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Abstract. The question of how often the same d:stance can occur between & distinct points in
n-dimensional Euclidean space E,, nz: been extensively studied by Paul Erdds and others. Sir
Alexander Oppenheim posed the somewhat similar provlem of investigating how many triangles
with vertices chosen from ar10.,3 & psints in E,, can have the same non-zeso area. A subsequent
article by Erdos and Purdy gave some prefiminary results on this problem. Here we carry that
work somewhat further and show :hat there can-10t be more than ck>~ € triangles with the
same non-zero area chosen from among k peints in Es, where ¢ is a positive constant. Since
there can be k> such triangles in Eg, the result is in a certain sense best possible, The methods
used are mainly combinatorial and geometrical. A miu.n tool is a theorem on generalized graphs
due to Paul Erdés.

1. Introduction

Let there be given n points X, ..., X, in k-dimensional Euclidear
space E;. Denote by d(X;, X;) the distance between X; and X;. Let
A(Xy, ..., X,) be the number of distinct values of d(X;, X;), 1 < i<j<n.
Put fi (n) = min A(X,, ..., X,,), where the minimum is taken over all pos-
sible choices of distinct X, ..., X,,. Denote by g; (1) the maximum num-
ber of solutions of d(X;, X;) =a, 1 <i<j<n, where the maximum is to
be taken over all possible choices of « and » distinct points X,..., X',
The estimation of f; (r) and g; (r) are difficult problems even for k=2
It is known (see [ 1, 7]) that

(1) cn*? < fy(n) < Cnj\/logn.
(2) nx*(1+c/loglogn) < g,(n) < Ccn3t

where ¢ and C are positive absolute constants and a*#b denotes ab.
If k > 4, the study of g (n) becomes somewhat simpler ([4] see also

(21).
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A. Oppenheim posed the problem of investigating the number of
-riangles chosen from n points in the plane which have the same non-
ero area. This question and its generalization were first investigated

in [S1. In this note I support some claisns made in [5].
|
b

2. Notations

Letn 2 3, X,, ..., X,; be n points in 4-dimensional space E; and let
‘A 0.

We cefine g}f)(n' X, .3 A) to bs the number of triangles of the
form X; X; X} having area A We let

gPm; Xy, ... X,) = Max giPin; Xy, ., X, ),

gPn) = XMax gPm; Xy,..., X,) .

Lendp

; Let P be afixed point and define G{¥)(n; X, ..., X,,;; A) to be the num-
berr of triangles of-the forni P X; X; having arca A. We let

G n) = XMax GPn; Xy, ..., X,; D).

Lseess A 2
A>0

Clearly, g, (n) < g2’ () < n GP (n—1) < n GP(n). We see that gf>)(n)
is analogous to g (n).
3. The article of Exrdés and Purdy
It was.sho-wn {5] that
3) cn’ loglogn < ggz)(n) <n G&Z)(n) < 4nd?
where ¢ is a positive absolute constant, and
@ gPm< P SnGPm < cnd

A simple example, which [ shall give in Section 4, shows that G{?(n)
Zen’ and g8 (n) > cn’. It is therefore worth asking whether ggz)(n)
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and g4?)(n) are o(n>). The object of this note is to support the claim
made in [5] that in fact g () < g8 (n) < ¢ n®~ ¢ for some € > 0.

4. The example of Linz generalized

We first give the examplé that shows that G (n) > cn’. Letn>2
be given. Let n = 2:n +r, where 0 < r < 2. Choose a coordinate system
in E4 and put X; = (q;, ;,0,0) for 1 <i<m,and Y; = (0,0,4; b,) for
1 <i< m+r, where (g; b;) are m + r distinct real solutions of a’+pi=1.
Then the m(m + r) triangles O X; Y; are all congruent to the triangles
with sides 1, 1,4/2 and therefore have the same (positive) arza. Hence
GP ()= m(m +r) = 4n* —% > ¢ n?. By choosing the ¢;, b; so that some
of the triangles O Y; Y; and O X; X; are congruent to the 0 X;Y;, we may
improve this to 3n2 +cn but no further

We now show that g(n) > cn®. Let n 2> 3 be given. Let n = 3m -+,
where 0 < r < 3. Choose a coordinate system in Eg, put X; = (a;, b;, 0.
0,0,0)for 1 <i<m,put ¥Y;=(0,0,q; 5;,0,0) for 1 <i< m, end put

Z;=(0,0,0,0,q,, b Jforl1 <i<m+r, where (a;, b;) are m: +r distinct
real solutions of a2 + b2 = 1. Then the m 2(m +r) triangles X; Y Z, are
all equilateral triangles of side length /2. Hence g{? (1) > m2 (m +r>end.

