SOME EXTREMAL PRGBLEMS IN GEOMETRY

Geo:ge PURDY
Center for Advanced Computation, Uni irsity of Illincis, Urbana, Ill. 61801, USA

Received 5 Cictober 1972

Abstract

The question of how often the same distance can occur between k distinct points in n-dimensional Euclidean space E_{n} "ta: been extersively studied by Paul Erdös and others. Sir Alexander Oppenheim posed the somewhat similar problem of investigating how many triangle: with vertices chosen from arıo.s k points in E_{n} can have the same non-zero area. A subsequent article by Erdös and Purdy gave some preliminary results on this problem. Here we carry that work somewhat further and show that there can lot be more than $c k^{3-\epsilon}$ triangles with the same non-zero area chosen from among k points in E_{5}, where ϵ is a positive constant. Since there can be $c k^{3}$ such triangles in E_{6}, the result is in a certain sense best possible. The methods used are mainly combinatorial and geometrical. i minn tool is a theorem on generalized graphs due to Paul Erdös.

1. Introduction

Let there be given n points X_{1}, \ldots, X_{n} in k-climensional Euclidean space E_{k}. Denote by $d\left(X_{i}, X_{j}\right)$ the distance between X_{i} and X_{j}. Let $A\left(X_{1}, \ldots, X_{n}\right)$ be the number of distinct values of $d\left(X_{i}, X_{j}\right), 1 \leq i \leq j \leq n$. Put $f_{k}(n)=\min A\left(X_{1}, \ldots, X_{n}\right)$, where the minimum is taken over all possible choices of distinct X_{1}, \ldots, X_{n}. Denote by $g_{k}(n)$ the maximum number of solutions of $d\left(X_{i}, X_{j}\right)=\alpha, 1 \leq i \leq j \leq n$, where the maximum is to be taken over all possible choices of α and n distinct points X_{1}, \ldots, X_{n}. The estimation of $f_{k}(n)$ and $g_{k}(n)$ are difficult problems even for $k=2$. It is known (see [1,7$]$) that

$$
\begin{equation*}
c n^{2 / 3}<f_{2}(n)<c n / \sqrt{\log n} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
n * *(1+c / \log \log n)<g_{2}(n)<C n^{3 / 2} \tag{2}
\end{equation*}
$$

where c and C are positive absolute constants and $a * * b$ denotes a^{b}.
If $k \geq 4$, the study of $g_{k}(n)$ becomes somewhat simpler ([4] see also [2]).
A. Oppenheim posed the problem of investigating the number of riangles chosen from n points in the plane which have the same nonero area. This question and its generalization were first investigated in [5]. In this note I support some clains made in [5].

2. Notations

Let $n \geq 3, X_{1}, \ldots, X_{n}$ be n points in k-dimensional space E_{k} and let $\Delta>0$.

We cefine $g_{k}^{(2)}\left(n ; X_{1}, \ldots, X_{n} ; \Delta\right)$ to be the number of triangles of the form $X_{i} X_{j} X_{k}$ having area Δ. We let

$$
\begin{aligned}
& g_{k}^{(2)}\left(n ; X_{1}, \ldots, X_{n}\right)=\underset{\Delta}{\operatorname{Max}} g_{k}^{(2)}\left(n ; X_{1}, \ldots, X_{n} ; \Delta\right), \\
& g_{k}^{(2)}(n)=\operatorname{Max}_{X_{1}, \ldots, X_{n}} g_{k}^{(2)}\left(n ; X_{1}, \ldots, X_{n}\right) .
\end{aligned}
$$

Let P be a fixed point and define $G_{k}^{(2)}\left(n ; X_{1}, \ldots, X_{n} ; \Delta\right)$ to be the number of triangles of the form $P X_{i} X_{j}$ having area Δ. We let

$$
G_{k}^{(2)}(n)=\operatorname{Max}_{\substack{X_{1}, \ldots, X_{n} \\ \Delta>0}} G_{k}^{(2)}\left(n ; X_{1}, \ldots, X_{n} ; \Delta\right) .
$$

Clearly, $g_{k-1}^{(2)}(n) \leq g{ }_{k}^{(2)}(n) \leq n G_{k}^{(2)}(n-1) \leq n G_{k}^{(2)}(n)$. We see that $g_{k}^{(2)}(n)$ is analogous to $g_{k}(n)$.

