄ is a shorthand for the formula

∀x̄ (P1(x̄) ⊃ X1(x̄)) ∧ · · · ∧ ∀x̄ (Pn(x̄) ⊃ Xn(x̄)).

The formula PID(Δ) is the standard second-order formula to express that predicates P̄ satisfy the positive inductive
definition Δ. The theory PID(Δ) expresses that the defined relations are the least relations closed under the rules of Δ

in a τ o
Δ-structure. Because the rules of Δ are positive, such least relations are guaranteed to exist. The theory CIRC(Δ)

is a circumscription axiom [23] and expresses that the defined relations are minimal relations closed under the rules
of Δ in a τ o

Δ-structure. Since the least relations closed under the rules of Δ are the unique minimal relations closed
under the rules of Δ, both formulas are equivalent.

Theorem 3. (See [10, Theorem 6.3].) If Δ is positive (i.e., contains no negative occurrences of defined symbols in rule
bodies) then it is total in each τ o

Δ-structure, and for any τ -structure I , I |= Δ iff I |= PID(Δ) iff I |= CIRC(Δ).

These results can be applied, for example, in the context of definition (4) of even and odd numbers. Another result
is concerned with (possibly non-monotone) definitions over well-founded posets. First, we propose a formalization
for this informal concept in ID-logic.

Definition 6 (strict reduction relation). A reduction relation ≺ of Δ on AtτA is strict in Ko if it is a strict well-founded
order (i.e., an antisymmetric, transitive binary relation without infinite descending chains).

Thus, if P [ā] ≺ Q[b̄] holds, then the bodies of rules defining Q[b̄] may depend on the truth value of P [ā], but not
vice versa.

Definition 7 (definition by well-founded induction). Let Δ be a definition with a strict reduction relation ≺ in Ko. We
call Δ a definition by well-founded induction (over ≺) in Ko.

This type of definitions can be formalized in first-order logic using the well-known concept of completion [3].
Define the completion of Δ, denoted comp(Δ), as the conjunction, for each defined symbol X of Δ, of formulas
∀x̄(X(x̄) ≡ ϕX(x̄)).

In general, a definition Δ entails its completion comp(Δ) but not vice versa. However, in case of a definition by
well-founded induction, the inverse is true as well.

Theorem 4 (completion, [10, Theorem 6.9]). Suppose Δ is a definition by well-founded induction in τ o
Δ-structure Io.

Then (a) definition Δ is total in Io, and (b) the model Io
Δ of Δ is the unique model of comp(Δ) extending Io.

An example of a definition by well-founded induction is the definition (4) in the structure 〈N,0,Succ〉. Indeed, the
transitive closure of the reduction relation in (7) is a strict well-founded order and a reduction relation of definition
(4). As a consequence, this definition and its completion, formula (6), are equivalent in this structure: each model of
the definition extending 〈N,0,Succ〉 is a model of its completion and vice versa.
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One observes that the above theorem does not prove logical equivalence, i.e., equivalence in all structures, but
only equivalence in the context of a given structure. In fact, a definition may have a strict reduction relation in one
structure and not in other structures. Consider for example the structure Ko with domain {a, b} and 0Ko = a, and
SKo = {(a, a), (b, b)}. In this structure, the least reduction relation of definition (4) is{

(E(a),O(a)), (O(a),E(a)), (E(b),O(b)), (O(b),E(b))
}
.

Each other reduction is a superset of this relation. Since each transitive relation extending this relation contains
(E(a),E(a)), the definition has no strict reduction relation in this structure. In fact, the definition (4) and its comple-
tion (6) are not equivalent in this structure. The unique model I of the definition interprets EI = {a} and OI = {a}.
On the other hand, the completion has an additional model in which EI = {a, b} and OI = {a, b}.

Suppose To is a theory over τ o
Δ such that for any τ o

Δ-model Mo of To, Δ is a definition by well-founded induction
in Mo. Under this assumption, two useful corollaries hold:

Corollary 3. To ∧ Δ and To ∧ comp(Δ) are logically equivalent.

Corollary 4. Δ is total in To.

Notice that positive inductive definitions and definitions by well-founded induction have different (and, in general,
non-equivalent) formalizations in classical logic.

Some of the techniques that were introduced here are similar to methods found in logic programming. For example,
Theorem 4 shows similarity to Fages theorem [11]. However, Fages notion of tight program is not equivalent to
our notion of definition over a well-founded order; Fages theorem is only for Herbrand interpretations, and relates
completion with stable semantics while ours is for general interpretations and relates completion with well-founded
semantics.

3. Reiter-style situation calculus

From now on, we are dealing with many-sorted logic. All results and definitions introduced so far easily extend
to this case. The vocabulary τsc of the situation calculus is a many-sorted vocabulary with equality and with sorts for
actions (Act), situations (Sit), and possibly a finite number of domain-specific sorts called object sorts (Ob1, . . . ,Obk),
where each Obi is an arbitrary name. The vocabulary contains a potentially infinite set of domain-dependent function
symbols of the sort Act. The sort of each argument of such a function is an object sort. For example, in the block world
domain, we may have actions pick_up(x) and put_on(x, y) ranging over the sort Block.

The vocabulary contains a binary relation � with arguments of sort Sit and denoting precedence of situations. The
constant S0 of sort Sit denotes the initial situation. Function do of sort Sit maps actions and situations to situations,
i.e., given a and s, term do(a, s) denotes the successor situation which is obtained from situation s by performing
action a. The predicate constants F1,F2, . . . are called fluents and denote properties of the world (both in the initial
situation and in other situations). Fluents always have exactly one argument of sort Sit, while the sort of each other
argument is an object sort. For example, On(x, y, s) of arity 3 denotes that object x is on object y in situation s.

Definition 8 (Duna(S)). The theory of unique name axioms for sort S, Duna(S), is the set of axioms in the following
axiom schema: for distinct function symbols f and g of sort S

∀x̄∀ȳ ¬(f (x̄) = g(ȳ)) (8)

∀x̄∀ȳ (f (x1, . . . , xn) = f (y1, . . . , yn) ⊃ x1 = y1 ∧ · · · ∧ xn = yn). (9)

The axioms (9) hold for every function symbol f with arity greater than zero.

Definition 9 (Df). The foundational axioms of the situation calculus, Df, are the set of axioms consisting of the unique
name axioms for situations Duna(Sit), the domain closure axiom for situations

∀P (P (S0) ∧ ∀s′∀a (P (s′) ⊃ P(do(a, s′))) ⊃ ∀sP (s)) (10)

and the precedence axioms for situations
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∀s ¬(s � S0), (11)

∀s∀s′∀a (s � do(a, s′) ≡ s � s′) (12)

where s � s′ is an abbreviation for s � s′ ∧ ¬(s′ � s).

The role of axiom (10) is to guarantee that the domain of situations Sit is the smallest set closed under applications
of the function symbol do, which satisfies the unique name axioms for situations. Every two models of Df with
identical domains of sort Act will have identical domains of sort Sit (modulo isomorphism).

Definition 10 (Dss). The successor state axioms, Dss, are of the form:

∀x̄∀a∀s (F (x̄, do(a, s)) ≡ (γ +
F (x̄, a, s) ∨ F(x̄, s) ∧ ¬γ −

F (x̄, a, s))). (13)

Formula γ +
F (x̄, a, s) (respectively, γ −

F (x̄, a, s)) denotes a first-order formula specifying the conditions under which
action a causes fluent F to become true (respectively, false) in the situation s [33]. The only free variables of these
formulas are among x̄, a, s and the only symbol of sort Sit is the free variable s. An example of a successor axiom is

∀sw∀a∀s (On(sw,do(a, s)) ≡
a = toggle(sw) ∧ ¬On(sw, s) ∨
On(sw, s) ∧ a �= toggle(sw)).