5. Statement of the main theorems

Theorem 5.1. There exist ny, € > O such that g2 (n) < n>€ forn>n,.
Consequently. there exists a positive constant c such that g (n)< cn3
forall r.

Let S) denote the cardinality of the set S. We shall deduce Theorerx
5.1 from the following theorem.

Theerem 5.2. Suppose that A, B and C are finite sets in Eg such that
|41 > M, B} > N and |C| > N, where M and N are certain absolute cor:-
stants. Then the triangles X Y Z for X in A, Y in B.and Z in C cannot
all have the same area, unless that area be zero.
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6. Some graph theory

By an »-graph G we mean an object whose basic components are
its elements, called vertices, and certain distinguished r-element sets of
these elements, called 7-sets. When r = 2, G is an ordinary graph. When
we say that G is a G®(n; m), we mean that G is an r-graph having n
vertices and m r-sets. If G is a G (n; (M), then G is the unique r-graph
which has all possible 7-element sets as its 7-sets. We call this the com-
plete r-graph on # vertices and denote it by KO (n). KV (n, ..., n,) will
denote the r-graph of n, +... +n, vertices and n, ...n, r-sets defined as
follows: The vertices are

X0, 1<j<r, 1<i<n;,
[
and the r-sets of our 7-graph are the n, ... n, r-sets
(X, XD X0}, 1<p<n, 1<j<r.

Denote by f(n; K(,, ..., 1)) the smallest intzger L so that every
GO (n; L) contains a KO, ... 1)).

In an eiementary but not-trivial way, Erdos [ 2, Theorem 1] proves
that if n > ny(, 1), then

(*) fin; KOQ, ., D) < nex(r—1x+(1-1)) .

We shall use this result with r = 3, and we shall i2fer to the 3-sets
of a 3-graph as triples in what follows.
7. The relation between the main theorems

We now prove that Theorem 5.2 implies Theorem 5.1. Let ! be the
maximum of ¥ and N of Theorem 5.2, let € =1~2 and let X;...., X,, be
distinct points in Eg with n > ny(r, ), where ny(r, ) is the function
given in Erdos’s inequality (*). It is an c¢asy consequence of (*) that

Theorem 5.2 implies

(5) g2 m; X, .., X, )< nde
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To see this, let A > 0 and let G’ denote the 3-graph with 7 vertices
Xy, .... X, where the triple X; X; X, isin G if and only if the triangle
X; X; X hasarea A. Then Theorem 5.2 implies that G'> does not con-
tain a K, 1, 1) subgraph, and (5) then follows from (*). Theorem
5.1 follows since .\ was arbitrary.

8. Some lemmas

Before proving Theorem 5.2, we must introduce some definitions
and lemamas. We shall use the notation {x} to mean least integer not
less than x.

Lemma 8.1. Let triangles PX; Y;, 1< i< n+ 1,1 <j< H, all have the
same non-zerc area A, where X;, Y; are points in real Euclidean n-dimen-
sional space. If the n+ 1 distances d(P, X;) are all different and non-
zero, then there are not more than 2"~ distinct distances d(P, Y ).
Hence at least {H/2"1} of the Y, are equidistant from P.

Proof. Let P be the origin of coordinates. Let U; be a unit vector paral-
lel to PX The area of a triangle O X Y can be written in terms of lengths
and the inner product as half the square root of | X| i2 1Yi2—(X- Y. For
all  and j, we have 442 = |X;|? |Y;12— (X;» Y))?, or |Y,12 —(U;- Y))? =

r?, where r; = 14/|X;l. Let C; be the set of solutions ¥ of

(6) Y2 (U1 =12

In fact, C;is a cylinder with axis U; and radius r;. Let k be the rank of
the set {U,,..., U, }. By renaming the U; and choosing a suitable co-
ordinate system, we may suppose that U. = (q;y, ..., a;,) for 1 <i<n+l,
ay # 0for 1 <i< k,anda;=0ifj> k for all i. Puttingr == Y| and

Y »y,...¥,)in(6) and L.olvhng for Y- U;, we obtain

a,-]-yj=i’\/l-‘3!—1‘,-2, 1S1_<.k9
)