3. The article of Erdös and Purdy

It was shown [5] that

$$
\begin{equation*}
c n^{2} \log \log n \leq g_{2}^{(2)}(n) \leq n C_{2}^{(2)}(n) \leq 4 n^{5 / 2}, \tag{3}
\end{equation*}
$$

where c is a positive absolute constant, and

$$
\begin{equation*}
g_{2}^{(2)}(n) \leq g_{3}^{(2)}(n) \leq n G_{3}^{(2)}(n) \leq c n^{3-(1 / 3)} \tag{4}
\end{equation*}
$$

A simple example, which I shall give in Section 4, shows that $G_{,^{(2)}(n)}(n)$ $\geq c n^{\prime \prime}$ and $g_{5}^{(2)}(n) \geq c n^{3}$. It is therefore worth asking whether $g_{4}^{(2)}(n)$
and $g_{\xi}^{(2)}(n)$ are $o\left(n^{3}\right)$. The object of this note is to support the claim made in [5] that in fact $g_{4}^{(2)}(n) \leq g_{5}^{(2)}(n) \leq c n^{3-\epsilon}$ for some $\epsilon>0$.

4. The example of Linz generalized

We first give the example that shows that $G_{4}^{(2)}(n) \geq c n^{2}$. Let $n \geq 2$ be given. Let $n=2 m+r$, where $0 \leq r<2$. Choose a coordinate system in E_{4} and put $X_{i}=\left(a_{i}, b_{i}, 0,0\right)$ for $1 \leq i \leq m$, and $Y_{i}=\left(0,0, a_{i}, b_{i}\right)$ for $1 \leq i \leq m+r$, where $\left(a_{i}, b_{i}\right)$ are $m+r$ distinct real solutions of $a^{2}+b^{2}=1$. Then the $m(m+r)$ triangles $O X_{i} Y_{j}$ are all congruent to the triangles with sides $1,1, \sqrt{2}$ and therefore have the same (positive) area. Hence $G_{4}^{(2)}(n) \geq m(m \div r) \geq \frac{1}{4} n^{2}-\frac{1}{4} \geq c n^{2}$. By choosing the a_{i}, b_{i} so that some of the triangles $O Y_{i} Y_{j}$ and $O X_{i} X_{j}$ are congruent to the $O X_{i} Y_{j}$, we may improve this to $\frac{8}{4} n^{2}+c n$, but no further.

We now show that $g_{6}^{(2)}(n) \geq c n^{3}$. Let $n \geq 3$ be given. Let $n=3 m+r$, where $0 \leq r<3$. Choose a coordinate system in E_{6}, put $X_{i}=\left(a_{i}, b_{i}, 0\right.$, $0,0,0)$ for $1 \leq i \leq m$, put $Y_{i}=\left(0,0, a_{i}, b_{i}, 0,0\right)$ for $1 \leq i \leq m$, and pur $Z_{i}=\left(0,0,0,0, a_{i}, b_{i}\right)$ for $1 \leq i \leq m+r$, where $\left(a_{i}, b_{i}\right)$ are $m+r$ distinct real solutions of $a^{2}+b^{2}=1$. Then the $m^{2}(m+r)$ triangles $X_{i} Y_{j} Z_{k}$ are all equilateral triangles of side length $\sqrt{2}$. Hence $g_{6}^{(2)}(n) \geq m^{2}(m+r) \geq c n^{3}$.

5. Statement of the main theorems

Theorem 5.1. There exist $n_{1}, \epsilon>0$ such that $g_{5}^{(2)}(n) \leq n^{3-\epsilon}$ for $n \geq n_{1}$. Consequently, there exists a positive constant c such that $g_{5}^{(2)}(n) \leq c n^{3-\epsilon}$ for all n.

Let $|S|$ denote the cardinality of the set S. We shall deduce Theorern 5.1 from the following theorem.

Theorem 5.2. Suppose that A, B and C are finite sets in E_{5} such that $|A| \geq M,|B| \geq N a n a^{\prime}|C| \geq N$, where M and N are certain absolute constants. Then the triangles $X Y Z$ for X in A, Y in B.and Z in C cannot all have the same area, unless that area be zero.