This axiom says that a switch is on in situation do(a, s) if and only if this situation was obtained by performing action
toggle(sw) in situation s where this switch was off, or the switch was already on and an action other than toggle(sw)

was performed.
Successor state axioms are obtained from a set of effect rules of the form:

∀x̄∀a∀s (δi
F (x̄, a, s) ⊃ F(x̄,do(a, s))) (14)

for i ∈ {1, . . . , k}, and

∀x̄∀a∀s (ν
j
F (x̄, a, s) ⊃ ¬F(x̄,do(a, s))), (15)

for j ∈ {1, . . . ,m}, where formulas δi
F and ν

j
F satisfy the same conditions as γ +

F and γ −
F . Each of these rules specifies

an initiating or terminating effect of a particular action in one particular condition. Together these rules exhaustively
describe all effects. Effect rules are transformed into the successor state axioms using the following equations:

γ +
F (x̄, a, s) :=

k∨
i=1

δi
F (x̄, a, s) and γ −

F (x̄, a, s) :=
m∨

j=1

ν
j
F (x̄, a, s).

This transformation is not equivalence preserving but transforms an incomplete specification of the action domain into
a final axiomatization.

Definition 11 (DS0 ). A description of the initial situation, DS0 , is a set of first-order sentences that are uniform in S0,
that is, it contains no situation term other than S0.

A basic action theory consists of Df ∪Duna(Act) ∪DS0 ∪Dss.

4. Inductive situation calculus

In this section, we define a variant of Reiter-style situation calculus, which we call the inductive situation calculus.
All fluents will be defined by simultaneous induction on the well-founded set of situations. Ramifications describing
propagation of effects of actions are modeled as monotone or non-monotone inductions at the level of situations. The
result is an iterated inductive definition with alternating phases of monotone and non-monotone induction. Below we
describe the components of the inductive situation calculus.
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The vocabulary τisc of the inductive situation calculus extends τsc by two types of symbols. Symbols IF1 , IF2, . . .

are used to describe the initial situation and correspond to the fluents F1,F2, . . . ,Fn, but have no situation argument.
They are open symbols of the inductive situation calculus. The other type of symbols denotes causality relations. These
symbols will be introduced a bit later. The initial state vocabulary τinit consists of all symbols of τisc not involving
sorts Act or Sit. The open vocabulary τ o

isc of the inductive situation calculus extends τinit with So, do, �, and the action
symbols. This vocabulary consists of all symbols of τisc except for all fluents and causality predicates.

The ID-logic induction axiom (1) of the natural numbers can be extended to arbitrary sorts in the following way.

Definition 12 (DDCA(S)). Given a vocabulary τ , the domain closure axiom for sort S, DDCA(S), is the axiom:

∃P

⎡
⎢⎢⎢⎣
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∀x (P (x) ← x = c),

· · ·
∀x1 . . .∀xn (P (f (x1, . . . , xn)) ← P(xi1) ∧ · · · ∧ P(xim))

· · ·

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∧ ∀xP (x)

⎤
⎥⎥⎥⎦

where the definition contains one rule for every constant c of sort S and for every function symbol f ∈ τ of sort S

with arguments i1, . . . , im of sort S.

For example, the domain closure axiom DDCA(Sit) for situations is:

∃P

[{∀s (P (s) ← s = S0),

∀a∀s (P (do(a, s)) ← P(s))

}
∧ ∀sP (s)

]
. (16)

The role of axiom (16) is to guarantee that the domain of situations Sit is the smallest set containing S0 and closed
under applications of the function symbol do. It is equivalent to Reiter’s induction axiom for situations. Recall that
the second order variable can be eliminated by skolemization.

A general property of the combination of unique names axioms and domain closure axiom is that they are consistent
and fix the domain in a unique way.

Proposition 3. Let τo be a sorted vocabulary, and τ extends τo with a new sort S and a set of constant and function
symbols of sort S. For every τo-structure Io, there is a non-empty class of τ -structures extending Io and satisfying
Duna(S), and there is a unique (modulo isomorphism) extension of Io satisfying Duna(S) ∧DDCA(S).

The foundational axioms of the inductive situation calculus, Dif, are the unique name axioms Duna(Sit) for situa-
tions, the domain closure axiom DDCA(Sit) for situations and the following definition of the precedence relation

Δ� :=
{∀s∀s′ (s � s′ ← s = s′),
∀s∀s′∀a (s � do(a, s′) ← s � s′)

}
. (17)

An initial structure A of the inductive situation calculus is a multi-sorted structure with a non-empty domain for
each sort of the language, which interprets all symbols of τ o

isc and which satisfies the foundational axioms Dif.

Proposition 4. For any τinit-structure Io and arbitrary extension I of Io to (the symbols of ) sort Act, there is a unique
(modulo isomorphism) initial structure A extending I . Io has a unique extension satisfying Duna(Act) ∪DDCA(Act).

Proof. By application of Proposition 3 for sort Sit, we can prove that an arbitrary extension I of Io to sort Act, has
a unique (modulo isomorphism) (τ o

isc \ {�})-structure satisfying Duna(Sit) ∪ DDCA(Sit). By Theorem 3, this structure
can be extended in a unique way to a definition of Δ�. By, again, Proposition 3, only one of these extensions satisfies
Duna(Act) ∪DDCA(Act). �
Proposition 5. Let A be an initial structure. In every such structure, the substructure 〈SitA,�A〉 is a well-founded
poset (and, thus a pre-well-founded set).

Proof. In an initial structure A, the collection of situations is isomorphic to the set of finite sequences of elements of
sort Act, where SA corresponds to the empty sequence, and doA to the constructor appending an action object to a
0
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finite sequence. Since A satisfies the definition (17), it holds for two situations s, s′ that s �A s′ iff the sequence of s

is an initial segment of that of s′. This is a well-founded order. �
The following proposition demonstrates that the remaining two foundational axioms of the situation calculus as

presented in [34], are implied by the definition above.

Proposition 6. The theories Df and Dif are logically equivalent.

Proof. Both theories contain Duna(Sit). The induction axiom of Df is equivalent to DDCA(Sit) in Dif. It is not difficult to
prove that in a structure A satisfying Duna(Sit) ∪DDCA(Sit), where situations correspond to finite sequences of actions,
the unique relation �A that satisfies sentences (11) and (12) is the same relation defined by definition (17). �

In place of DS0 , the description of the initial situation in terms of fluents which hold in S0, in the inductive situation
calculus we describe the initial situation in terms of symbols IFi

. The corresponding collection of axioms is Dinit. This
is any theory in the vocabulary τinit.

A basic action theory of the inductive situation calculus will be a collection of axioms of the form:

Dif ∪Duna(Act) ∪Dinit ∪ {Δsc}, (18)

where Δsc is an inductive definition of the fluents. We will often include also the domain closure DDCA(Act) for actions
in an inductive situation calculus theory. In the next sections, we present three variants of Δsc.