= g~

et

2_ .2
ak+1;y]"+\/ “Tke1 {

Sy

We shall snow that r? is the root of a non-zero polynomial of degree at
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most 2k—1_ and the lemma will ollow. Let the system of equations

2‘ L4y =2 (1 < i <€ k) have the solution y; = Zl'f_ gz (LS <k
ard sopese th.at Zpe1 T L" | @+1,j V- The substituting the expression
for the y;, we get

& 7
S = _ .
'zk+l "]Z_‘ ap 41 o 21 bj,-,-zi = s CJ'Z,' for some C]-

Iy

There are 2% functions fi(t) of the form V-1t — Efq * c,-o,/t——r].2
corresponding to the choices of sign. Let P(¢) = f; (¢) ... f,, (2), where
m = 2% _If Y is a sclution of (7), then clearly P(r2) = 0. It is therefore
sufficient to show that P is a non-zero polynomial of degree at most
2%k-1_ Let Wy =+/1—72,, and let W, =cn/t—r? for 1 <i< k. By in-
duction on k, we have TI(Wy + W, + ...+ W) = Fr (W3, Wi, ..., WD),
where F is a homogeneous polynumial of degree 2k-1 and the product
is taken over all 2% possible combinations of signs. Hence P(¢) =
Fyit—ri, . c2(t—r),...,c2(¢-r})) is a polynomial in ¢ of degree at
most 281

To show that P is nnt the zero polynomial, we proceed as follows:

k
O =11~ Ly /i1,
A = W=l + 2t e i—rT.

i
Letey,; =landletR =, b«_ the maximum #; for which ¢; # 0. Then
sfi(4) is of constant sign for R* < t < R? + € some posmve &;, since
. the term ¢ /\/-t__r goes to infinity as ¢ R2 and the other terms remain
bounded. {If the r; were not distinct, considerablz difficulty would
arise a7 this point.) Hence f; has at most one zero in that interval, and
P has at most m zeros in the interval R? < < R? + min ¢;. The lemma
is proved.

Ma-

w
[ay

J

Definition. 8.2. if all the points of a set B are equidistant frcm a point
X, then we say that B is equidistant from X. If B is equidistant from

every point X of A, then we say that B is equidistant from /. This re-
lation is clearly not symmetric. If all the points of a set 3 arz different
distances from a point X, then we say that 5 is separaied by X. If B is
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separated by every point X of 4, then we say that B is separated by A.
This relation is also not symnetric.

Lemma 8.3. Let S and T bz arbitrary sets of cardinalities M and N re-
spectively, and suppose that the elements of S X T are divided into two
classes C; end C,. (Suppose that the pairs are colored two colors C;

aid C,.) Then there is a subset T' of T of cardinality {N/(2M)} such

that for every X in S. the elements (X, Y) for Y in T' are either ull in C,
orallin C,. (For eve'y X, the -olor of the pair (X, Y) for Y in T’ depends
onlvonX.)

Proo.. Use induction on M and the pigeon-hole principle.

Len:ma 8 4. Given pairwise disjoint firite subsets A, B, C of E;, there
are subsets A' of A, B' of B, and C' of C such that B' is separated by or
equidistant from A' and C' is separated by or equidistant from A’. Fur-
ther if |A\ = H, we have |A'| = 3H}, |B' | = |B|** 2~ gnd |C'| =

|Cls* 2~ {H/Z}_

Proof. Let B, =B, and i > 1 1f the elements of 4 are Xy, X;,.... Ay,
we define sets By, B, ..., By as follows. For each X;, we color X; and
take a subset of B;_, as follcws. If B;_, has a suoset of {+/IB; ||}
points separated by X, let F; te this subset and w= color X; red. Other-
wise, by the pigeon-hole prir 1.’e, there is a subset B; of 3;_, of cardi-
nality {-/iB;_, '}, equidistant f-om X;, and we color X; blue. If we do
this for 1 <i< H. we get a sut set By of B of ce:dinality [B|«* 2-#
that is separated by all the rec ¥, and equidistant from all the blue X;.
LetB' = By . Then there is a sutset A* of cardinslity {$ H} of A such
that B’ is either separated by . - uidistant from 4™

Similarly, there is a subset o' « f C of cardinality |C|#* 2-K K ={1H},
and a subset A’ of A* of carcivai-ty {{H: such that C’ is either separated
by or equidistant fromA4’. ™ ienma foilows.