6. Some graph theory

By an r-graph $G^{(r)}$ we mean an object whose basic components are its elements, called vertices, and certain distinguished r-element sets of these elements, called r-sets. When $r=2, G^{(r)}$ is an ordinary graph. When we say that G is a $C^{(r)}(n ; m)$, we mean that G is an r-graph having n vertices and $m r$-sets. If G is a $G^{(r)}\left(n ;\binom{n}{r}\right.$), then G is the unique r-graph which has all possible r-element sets as its r-sets. We call this the complete r-graph on n vertices and denote it by $K^{(r)}(n) . K^{(r)}\left(n_{1}, \ldots, n_{r}\right)$ will denote the r-graph of $n_{1}+\ldots+n_{r}$ vertices and $n_{1} \ldots n_{r} r$-sets defined as follows: The vertices are

$$
X_{i_{j}}^{(j)}, \quad 1 \leq j \leq r, \quad 1 \leq i_{j} \leq n_{j},
$$

and the r-sets of our r-graph are the $n_{1} \ldots n_{r} r$-sets

$$
\left\{X_{i_{1}}^{(1)}, X_{i_{2}}^{(2)}, \ldots, X_{i_{r}}^{(r)}\right\}, \quad 1 \leq i_{j} \leq n_{j}, \quad 1 \leq j \leq r
$$

Denote by $f\left(n ; K^{(r)}\left(l_{1}, \ldots, l_{r}\right)\right.$ the smallest integer L so that every $G^{(r)}(n ; L)$ contains a $K^{(r)}\left(l_{1}, \ldots, l_{1}\right)$.

In an elementary but not-trivial way, Erdös [3, Theorem 1] proves that if $n>n_{0}(r, l)$, then

$$
\begin{equation*}
f\left(n ; K^{(r)}(l, \ldots, l)\right) \leq n * *(r-l * *(1-r)) \tag{*}
\end{equation*}
$$

We shall use this result with $r=3$, and we shall refer to the 3 -sets of a 3-graph as triples in what follows.

7. The relation between the main theorems

We now prove that Theorem 5.2 implies Theorem 5.1. Let l be the maximum of M and N of Theorem 5.2, let $\epsilon=l^{-2}$ and let X_{1}, \ldots, X_{n} be distinct points in E_{5} with $n>n_{0}(r, l)$, where $n_{0}(r, l)$ is the function given in Erdös's inequality (*). It is an easy consequence of (*) that Theorem 5.2 implies

$$
\begin{equation*}
g_{5}^{(2}\left(n ; X_{1}, \ldots, X_{n}\right) \leq n^{3-\epsilon} \tag{5}
\end{equation*}
$$

To see this, let $\Delta>0$ and let $G^{(3)}$ denote the 3-graph with n vertices X_{1}, \ldots, X_{n}, where the triple $X_{i} X_{j} X_{k}$ is in $G^{(3)}$ if and only it the triangle $X_{i} X_{j} X_{k}$ has area Δ. Then Theorem 5.2 implies that $G^{(3)}$ does not contain a $K^{(3)}(l, l, l)$ subgraph, and (5) then follows from (*). Theorem 5.1 follows since λ was arbitrary.

8. Some lemmas

Before proving Theorem 5.2, we must introduce some definitions and lemmas. We shall use the notation $\{x\}$ to mean least integer not less than x.

Lemma 8.1. Let triangles $\dot{P} X_{i} Y_{j}, 1 \leq i \leq n+1,1 \leq j \leq H$, all have the same non-zero area Δ, where X_{i}, Y_{j} are points in real Euclidean n-dimensional space. If the $n+1$ distances $d\left(P, X_{i}\right)$ are all different and nonzero, then there are not more than 2^{n-1} distinct distances $d\left(P, Y_{j}\right)$. Hence at least $\left\{H / 2^{n-1}\right\}$ of the Y_{j} are equidistant from P.

Proof. Let P be the origin of coordinates. Let U_{i} be a unit vector parallel to $\overrightarrow{P X} \vec{i}$. The area of a triangle $O X Y$ can be written in terms of lengths and the inner product as half the square root of $|X|^{2}|Y|^{2}-(X \cdot Y)^{2}$. For all i and j, we have $4 \Delta^{2}=\left|X_{i}\right|^{2}\left|Y_{j}\right|^{2}-\left(X_{i} \cdot Y_{j}\right)^{2}$, or $\left|Y_{j}\right|^{2}-\left(U_{i} \cdot Y_{j}\right)^{2}=$ r_{i}^{2}, where $r_{i}=\therefore د /\left|X_{i}\right|$ Let C_{i} be the set of solutions Y of

$$
\begin{equation*}
|Y|^{2}-\left(U_{i} \cdot Y\right)^{2}=r_{i}^{2} \tag{6}
\end{equation*}
$$