4.1. Specifying direct effects of actions

For each fluent Fi , we introduce two additional auxiliary relations, CFi
and C¬Fi

. These relations represent initi-
ating and terminating causes for Fi , respectively. Both CFi

and C¬Fi
have the same sort of arguments as Fi plus one

action argument. Let Dinit axiomatize the initial situation using IF1, . . . , IFm .
We augment Dif ∪Duna(Act) ∪Dinit with the following definition

Δsc =
n⋃

i=1

Δi
fluent ∪

n⋃
i=1

Δi
effect

where

Δi
fluent :=

⎧⎪⎨
⎪⎩

∀x̄i (F (x̄i , S0) ← IF (x̄i)),

∀x̄i∀a∀s (Fi(x̄i ,do(a, s)) ← CFi
(x̄i , a, s)),

∀x̄i∀a∀s (Fi(x̄i ,do(a, s)) ← Fi(x̄i , s) ∧ ¬C¬Fi
(x̄i , a, s))

⎫⎪⎬
⎪⎭,

Δi
effect :=

{∀x̄i∀a∀s (CFi
(x̄i , a, s) ← γ +

Fi
(x̄i , a, s)),

∀x̄i∀a∀s (C¬Fi
(x̄i , a, s) ← γ −

Fi
(x̄i , a, s))

}
.

Here, formulas γ +
Fi

(x̄i , a, s), γ −
Fi

(x̄i , a, s) are analogous to those found in Reiter-style situation calculus. They are
formulas without causality predicates, with free variables among x̄i , a, s and the only symbol of sort Sit is the free
variable s. All fluent atoms in such formulas are of the form Fj (t̄, s).

The intuitive meaning of this definition is as follows. The first rule of Δi
fluent defines the fluent Fi in situation S0.

The second rule says that if an action causes a fluent in some situation, then the fluent holds in the successor situation.
The third rule deals with the case where a fluent is not affected by an action and will be referred to as the law of
inertia. The rules in Δi

effect describe direct effects of actions on the fluent Fi .
Note that any fluent may appear in the rules for a causality predicate. Hence, the definition Δsc is one large

simultaneous inductive definition. Moreover, since the inertia law contains a negative occurrence of C¬Fi
, and this

predicate may be defined in terms of fluents, Δsc is, in general, a non-monotone inductive definition. In what follows,
we use the results of Section 2.3 in order to obtain the standard successor state axioms of the situation calculus.

Proposition 7. The definition Δsc is a definition by well-founded induction in each τ o
isc-model of the foundational

axioms Dif.
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Proof. Let A be an initial structure with domain A. We shall construct a reduction relation ≺ of Δsc in A. This binary
relation on At

τisc
A , the set of all domain atoms, should represent (at least) all potential dependencies between domain

atoms that are not interpreted by A, i.e., between the fluent and causality atoms. We construct ≺ in a rule-by-rule way,
suggested by Proposition 2, as the set of all tuples:

(CFi
[ū, a, s],Fi[ū, doA(a, s)]),

(Fi[ū, s],Fi[ū, doA(a, s)]), (C¬Fi
[ū, a, s],Fi[ū, doA(a, s)]),

(Fi[ū, s],C(¬)Fj
[v̄, a, s]),

for arbitrary tuples of objects ū and v̄, for arbitrary elements a of the action sort and s of the situation sort, for each
i, j .

It is easy to see that the tuples in the first two lines provide a reduction relation of the two inductive rules of fluents,
while the tuples in the third line represent all possible dependencies in direct effect rules. It follows from Proposition 2
that ≺ is a reduction relation of Δsc in A.

Since, by Proposition 1, any superset of a reduction relation is also a reduction relation, the transitive closure ≺∗
of ≺ is a reduction relation. Moreover, it follows from the fact that 〈SitA,�A〉 is a well-founded set (Proposition 5),
that ≺∗ is a strict well-founded order on At

τisc
A . �

This proposition, together with Corollary 3, has an interesting consequence.

Proposition 8. The theories Dif ∧ Δsc and Dif ∧ comp(Δsc) are logically equivalent.

We now formulate the property mentioned in the introduction of this paper.

Definition 13. We say that a basic action theory Disc := Dif ∪ Duna(Act) ∪ Dinit ∪ {Δsc} of the inductive situation
calculus satisfies the Initial State Expansion property if for every τinit-model Io of Dinit, for arbitrary extension I of Io

to (symbols of) sort Act, if I satisfies Duna(Act), then there is a unique τ -model (modulo isomorphism) of Disc which
extends I .

When Disc satisfies the Initial State Expansion property, then, in particular, every τinit-model Io of Dinit has a
unique τ -extension (modulo isomorphism) satisfying Disc ∪Duna(Act) ∪DDCA(Act).

As argued in Section 1, the initial state expansion property shows that the inductive situation calculus satisfies the
property of relative satisfiability and correctly solves the frame problem in the sense that a basic action theory has no
unintended models with spontaneous generation of effects (or “deus ex machina” effects, as they were called in [9])
of the kind that occurred in early solutions to the frame problem. Another of its implications is that the subtheory
modeling the state transitions is logically independent of the theory of the initial state and does not interfere with it in
determining what are the initial states. Clearly, it would be most unpleasant if describing the effects of actions would
somehow impose constraints on the initial state.

Proposition 9. A basic action theory of the inductive situation calculus (18) satisfies the Initial State Expansion
property.

Proof. By Proposition 4, each extension of a τinit-structure to sort Act can be extended in a unique initial structure A.
By Corollary 4, the extension of A that satisfies Δsc is unique. �

We now investigate the relationship to Reiter’s situation calculus.
For a given vocabulary τ , let M|τ denote the restriction of the structure M to the symbols of τ .

Definition 14. Suppose that τ1, τ2 are vocabularies extending τ , and let T1, T2 be theories in respectively τ1, τ2. We
call T1 equivalent in τ to T2 if for each τ1-model M1 of T1, there exists a τ2-model M2 of T2 such that M1|τ = M2|τ
and vice versa.
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Recall that τisc extends τsc with the new symbols IFi
,CFi

and C¬Fi
.

Theorem 5. A basic action theory of the inductive situation calculus

Dif ∪Duna(Act) ∪Dinit ∪ {Δsc}
is equivalent in τsc to the Reiter-style basic action theory

Df ∪Duna(Act) ∪DS0 ∪Dss,

where DS0 is the theory obtained from Dinit by substituting Fi(t̄ , S0) for each atom IFi
(t̄) and Dss is the set of the

successor state axioms corresponding to Δsc.

Proof. Dif and Df are logically equivalent. By Proposition 8, Df ∪Duna(Act) ∪Dinit ∪ {Δsc} is logically equivalent to
Df ∪Duna(Act) ∪Dinit ∪ comp(Δsc), where comp(Δsc) is

n∧
i=1

∀x̄i∀s Fi(x̄i , s) ≡ (s = S0 ∧ IFi
(x̄i ) ∨

∃a∃s′ s = do(a, s′) ∧ (CFi
(x̄i , a, s′) ∨ Fi(x̄i , s

′) ∧ ¬C¬Fi
(x̄i , a, s′)))

∧
n∧

i=1

∀x̄i∀a∀s CFi
(x̄i , a, s) ≡ γ +

Fi
(x̄i , a, s)

∧
n∧

i=1

∀x̄i∀a∀s C¬Fi
(x̄i , a, s) ≡ γ −

Fi
(x̄i , a, s).

(19)

Since, by the domain closure axiom for situations,

∀s(s = S0 ∨ ∃a∃s′s = do(a, s′)),

Df ∪ {(19)} is logically equivalent to Df ∪ {(20), (21)}, where

n∧
i=1

∀x̄i∀s∀a Fi(x̄i ,do(a, s)) ≡ CFi
(x̄i ,do(a, s)) ∨ Fi(x̄i , s) ∧ ¬C¬Fi

(x̄i ,do(a, s)) (20)

and

n∧
i=1

∀x̄i IFi
(x̄i ) ≡ Fi(x̄i , S0)

∧
n∧

i=1

∀x̄i∀s∀a CFi
(x̄i , a, s) ≡ γ +

Fi
(x̄i , a, s) (21)

∧
n∧

i=1

∀x̄i∀s∀a C¬Fi
(x̄i , a, s) ≡ γ −

Fi
(x̄i , a, s).