Lemma 8.5. Let PX; Y; . 1 A>Qfor1<i<3and 1 <j<3,
where X, X,, Xy are dis. v ¢ ava Y|, Y,, Y3 are distinct. Then the X;
are not collinear. By syrir-¢' -, the Y; are not collinear.
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Proof. Suppose the X; are collinear. Let 1 <j < 3. The X; lie on the sur-
f..ce of a cylinder with axis P Y This can happen only if the X, lie ona linc:
parallel to P Y Consequeﬂtly, P and the Y are collinear. The distances
d(F, 1;) Cdlillot all be equal. Suppose, wnthout loss of generality, that
diP, Y ) > d(P, Y,). Then triangle P X, Y, has « greater area than trian-
gie PX, Y,, contrary to the hypothesis.

Lemma 8.6. If in E, the cylinder C = {X: |X{> —(U-X)? =c?}, where
1 =1, intersects the hyperplane m, then there are three possibilities.
(i) If OUis parallel to w, then C intersects w in a cylinder.
(i) If OU'is perpendicular to 7, then C intersects w in a sphere.
(iii) If neither of the above, then C intersects  in an ellipsoid of re-
volurion whose axis is the projection of QU onto .

Proof. Choose the origin O to be on 7 and choose the X, axis normal
1o 7. Then w is the set of points (x, x;. x5, %4 ) such that x, = 0. Now
chooqe the X, axis lyingin #, in the duectwn of the projection 67]1 of
OJ onto . Tiien U= («,0,90,0), where e? +82 =1.The cylinder C has
the equation ™ | x —(ax,+Bxy )? =¢? and C intersects 7 in a surface
with equation 82 x2 +x3 + x§ =¢2 If =10, we have (i);if =1, we
have (ii); and if O <’ B < 1, then we have (ii).

9. Proof of Theorem 5.2

Lei A, B, C be sets of cardinality M, N, N respectively, such that the
triangles X Y Z for X in A, Y in B and Z in C, all have a common positive
arca &. We shall show that this ieads to a contradiction it M and N are
large enough, and the theorem will follow.

Let us assume that NV > M > 3; then. by Lemma 8.5, no three points
of .4 (or B or C) are collinear. By Lemma 8.4 and the symmetry be-
tw: :n B and C, we may suppose without luss of generality that one of
the following holds:

(%) B is separated by A4, but C is ecuidistant from A.

(2) B is separated by A and C is separatec by A.

(3) B is equidistant from A and C is zquidistant from 4.

This zpplication of Lemma 8.4 redu:es M and N. From now on, M and
N are for the new sefs.
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LetA={X,,...Xy},B={r, ..., Yy} First of all, (2) leads imme-
diately to a contradiction. Take one point X of 4 and six point: Y, ..., ¥
of B. Taen, by Lemma 8.1, there are at most 16 points Z|, ..., Z; such
that {Z,,..., Z;¢} is separated by X. We get a contradiction if N > 17.

Secodly, (3) leads to a contradiction; (3) implies that the affine hull
of A is orthogonal to the affine huil of B and the affine hull of C. We
shall find a subsets 3’ of B and (' of C whose affine hulls are orthogonal.
Let X be a fixad point of 4, let B’ be a subset of order three of B, let -/
be the common distance of B from X and let e be the common distance
of C from X. Then 442 =¢? 42 - ((Y--X)- (Z-X)}? or (Y—X)-(Z—X)I
=+/e2 d2-4A% for all (Y, Z) in B’ X C. By Lemma 8.3, there is a subset
C' of C of order {4 N} such that for each Y in B', (Y-X) - (Z—X) has a
constant sign as Z ranges over C'. Hence for Z, Z' in C' and Y, V' in B',
(Y-X'-(Z-X)=(Y-X)- (Z-X). (Y-X) (Z-Z')=0,(Y-Y")-(Z-Z)
=1, and the affine covers of C’ and B’ are orthogonal. Since no three
points of A (or B or C) can be coliincar and three pairwise orthogonal
planes cannot exist in RS, we obtain a contradiction for M > 3 and
N2 17