In fact, C_{i} is a cylinder with axis U_{i} and radius r_{i}. Let k be the rank of the set $\left\{U_{1}, \ldots, U_{n+1}\right\}$. By renaming the U_{i} and choosing a suitable coordinate system, we may suppose that $U_{i}=\left(a_{i 1}, \ldots, a_{i n}\right)$ for $1 \leq i \leq n+1$, $a_{i i} \neq 0$ for $1 \leq i \leq k$, and $a_{i j}=0$ if $j>k$ for all i. Putting $r=|Y|$ and $Y=\left(y_{1}, \ldots, y_{n}\right)$ in (6) and solving for $Y \cdot U_{i}$, we obtain

$$
\begin{align*}
& \sum_{i=1}^{i} a_{i j} y_{j}= \pm \sqrt{r^{2}-r_{i}^{2}}, \quad 1 \leq i \leq k \\
& \sum_{j=1}^{k} a_{k+1, j} y_{j}= \pm \sqrt{r^{2}-r_{k+1}^{2}} \tag{7}
\end{align*}
$$

We shall show that r^{2} is the root of a non-zero poiynomial of degree at
most 2^{k-1}, and the lemma will ollow. Let the system of equations $\sum_{j=1}^{i} a_{i j} y_{j}=z_{i}(1 \leq i \leq k)$ have the solution $y_{i}=\Sigma_{j=1}^{i} b_{i j} z_{j}(1 \leq i \leq k)$ and sirpose that $z_{k+1}=\sum_{j=1}^{k} a_{k+1, j} y_{j}$. The substituting the expression for the y_{j}, we get

$$
z_{k+1}=\sum_{j=1}^{k} a_{k+1, j} \sum_{i=1}^{j} b_{j i} z_{j}=\sum_{j=1}^{k} c_{j} z_{j} \quad \text { for some } c_{j}
$$

There are 2^{k} functions $f_{i}\left(r^{r}\right)$ of the form $\sqrt{t \cdots r_{k+1}^{2}}-\Sigma_{j=1}^{k} \pm c_{j} \sqrt{t-r_{j}^{2}}$ corresponding to the choices of sign. Let $P(t)=f_{1}(t) \ldots f_{m}(t)$, where $m=2^{k}$. If Y is a solution of (7), then clearly $P\left(r^{2}\right)=0$. It is therefore sufficient to show that P is a non-zero polynomial of degree at most 2^{k-1}. Let $W_{0}=\sqrt{t-r_{k+1}^{2}}$ and let $W_{i}=c_{i} \sqrt{t-r_{i}^{2}}$ for $1 \leq i \leq k$. By induction on k, we have $\Pi\left(W_{0} \pm W_{1} \pm \ldots \pm W_{k}\right)=F_{k}\left(W_{0}^{2}, W_{1}^{2}, \ldots, W_{k}^{2}\right)$, where F_{k} is a homogeneous polynomial of degree 2^{k-1} and the product is taken over all 2^{k} possible combinations of signs. Hence $P(t)=$ $F_{k}\left(t-r_{k+1}^{2}, c_{1}^{2}\left(t-r_{1}^{2}\right), \ldots, c_{k}^{2}\left(t-r_{k}^{2}\right)\right)$ is a polynomial in t of degree at most 2^{k-1}.

To show that P is $n \uparrow t$ the zero polynomial, we proceed as follows:

$$
\begin{aligned}
& f_{i}(t)=\sqrt{t-r_{k+1}^{2}}-\sum_{j=1}^{k} \pm c_{j} \sqrt{t-r_{j}^{2}} \\
& 2 f_{i}^{\prime}\left(i^{\prime}\right)=1 / \sqrt{t-r_{k+1}^{2}}+\sum_{j=1}^{k} \pm c_{j} / \sqrt{t-r_{j}^{2}}
\end{aligned}
$$

Let $c_{k+1}=1$ and let $R=r_{p}$ be the maximum r_{j} for which $c_{j} \neq 0$. Then ${ }_{i} f_{i}^{\prime \prime}(t)$ is of constant sign for $R^{2}<t<R^{2}+\epsilon_{i}$, some positive ϵ_{i}, since the term $c_{p} / \sqrt{t-r_{r}^{2}}$ goes to infinity as $t \downarrow R^{2}$, and the other terms remain bounded. (If the r_{i} were not distinct, considerable difficulty would arise a: this point.) Hence f_{i} has at most one zero in that interval, and P has at most m zeros in the interval $R^{2}<t<R^{2}+\min \epsilon_{i}$. The lemma is proved.