Given the equivalences in (21), it is clear that Dif ∪ Duna(Act) ∪ Dinit ∪ {(20), (21)} is logically equivalent to Df ∪
Duna(Act) ∪DS0 ∪Dss ∪ {(21)}.

Finally, observe that in the latter theory, the predicate symbols IFi
, CFi

and C¬Fi
occur only at the left-hand

side of the explicit definitions in (21). It follows that Df ∪ Duna(Act) ∪ DS0 ∪ Dss ∪ {(21)} is equivalent in τsc to
Df ∪Duna(Act) ∪DS0 ∪Dss. �

Note that our definition Δi
fluent does not contain rules of the form

∀x̄i∀a∀s (¬Fi(x̄i , a, s) ← C¬F (x̄i , a, s)). (22)

i
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However, under a natural requirement, we can derive negative effect axioms of actions, as we demonstrate below. The
requirement is that a fluent and its negation are not caused to hold in the same situation. Formally, the requirement is
that the basic action theory should entail the following sentence:

n∧
i=1

∀x̄i∀a∀s ¬(γ +
Fi

(x̄i , a, s) ∧ γ −
Fi

(x̄i , a, s)).

It is easy to show now that if this requirement is satisfied, then the negative effect axiom is implied. Observe that each
successor state axiom entails

∀x̄i∀a∀s (¬γ +
Fi

(x̄i ,do(a, s)) ∧ γ −
Fi

(x̄i ,do(a, s)) ⊃ ¬Fi(x̄i ,do(a, s))).

Under the requirement, the first literal in the condition is entailed by the second, so we can drop it and we obtain the
negative effect rule

∀x̄i∀a∀s (γ −
Fi

(x̄i ,do(a, s)) ⊃ ¬Fi(x̄i ,do(a, s))).

Therefore, in the context of Inductive Situation Calculus, rule (22) is not necessary. This observation illustrates a
principle of inductive definitions which was mentioned in Section 2.2. In an inductive definition, one defines a concept
by enumerating positive cases. Given such an enumeration, the closure mechanism underlying inductive definitions
yields the negative cases.

Recall that in Reiter’s situation calculus, the successor state axioms, in particular the formulas γ +
F (x̄, a, s) and

γ −
F (x̄, a, s) are obtained by compiling a set of effect rules of the form ∀x̄∀a∀s (δi

F (x̄, a, s) ⊃ F(x̄,do(a, s))) and

∀x̄∀a∀s (ν
j
F (x̄, a, s) ⊃ ¬F(x̄,do(a, s))). In ID-logic, the unique rule defining CF can be replaced by a set of defini-

tional implications:

∀x̄∀a∀s (CF (x̄, a, s) ← δi
F (x̄, a, s)).

Likewise, the predicate C¬F can be defined directly by a set of effect rules of the form:

∀x̄∀a∀s (C¬F (x̄, a, s) ← ν
j
F (x̄, a, s)).

Note that in Reiter’s situation calculus, the compilation of effect rules into successor state axioms is crucial to
obtain a correct axiomatization of the action domain. While each effect axiom is correct independently, together they
are too weak to axiomatize the action domain, i.e., there are many unintended models. The compilation into successor
state axioms modifies the meaning of the theory and eliminates all unintended models. The transformation turns an
incorrect (in the sense of too weak) theory into a correct theory (provided the set of effect axioms is correct and
complete).

In the inductive situation calculus, the situation is very different. Indeed, substituting all definitional effect rules
defining CF by the unique rule

∀x̄∀a∀s

(
CF (x̄, a, s) ←

k∨
i=1

δi
F (x̄, a, s)

)

is equivalence preserving, and likewise for C¬F . Compilation is not necessary anymore to obtain a correct represen-
tation! It is this phenomenon that we had in mind in the introduction when we claimed that Reiter-style situation
calculus contains hidden forms of definitions.

4.2. Indirect effects

The ramification problem arises when one wants to capture indirect effects of actions in a logic-based formalism.
It has been shown (e.g., [19]) that state constraints are generally inadequate for deriving indirect effects of actions,
and that some notion of causation is needed. Unlike material implication, causal implications are not contrapositive
which makes them similar to the rules of inductive definitions. This correspondence between inductive definition rules
and causal rules is the foundation of our solution to the ramification problem. The semantic correspondence between
causality rules and rules in an inductive definition was independently pointed out in [36,37] and in [9]. The resulting
definition Δsc is not a definition by well-founded induction but, in general, an iterated inductive definition.
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Let, as before, CFi
and C¬Fi

represent initiating and terminating causes for Fi , respectively. We extend the
use of the causality predicates to specify indirect effects of actions. For example, according to the causal rule
∀a∀s(CF2(a, s) ← C¬F1(a, s)), when an action a causes termination of F1, then the same action, indirectly, causes
the initiation of F2. We relax the conditions on Δi

effect, so that any number of rules of the following form can appear
in it:

∀x̄∀a∀s (CFi
(x̄i , a, s) ← Ψ +

Fi
(x̄i , a, s)),

∀x̄∀a∀s (C¬Fi
(x̄i , a, s) ← Ψ −

Fi
(x̄i , a, s))

(23)

where Ψ + and Ψ − are formulas with free variables among x̄i , a, s, with only free occurrences of a and s and no other
symbols of sort Act or Sit. In such a formula, a fluent atom is of the form Fj (t̄j , s) and a causality atom is of the form
C(¬)Fk

(t̄k, a, s). Note that in the direct effect case, causality predicates were excluded from bodies of rules of Δi
effect.

The basic action theory (18) in which now we allow ramification rules of the form (23) in Δsc, encodes our solution
to the ramification problem in the inductive situation calculus.

Let us define Δeffect = Δ1
effect ∪· · ·∪Δn

effect, the collection of direct and indirect effect rules for all fluents. Consider
the following partition of Δsc:

{Δ1
fluent, . . . ,Δ

n
fluent,Δeffect}. (24)

Proposition 10. Partition (24) is a reduction partition of Δsc in each initial structure A.

Proof. Let A be an initial structure with domain A. We construct a reduction ≺ of Δsc on At
τisc
A in the rule-by-rule

way. This produces the following tuples:

(CFi
[ū, a, s],Fi[ū, doA(a, s)]),

(Fi[ū, s],Fi[ū, doA(a, s)]), (C¬Fi
[ū, a, s],Fi[ū, doA(a, s)]),

(Fj [ū, s],C(¬)Fi
[v̄, a, s]),

(C(¬)Fj
[ū, a, s],C(¬)Fi

[v̄, a, s]),
for arbitrary tuples of objects ū and v̄, for arbitrary elements a of the action sort and s of the situation sort and for each
i, j . Notice that a causality domain atom C(¬)Fj

[v̄, a, s] depends on each fluent atom in s and each other causality
atom in a and s. This is a reduction of rules of the form (23).

Since any superset of a reduction relation is also a reduction relation, the reflexive, transitive closure ≺∗ is a
reduction relation. Moreover, it follows from the fact that 〈SitA,�A〉 is a (pre-)well-founded set (Proposition 5), that
≺∗ is a pre-well-founded order on AtAA . It is easy to see that for atoms P [ā], Q[b̄] from AtAA , if Q[b̄] ≺∗ P [ā] and
P [ā] ≺∗ Q[b̄], then P and Q are defined in the same sub-definition. Therefore, partition (24) is a reduction partition
of Δsc. �

As a corollary of this proposition, we obtain the following property.