We next show that (1) leads to a contradiction. This is the last and
hardest case. We start by reducing B tc be {Y,, ..., Y, } by throwing
away N—M points. Now 442 = [X-Z|* |Y-XP?—{(Y-X)-(Z-X)}?
forall (X, Y, 7)in A X BX C. Herce 1 Z—X)-(Y-X)| =
VIX—-Z)? 'Yv-X|? — 4A2?, and the righ'-hand side is independent of Z
since |X -Z| is independent of Z. Let v, ..., v., where. = M2, be an
enumeration of A X B. Let us 2-color G2} = 4 X B) X C as follows:

If (Z—X)-(Y--X) 2 C, then color ((X, /), Z) 1ed. Otherwise, color

({X, Y), Z) blue. By Lemma 8.3, taere is a subset £’ of C of cardinality
{N/(2")} such that (Z—X)-(Y—-X) is of constant sign as Z range: over
C' with (X, Y) fixed. Hence for (X, Y)inA X Band Z, Z' in C’,
(Z-Z"Y(Y-X)=0;for Y, Y inB Z Z' in C' and X, X" in A, we have
(Z-ZY(Y-Y')=(Z-Z")-(X—X') = 0. Hencc th: affine hull of ("' is or-
thogonal to the aftine hull of 4 U B. Lzt us assume that N >
24%x(M2+1)+ 1, so that the order - N/(2")} of C' s at least 3, so that ("
containe three non-coilinear poinis.

Hence the dimension of the affine huil of ' is at least two, and this
forces A U B to lie in a three dimsnsional subspace .

If C' is also contained in 7, then the whole configuration is in R3,
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and if M and IV are large enough, we have a cont*radiction by (4). We

1nay therefore suppose the existence of a point Z of C’ that is not in

7. Let Z* be the orthogonal projection of Z onto 7. The poirts of B lie
on cylinders with axes X Z (1 < i< M), which, by Lemma 8.6, intersect
7 in surfaces .Ei which are either cylinders, spheres, or ellispoids of revolu-
tion with axes X (Z°. Lall_the'se surfaces £;. By the same lemma, §; can-
notbeac /lmder since 'j ”is not parallel to 7.

Also by Lemma 8.6, E, is a sphere only if X; = Z*. Since no thrze points
of the set A are collinear, there exist two points, say X; and X,, of 4
such that X,;. X,, Z* are not collinear. This imphes that neither X nor
X, coincide with Z*, so that by Lemma 8.6, §; and §, are ellipsoids of
revolution with axes of revolution X; Z* and X, Z2*.

Suppose that B has a nne-point subset B* that is equidistant from Z.
Then B* lies on a sphere S having center Z* and lying in «, and for
i= 1,2, each §; intersects the sphere S* in a pa.r of circles C; and C;
whose centers lie on ihe line X; Z'.Fori,j=2andj#i C;is dxstmct
from C; and C; 7» since the normals*)(-z?‘i and X; Z? are not parallel due
to the fact that X;, X5, Z" are non colhnear Two distinct circles on the
surface of a sphere in R3 intersect in at most two points. Hence
(CLUCHN(CUC=C,NC,UCINC,UuC, NCLUC NG
is a set of order lcss than nine containing a set 8* of order nine, which
is absurd.

Hence there exists a se: B’ of cardinality {{M}, which is separated
by Z. Let us suppese that M 2 41 and take B’ to have cardinality at
lzast 6. By Lemma 8.1, there exists a subset A’ of A of cardinality R =
{M/16} that is equidistant from Z; let d be the common distance of the
points of 4’ from Z. Let 8" be a subset of thize elements of B'. Then
4n2 =dhY-ZP2 - {(Y-2)(X-2)}? or (Y=-2) (X=2)| =
« [d2[Y—Z2—4A7 forall (X, Y) € A" X B". The right-hand side is inde-
pendent of X. By Lemmg 8.3, there is a subset A” of 4 of order S =
{§R} such that (Y-Z)-(X-2) is of constant sign for fixed Y in B" as
A ranges over A”. Hence (Y—2Z)(X—-X')=0forall X, X'inA" and Y
inB". Heace (Y-Y")(X-X")=0forall X, X' inA" and Y, Y' in B",
and the aifine hull of A” is orthogonal to the affine hull of B”. Com-
l'ining this with cur earlier vesult, we see that the affine hulls of 4", B”
and C' are pairwise orthugonal. To get a contradiction, it is sufficient to
ensure thut each of those sets has at least three elements. If M = 257,
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then R =17and S=3. If N > 2%+(M? + 1)+ 1, we obtain the desired
contradiction.
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