Proposition 11. A basic action theory (18) with indirect effects is equivalent to

Dif ∪Duna(Act) ∪Dinit ∪
{

n∧
i=1

Δi
fluent ∧ Δeffect

}
(25)

and to

Df ∪Duna(Act) ∪DS0 ∪
{

n∧
i=1

comp(Δi
fluent) ∧ Δeffect

}
. (26)

Proof. The theory (25) is obtained from the basic action theory by splitting Δsc. Since partition (24) is a reduction
partition in Dif, it follows from Corollary 1 that this is equivalence preserving. The proof of the equivalence with (26)
is similar as the proof of Theorem 5. The main step is to show that Δi and comp(Δi ) are equivalent in initial
fluent fluent
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structures. This follows from the fact that each Δi
fluent is a definition by well-founded induction over ≺∗, the strict

well-founded order constructed in the proof of Proposition 7. �
Proposition 12. If Δeffect is total in (any subtheory of ) Dif ∪Duna(Act) ∪Dinit, the basic action theory (18) with indirect
effects satisfies the Initial State Expansion property.

Proof. Let I be an extension of a τinit-model of Dinit to sort Act which satisfies Duna(Act) and let A be its unique
τ o

isc-extension satisfying Dif. Since Δeffect is total in A, partition (24) is a total reduction partition of Δsc in A, and by
Theorem 2, Δsc is total in A and has a unique model extending A. �

In general, there is no simple uniform way in which a basic action theory with ramification rules can be translated
into classical logic. However, the corollary provides a basis for proving several translation results, depending on the
properties of Δeffect. The theorem below considers the case that Δeffect is a positive inductive definition.

Theorem 6. If Δeffect is a positive definition then the basic action theory (18) satisfies the Initial State Expansion
property and is equivalent to the theory

Df ∪Duna(Act) ∪DS0 ∪
{

n∧
i=1

comp(Δi
fluent) ∧ PID(Δeffect)

}

and to the theory

Df ∪Duna(Act) ∪DS0 ∪
{

n∧
i=1

comp(Δi
fluent) ∧ CIRC(Δeffect)

}
.

4.2.1. Example: N Gear wheels
Let us describe a simple idealized mechanical system consisting of a number of gear wheels w1, . . . ,wn, each pair

of which may or may not be mechanically connected. For each of these wheels, we consider two states: turning or
stopped. For each of these wheels, we consider two actions start(wi) and stop(wi). The first action gives an impulse
to the wheel which propagates over the system to all connected gear wheels; the second action brakes the wheel and
all connected wheels. We assume that once a wheel turns, it continues to turn (there is no friction; this system behaves
as a perpetuum mobile) until there is a stop action.

We are faced here with a ramification problem—the problem of how to describe the propagation of effects through
the system of connected gear wheels. The goal is to develop a modular temporal theory describing the effects of the
basic actions and the propagation of effects. As a correctness criterion, we should be able to prove the state constraint
that in all situations, a gear wheel w is turning if and only if all reachable wheels (those connected to w in the transitive
closure of the connection graph) are turning as well.

We could represent this example in Reiter’s basic situation calculus [34]. To do this we could pre-compute for
each wheel the set of reachable wheels in the connection graph; it suffices then to express that the action of starting
(respectively, stopping) a wheel w has the immediate effect to initiate (respectively, terminate) the turning state of
wheel w and each wheel reachable from w. This representation would have some important drawbacks. First, notice
that this pre-compilation would be impossible if the physical connection relation between gear wheels would be a
dynamic relation and gear wheels could be connected or disconnected. Such an example is worked out in Section 4.3.1.
Second, the transitive closure of the physical connections between gear wheels is an example of a global property
of the system which emerges as an interaction of local properties, namely the physical connections between gear
wheels. If we explicitly represent such global properties then a small change of a local property (e.g. adding a new
connection or deleting an existing connection between two gear wheels) may have a strong impact on the global
properties and hence on the theory (e.g. disconnecting one pair of gear wheels may split a large interconnected set of
connected wheels and would affect the representation of the effect of all actions on all wheels in this set). In a modular
representation, only local properties of the components should be represented explicitly; global properties should be
derivable from a generic part of the theory which does not explicitly depend on the actual configuration of the system.
This is an aspect of elaboration tolerance [24].
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To obtain a modular representation in the gear wheel example, we need to be able to express the reachability from a
specific wheel in an arbitrary graph. It is well-known that this concept cannot be expressed in first-order logic. Below
we present a formalization through an iterated inductive definition.

In the gear wheel example, there is one domain-dependent sort, denoted Gear_wheel. Action symbols are start and
stop and have an argument of sort Gear_wheel. The unique fluent Turns has arguments of sort Gear_wheel and Sit.

Basic components of the inductive situation calculus for the Gear wheel example are the foundational axioms Dif of
situations and the unique name axioms Duna(Act) for actions. The main axiom of our theory is the simultaneous iterated
inductive definition Δsc of the fluent Turns and its causality predicates CTurns and C¬Turns. The effect propagation
process caused by start or stop actions in one situation will be modeled by a monotone induction. To define the fluent
Turns for all states, the monotone induction is then iterated over the well-founded structure of situations.

The definition Δsc can be split up in two sub-definitions. The first part of the definition consists of the standard
rules for the fluent Turns:

ΔTurns
fluent :=

⎧⎪⎨
⎪⎩

∀g (Turns(g, S0) ← ITurns(g))

∀g∀a∀s (Turns(g,do(a, s)) ← CTurns(g, a, s))

∀g∀a∀s (Turns(g,do(a, s)) ← Turns(g, s) ∧ ¬C¬Turns(g, a, s)).

⎫⎪⎬
⎪⎭.

The second part is the definition Δeffect which describes the causation predicates CTurns and C¬Turns. The following
set of rules Δeffect specify direct and indirect effects of actions:

Δeffect :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∀g∀a∀s (CTurns(g, a, s) ← a = start(g)),

∀g∀a∀s (C¬Turns(g, a, s) ← a = stop(g)),

∀g∀a∀s (CTurns(g, a, s) ← ∃g′Connected(g, g′) ∧ CTurns(g
′, a, s)),

∀g∀a∀s (C¬Turns(g, a, s) ← ∃g′(Connected(g, g′) ∧ C¬Turns(g
′, a, s)))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

These rules contain positive recursion. Define Δsc := ΔTurns
fluent ∪ Δeffect. This definition defines the predicates Turns,

CTurns and C¬Turns by simultaneous non-monotone induction in terms of the open predicates ITurns and Connected.
Notice that the statement of the problem does not specify what gearwheels exist, how they are connected and

whether they are initially turning. Consequently, the theory Dinit consists only of two axioms which express general
laws of connected gearwheels. The first axiom expresses that the relation symbol Connected, which describes the
physical connections between the gear wheels, is a symmetric relation:

∀g∀g′ (Connected(g, g′) ⊃ Connected(g′, g)).

The second axiom of Dinit is related to the state constraint of this system which is that interconnected gear wheels are
in the same state: either turning or in rest. The ramification rules guarantee that this state constraint is preserved, but
not that it holds initially. Therefore, we have to add the constraint for the initial state. This is described by the axiom

∀g∀g′ (Connected(g, g′) ⊃ ITurns(g) ≡ ITurns(g
′)). (27)

The full axiomatization of the domain consists of

Dwheels := Dif ∪Duna(Act) ∪Dinit ∪ {Δsc}.
Below we analyze the theory Dwheels. Since Δeffect is a positive definition, the basic action theory Dwheels satisfies

the conditions of Theorem 6. Consequently, we have the following proposition.

Proposition 13. The theory Dwheels satisfies the Initial State Expansion property and is equivalent to

Df ∪Duna(Act) ∪Dinit ∪ {comp(ΔTurns
Fluent) ∧ PID(ΔEffect)}.

Proposition 14. The theory Dwheels logically entails the state constraint:

∀g∀g′∀s (Connected(g, g′) ⊃ Turns(g, s) ≡ Turns(g′, s)).

Proof. The proof is model-theoretic. Let I be a model of Dwheels. We use induction on the length of the situations. It
follows from axiom (27) on the initial state, that

∀g∀g′ (Connected(g, g′) ⊃ Turns(g, S0) ≡ Turns(g′, S0)).
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Assume that the property is satisfied for situation s. We prove that it holds for the successor situation doI (a, s), for
arbitrary action a.

Select any pair (g, g′) ∈ ConnectedI . By definition Δeffect, if CTurn(g
′, a, s) is true then so is CTurn(g, a, s). Because

the graph ConnectedI is symmetric, it follows that CTurn(g, a, s) and CTurn(g
′, a, s) have the same truth value. The

same holds for C¬Turn. The induction hypothesis states that in situation s all connected wheels are in the same state.
By the above observation, the action a has the same effects on all connected wheels. Consequently, the induction
hypothesis is preserved in situation doI (a, s). �
4.2.2. Non-monotone ramification rules

In [9], it was argued that to model certain forms of ramifications, also non-monotone ramification rules are useful.
We illustrate this with a variant of the suitcase example from [19].

Example 1 (suitcase). Several versions of this example (e.g. [9,19,38]) have been used to demonstrate that domain
constraints are not strong enough to solve the ramification problem and that an explicit notion of causality is necessary.
Suppose we have a suitcase which is opened by a spring mechanism on the moment both its locks are being open. To
model this example, the sort lock is used. Fluent O represents the fact that the suitcase is open; fluent OpenL with
an argument of sort lock means that the lock is open. Action symbols open and close with one argument of sort lock
represent actions of opening and closing the respective lock. Two constants l1, l2 of sort lock represent the two locks.
Let Δeffect consist of the following rules:

∀l∀a∀s (COpenL(l, a, s) ← a = open(l)),

∀l∀a∀s (C¬OpenL(l, a, s) ← a = close(l))

and

∀a∀s

(
CO(a, s) ← ∀l

(
COpenL(l, a, s) ∨

(OpenL(l, s) ∧ ¬C¬OpenL(l, a, s))

))
. (28)

For every fluent F from the set {OpenL,O}, we have the standard fluent definition ΔF
fluent. Finally, we have:

Dinit := DDCA(lock) ∪Duna(lock) ∪ {∀l(IOpenL(l) ⊃ IO

}
.

Interestingly, the definition Δeffect is not recursive and hence is total in each structure. It can be translated into
classical logic by taking its completion. Consequently, the entire definition Δsc can be translated into the classical
logic theory comp(Δsc).

The example illustrates several points of interest. First, ramifications may sometimes rely on the absence of certain
causes. In such cases, the use of non-monotone causation rules such as the rule defining CO is appropriate. Second,
ramification rules are useful for modeling simultaneous effects and concurrency. Such simultaneous effects cannot
occur in the above situation calculus but could occur in extensions with concurrent actions or with additional ac-
tions and/or ramifications which could affect both locks simultaneously. For the sake of illustrating this, consider the
following extension.

Example 2. Consider an extension of Example 1 in which the suitcase has a central button which switches the state
of the two locks of the suitcase. The effects of pushing this button are expressed by the additional effect rules:

∀l∀a∀s (COpenL(l,pushbutton, s) ← ¬OpenL(l, s)),

∀l∀a∀s (C¬OpenL(l,pushbutton, s) ← OpenL(l, s)).

Note that executing the action pushbutton in a state where one lock is open and the other is closed, produces simul-
taneous effects of opening one lock and closing the other lock, and this would not open the suitcase. In fact, the
ramification rule describes the intended behaviour of the suitcase for every combination of effects on both locks.

As a last point, we illustrate an alternative style of representing complex forms of ramifications.
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Example 3. In the suitcase example, the suitcase is caused to open on the instant that both locks are open. Let us
replace the rule (28) by the following more direct representation of this:

∀a∀s (CO(a, s) ← ∀lOpenL(l,do(a, s))). (29)

According to this rule, when all locks are open in the successor state do(a, s), then a causes the suitcase to open
in situation s. Adding this axiom changes the structure of the definition. So far, causality predicates at state s were
defined in terms of fluents and causality predicates at state s. Here, CO in state s is defined in terms of OpenL in
the future state do(a, s). This is no longer induction on the well-founded set of situations. However, the resulting
definition is still a definition by well-founded induction in each initial structure A, although the underlying order does
not entirely follow the order of situations. Indeed, the reduction relation ≺ constructed in the standard way, consists
of the following tuples, for arbitrary lock l, situation s and action a:

(COpenL[l, a, s],OpenL[l,doA(a, s)]),
(OpenL[l, s],OpenL[l,doA(a, s)]), (C¬OpenL[l, a, s],OpenL[l,doA(a, s)]),
(CO [a, s],O[doA(a, s)]),
(O[s],O[doA(a, s)]), (C¬O [a, s],O[doA(a, s)]),
(OpenL[l,doA(a, s)],CO [a, s]).

It is easy to verify that the transitive closure ≺∗ is a strict well-founded order. Hence, Δsc is a definition by well-
founded induction in each initial structure A. It follows that this definition can be translated in FO using completion
and the Initial State Expansion property is still satisfied.

4.2.3. Limits of the approach
As pointed out in [9], there is a subtle modeling issue involved in the use of non-monotone ramification rules. In

the inductive situation calculus, the ramification rules are used to model an effect propagation process. In the physical
reality, the effect propagations in this process are not instantaneous, but take a small lapse of time. The intermediate
states during this process are not modeled explicitly in the situation calculus. In each of these intermediate states,
certain causes may have occurred already, and other causes did not yet occur. Therefore, it is possible that the condition
of an effect rule, if it contains a negative cause literal ¬CF (t̄, a, s), is satisfied during such an intermediate state, when
the cause of F(t̄ ) was not yet produced, but not in the final state. In such a case, according to the inductive situation
calculus, the effect described by the rule will not occur. Stated differently, if, during the propagation process, the
conditions of an effect rule are satisfied in some intermediate state, and one of the conditions is the absence of a
certain cause, then the effect will not be inferred if there is a possibility that this cause is still produced later during
the propagation process.

Example 4. Reconsider the effect rule for opening the suitcase of Example 1 and Example 2:

∀a∀s

(
CO(a, s) ← ∀l

(
COpenL(l, a, s) ∨

(OpenL(l, s) ∧ ¬C¬OpenL(l, a, s))

))
.

Suppose we push the central button to switch the states of the locks. The mechanism might be just a tiny bit faster to
switch the lock l1 than the lock l2. If the first one was already closed and the second open, then there will be a brief
intermediate state during which the two locks will be open and the conditions of the above effect rule are satisfied.
This state will last only a fraction of a second, after which the second lock is closed. For an old-fashioned suitcase
with mechanical spring mechanism, this is not enough time to open the suitcase. So, the suitcase does not open. The
above rule correctly models this situation.

Now, consider a high-tech suitcase in which a microprocessor monitors the state of the two locks, and when both
are open, it sends a signal to an electric motor to open the suitcase. Compared to the old-fashioned suitcase, the effect
propagations are the same. However, there is a difference on the level of the reaction time of the opening effect. The
microprocessor reacts in microseconds and will detect the state change of the first lock before that of the second. So,
in this case, the suitcase will be opened. The ramification rules of the inductive situation calculus cannot be used to
model the high-tech suitcase.
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4.3. Defined fluents

In this section, we propose a second extension of the inductive situation calculus by allowing defined fluents. Such
fluents are not governed by effect laws and the law of inertia, but by a definition in terms of existing fluents.

Example 5. In the standard ontology of the blocks world problem, there are basic actions pick(b) and put(b, l), and
fluents

• On(b, l, s): the block b is on location l, which is the table or another block;
• Clear(b, s): nothing is on block b;
• Clasped(b, s): the robot clasps block b;
• Free(s): the robot hand is free.

We could represent the effects of the actions on every of these fluents. It is perhaps more natural to represent the
effects on On and Clasped and to define the fluent Clear in terms of On and the fluent Free in terms of Clasped. The
definitions are:{∀b∀s (Clear(b, s) ← ¬∃b′ On(b′, b, s))

}
,{∀s (Free(s) ← ¬∃b Clasped(b, s))

}
.

We could also define the fluent Above(b, b′, s) expressing that in state s, block b is above b′. It is defined as the
transitive closure of the fluent On(b, b′, s):{∀b∀b1∀s (Above(b, b1, s) ← On(b, b1, s)),

∀b∀b1∀s (Above(b, b1, s) ← ∃b2(Above(b, b2, s) ∧ Above(b2, b1, s)))

}
.

In a sense, defining fluents is also a way of representing ramifications. Indeed, one could view the fact that Free(s)
is initiated or terminated as a ramified effect of terminating or initiating Clasped(b, s). Yet, there is a definite difference
with the sort of ramification considered in Section 4.2. In that section, the causality rules model the propagation of
effects through the system. Here, a defined fluent is (sometimes) only a new name denoting some, potentially complex,
configuration of the primitive fluents.

Below we distinguish between defined fluents and primitive fluents. Primitive fluents are defined in the standard
way. To represent defined fluents, we extend the inductive situation calculus by allowing the definition Δsc of Sec-
tion 4.2 to be extended with a set of rules Δdef of the form:

∀x̄∀s (Fd(x̄, s) ← Ψ (x̄, s)), (30)

where Fd is a defined fluent and Ψ is a formula where s has only free occurrences, contains no causality predicates
and every fluent atom is of the form Fi(t̄i , s), where Fi may be a defined or a primitive fluent. We do not introduce
initial state or causation predicates for defined fluents in τisc.

Consider the following partition of Δsc:

{Δ1
fluent, . . . ,Δ

n
fluent,Δeffect,Δdef} (31)

where Δi
fluent is the standard definition of a primitive fluent Fi .

Proposition 15. Partition (31) is a reduction partition of Δsc in each initial structure A.

Proof. Let A be an initial structure with domain A. We construct a reduction relation ≺ in At
τisc
A in the normal

rule-by-rule way. It consists of all tuples:

(CFi
[ū, a, s],Fi[ū,doA(a, s)]),

(Fi[ū, s],Fi[ū,doA(a, s)]), (C¬Fi
[ū, a, s],Fi[ū,doA(a, s)]),

(Fj [ū, s],C(¬)F [v̄, a, s]),

i



356 M. Denecker, E. Ternovska / Artificial Intelligence 171 (2007) 332–360
(C(¬)Fj
[ū, a, s],C(¬)Fi

[v̄, a, s]),
(Fi[ū, s],Fk[v̄, s]),

for arbitrary i, for arbitrary j and j ′ such that Fj and Fj ′ are primitive fluents, for arbitrary k such that Fk is a defined
fluent, for arbitrary tuples of objects ū and v̄, for arbitrary elements a of the action sort and s of the situation sort.
Notice that according to the last line, each defined fluent domain atom Fk[v̄, s] depends on each fluent atom Fi[ū, s]
and hence, ≺ is a reduction relation of each rule in Δdef.

From here on, the proof is very similar to that of Proposition 10. Again, it is easy to show that ≺ is a reduction
relation. Its reflexive, transitive closure ≺∗ is a reduction relation and a pre-well-founded order on At

τisc
A . It is easy

to see that for atoms P [ā], Q[b̄] from At
τisc
A such that Q[b̄] ≺∗ P [ā] and P [ā] ≺∗ Q[b̄], P and Q are defined in the

same sub-definition. Therefore, partition (31) is a reduction partition of Δsc in A. �
As a corollary of this proposition and the decomposition theorems, Theorem 1 and Theorem 2, we obtain the

following property.

Corollary 5. If Δeffect and Δdef are total in (each subtheory of ) Dif ∪ Duna(Act) ∪ Dinit, then the basic action theory
(18) satisfies the Initial State Expansion property, and is equivalent to the theory Df ∪Duna(Act) ∪DS0 ∪{∧n

i=1 Δi
fluent ∧

Δeffect ∧ Δdef}.

This modularity result can be used to prove the correctness of several translations from inductive situation calculus
with defined fluents to classical logic.

4.3.1. Example: Gear wheels with friction
In this example, we consider another version of the gear wheel problem in which the connections between gear

wheels can be dynamically changed (as in the gears of a car) and in which friction is taken into account. We assume
that some of the gear wheels have a fixed connection to an engine. This engine can be started or stopped. A gear wheel
is in rest unless it is connected directly or indirectly to a running engine. There are actions to start or stop (the engine
of) a gear wheel and to connect or disconnect gear wheels.

We use the following vocabulary with sort Gear_wheel:

• Turn(g, s): gear wheel g is turning;
• Emp(g, s): gear wheel g is empowered;
• DirEmp(g, s): gear wheel g is attached to an operating motor (i.e., is directly empowered);
• Con(g, g′, s): gear wheels g and g′ are directly connected;
• start(g), stop(g): the actions of starting and halting the engine attached to g;
• connect(g, g′),disconnect(g, g′): the actions of connecting and disconnecting a pair of gear wheels.

Defined fluents are axiomatized by the following set Δdef of rules. We represent that a gear wheel g is turning iff
it is empowered. It is empowered if it is attached to a running engine (i.e., DirEmp(g, s) is true), or there is a path of
gear wheel connections to such a directly empowered gear wheel:

Δdef =

⎧⎪⎨
⎪⎩

∀g∀s (Turn(g, s) ← Emp(g, s)),

∀g∀s (Emp(g, s) ← DirEmp(g, s)),

∀g∀s (Emp(g, s) ← ∃g1(Con(g, g1, s) ∧ Emp(g1, s)))

⎫⎪⎬
⎪⎭,

Δ
DirEmp
fluent =

⎧⎪⎨
⎪⎩

∀g (DirEmp(g, S0) ← IDiREmp(g)),

∀g∀a∀s (DirEmp(g,do(a, s)) ← CDirEmp(g, a, s)),

∀g∀a∀s (DirEmp(g,do(a, s)) ← DirEmp(g, s) ∧ ¬C¬DirEmp(g, a, s)),

⎫⎪⎬
⎪⎭,

ΔCon
fluent =

⎧⎪⎨
⎪⎩

∀g∀g′ (Con(g, g′, S0) ← ICon(g, g′)),
∀g∀g′∀a∀s (Con(g, g′,do(a, s)) ← CCon(g, g′, a, s)),

∀g∀g′∀a∀s (Con(g, g′,do(a, s)) ← Con(g, g′, s) ∧ ¬C (g,g′, a, s))

⎫⎪⎬
⎪⎭,
¬Con
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Δeffect =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∀g∀a∀s (CDirEmp(g, a, s) ← a = start(g)),

∀g∀a∀s (C¬DirEmp(g, a, s) ← a = stop(g)),

∀g∀g′∀a∀s (CCon(g, g′, a, s) ← a = connect(g, g′)),
∀g∀g′∀a∀s (CCon(g

′, g, a, s) ← CCon(g, g′, a, s)),

∀g∀g′∀a∀s (C¬Con(g, g′, a, s) ← a = disconnect(g, g′)),
∀g∀g′∀a∀s (C¬Con(g

′, g, a, s) ← C¬Con(g, g′, a, s))

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

In this definition, the fluents Turn and Emp are defined. The fluent Emp is defined inductively. The theory Dinit
consists of a single axiom expressing that the initial connection relation between gear wheels is symmetric:

∀g∀g′ (ICon(g, g′) ⊃ ICon(g
′, g)).

Let DFriction := Dif ∪ Duna(Act) ∪ Dinit ∪ {Δsc} where Δsc consists of Δfluent ∪ Δeffect ∪ Δdef as defined above. The
conditions of Corollary 5 apply. Because Δfluent is a definition by well-founded induction and Δeffect and Δdef are
positive inductive definitions, this theory can be translated into classical logic.

Proposition 16. The basic action theory with definitions DFriction satisfies the Initial State Expansion property and is
equivalent to the SO theory

Df ∪Duna(Act) ∪Dinit ∪
{
comp(Δfluent) ∧ PID(Δeffect) ∧ PID(Δdef)

}
.

4.4. More extensions

Many other extensions of situation calculus have been proposed, for example natural actions, concurrency and
continuous time [34]. Most of these extensions can be integrated seamlessly in the inductive situation calculus. One
extension that we briefly discuss here is the one with non-deterministic actions. Obviously, in this case, successor
states cannot be defined in terms of predecessor states and actions, since the latter do not determine the first in a
unique way. A simple technique to model non-determinism is by introducing new open predicates. For example,
consider the non-deterministic effect of rolling a dice, which causes the fluent Dice to take a value between 1 and 6.
This could be represented in the inductive situation calculus by introducing a new binary open predicate Thrown with
a first argument of sort int and a second of sort sit. The effect of rolling a dice on the fluent Dice of sort int is then
represented by the effect rule:

∀n∀s (CDice(n, throw, s) ← Thrown(n, s))

together with axioms stating that for all situations s, there is a unique number n between 1 and 6 such that Thrown(n, s)

holds. This technique can be generalized into a general methodology to represent non-deterministic actions.

5. Related work

The prime goal of this paper is to clarify inductive definitions and their role in common sense knowledge represen-
tation. The application domain is temporal reasoning, situation calculus in particular. In this respect, this paper is only
preceded by earlier work of the authors. The semantic correspondence between inductive definitions and causality
was pointed out independently in [36,37] and [9]. In both cases, the motivation for using inductive definitions was
the similarity between the process of effect propagation in a dynamic system and inductive definitions. Inductive de-
finition formalizations of situation calculus were first presented by Ternovska in [36,37] and, a bit later, by Denecker
in [5]. The backgrounds of these studies were quite different, in one case the classical logic approach developed at
the Cognitive Robotics Group at the University of Toronto, and in the other case, logic programming formalizations
of temporal reasoning. Ternovska [36,37] observed that the construction of a model of Reiter-style situation calculus
is an induction over the well-founded order on situations, and therefore, proposed to model situation calculus with a
logic of inductive definitions. Her approach used Aczel-style abstract monotone induction definitions [1]. To handle
the inherent non-monotonicity of the situation calculus, the monotone definitions were constructed by simultaneous
non-monotone induction. She also extended her solution to acyclic ramification rules and demonstrated that an induc-
tive definition of the set of situations implies the general induction principle on situations [33]. In [9], Denecker et al.
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focussed on the ramification problem in general, and pointed to the similarity with inductive definitions. They studied
the ramification problem with cyclic effect rules and negative conditions, and proposed to use the well-founded se-
mantics to model such complex ramifications. The inductive situation calculus integrates this work in the context of
the situation calculus.

For an overview of the many different approaches for temporal reasoning and/or the ramification problem, we refer
to [9,15,26,34,35,38,39]. Here we limit our discussion to approaches with an explicit representation of causal laws in
situation calculus or non-monotonic logic.

It has been observed that the process of effect propagation is a constructive process: basic actions cause changes
and effects which propagate through the dynamic system; changes do not appear without an external cause (i.e.,
no spontaneous generation of effects, or no deus ex machina effects). The same constructive intuition is found in
inductive definitions. This explains why inductive definitions can correctly model recursive effect propagations. In
this respect, the inductive situation calculus is more general than two other well-known classical logic formalizations
of the situation calculus with ramifications, namely Lin’s approach [19] and McIlraith’s solitary stratified theories [26].
Both approaches impose constraints on ramification rules which preclude recursive ramifications. A strong constraint
in solitary stratified theories is that no fluent symbol is allowed to appear both as an effect and in the precondition of
the same action. On the other hand, McIlraith addresses the qualification problem, which we don’t.

While the above approaches are based on classical logic, causality has also been investigated from a non-monotonic
reasoning perspective. Perhaps the best known non-monotonic logic that takes causality as its basic principle is the
logic of non-monotonic causal theories [15,22]. This language extends propositional logic with causal implications
ϕ ⇐ ψ . Interestingly, this approach takes the opposite point of view with respect to spontaneous generation of effects
than in the inductive situation calculus. Spontaneous generation is not seen as a flaw but as a feature, used to model
exogeneous fluents, fluents that can change state spontaneously. This is modeled by pairs of causal rules

P ⇐ P, ¬P ⇐ ¬P.

As a consequence, cyclic effect rules as found in the gear wheel example, cannot correctly be modeled by recursive
causal rules in this formalism because such a theory would accept unintended models in which two connected gear
wheels cause each other to turn, without external cause. While this seems a weakness of this formalism, it is clear
that the possibility of representing exogeneous events or fluents is a useful feature. The challenge here is to integrate
exogeneous fluents with a correct treatment of cyclic effect rules.

6. Conclusion

This paper explains the inductive nature of the situation calculus. We have shown that—unsuspected by its
creators—the original Reiter-style situation calculus makes hidden use of inductive definitions. We made these de-
finitions explicit and found monotone and non-monotone induction. We formalized these definitions in a logic of
inductive definitions (ID-logic) thus obtaining a variant of the situation calculus which we call the inductive situation
calculus. We presented a translation to classical logic to show that the inductive situation calculus is indeed equivalent
to the standard formalization in the case without ramifications.

Our ID-logic formalization offers a number of advantages compared to classical logic. First, in the Reiter-style
situation calculus, different forms of induction are formalized in different ways. By using a logic of inductive defini-
tions, we obtained a uniform and modular representation. Second, the use of inductive definitions allowed us to extend
the situation calculus to cope with complex temporal phenomena such as (recursive) ramifications and (inductively)
defined fluents. We also proved that the inductive situation calculus (and Reiter’s situation calculus) satisfies the Initial
State Expansion property.

Our work contributes also on other levels. First, it presents the situation calculus as an application of the principle of
iterated induction in the context of commonsense reasoning thus giving insight into this complex and little known form
of non-monotone induction. Second, our analysis showed that the modularity, totality and transformation theorems
are powerful tools for analyzing and transforming large definitions, by allowing to break them up using the modularity
theorem and translating them piecewise to classical logic.

Finally, our experiment demonstrates that the use of different forms of inductive definitions is not limited to mathe-
matics, but is applicable in a much wider area of knowledge representation and commonsense reasoning. In particular,
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it seems that inductive definitions are well-suited for reasoning about causality. Perhaps this is not so surprising. Af-
ter all, mathematical induction is about construction of complex mathematical objects. In this respect, mathematical
induction may be viewed as an application of causal reasoning in the idealized abstract context of mathematics, rather
than in the much more complex realm of commonsense reasoning.
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[20] V.W. Marek, M. Truszczyński, Stable models and an alternative logic programming paradigm, in: K.R. Apt, V. Marek, M. Truszczyński,
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