Definition.8.2. If all the points of a set B are equidistant from a point X, then we say that B is equidistant from X. If B is equidistant from every point X of A, then we say that B is equidistant from A. This relation is clearly not symmetric. If all the points of a set B are different distances from a point X, then we say that B is separaied by X. If B is
separated by every point X of A, then we say that B is separatea bv A. This relation is also not symmetric.

Lemma 8.3. Let S and T be arbitrary sets of cardinalities M and N respectively, and suppose that the elements of $S \times T$ are divided into two classes C_{1} and C_{2}. (Suppose that the pairs are colored' two colors C_{1} a:td C_{2}.) Then there is a subvet T^{\prime} of T of cardinality $\left\{N /\left(2^{M}\right)\right\}$ such that for every X in S the elements $\left(X, Y\right.$) for Y in T^{\prime} are either all in C_{1} or all in C_{2}. (For every X, the olor of the pair (X, Y) for Y in T^{\prime} depends only on X.)

Prosi. Use induction on M and the pigeon-hole principle.
Lenma 84. Given pairwise disioint finite subsets A, B, C of E_{k}, there are subsets A^{\prime} of A, B^{\prime} of B, and C^{\prime} of C such that B^{\prime} is separated by or equidistant from A^{\prime} and C^{\prime} is separated by or equidistant from A^{\prime}. Further if $|A|=H$, we have $\left|A^{\prime}\right|=\left\{\frac{1}{4} H\right\},\left|B^{\prime}\right|=|B| * * 2^{-H}$ and $\left|C^{\prime}\right|=$ $|C| * * 2^{-}\{H / 2\}$.

Proof. Let $B_{0}=B$, and $i \geq 1$ If the elements of A are $X_{1}, X_{2}, \ldots . \lambda_{H}$, we define sets $B_{1}, B_{2}, \ldots, B_{H}$ as follows. For each X_{i}, we color X_{i} and take a subset of B_{i-1} as folliws. If B_{i-1} has a suoset of $\left\{\sqrt{\left|\bar{B}_{i-1}\right|}\right\}$ points separated by X_{i}, let E_{i}; te this subset and we color X_{i} red. Otherwise, by the pigeon-hole pris l , there is a subset B_{i} of B_{i-1} of cardinality $\left\{\sqrt{\mid B_{i-1}}\right\}$, equidistant forn X_{i}, and we color X_{i} blue. If we do this for $1 \leq i \leq H$, we get a sut set B_{H} of B of cardinality $|B| * * 2^{* H}$ that is separated by all the rec ρ_{i} and equidistant from all the blue X_{i}. Let $B^{\prime}=B_{H}$. Then there is a sirset A^{*} of cardinality $\left\{\frac{1}{2} H\right\}$ of A such that B^{\prime} is either separated by \because uidistant from A^{*}.

Similarly, there is a subset \because (f C of cardinality $|C| * * 2^{-K}, K=\left\{\frac{1}{2} H\right\}$, and a subset A^{\prime} of A^{*} of carr inai ty $\left\{\frac{1}{4} H\right.$; such that C^{\prime} is either separated by or equidistant from A^{\prime}. Te ienma follows.

Lemma 8.5. Let $P X_{i} Y_{j} . \quad \Delta>0$ for $1 \leq i \leq 3$ and $1 \leq j \leq 3$, where X_{i}, X_{2}, X_{3} are dis. ' tita Y_{1}, Y_{2}, Y_{3} are distinct. Then the X_{i} are not collinear. By symme, the Y_{j} are not collinear.

Proof. Suppose the X_{i} are collinear. Let $1 \leq j \leq 3$. The X_{i} lie on the surf_{i} ce of a cylinder with axis $P Y_{j}$. This can happen only if the X_{i} lie on a line parallel to $P Y_{j}$. Consequently, P and the Y_{j} are collinear. The distances: $d\left(F, Y_{j}\right)$ camot all be equal. Suppose; without loss of generality, that $d\left(P, Y_{1}\right)>d\left(P, Y_{2}\right)$. Then triangle $P X_{1} Y_{1}$ has : greater area than triangie $P X_{1} Y_{2}$, contary to the hypothesis.

Lemma 8.6. If in E_{4} the cylinder $C=\left\{X:|X|^{2}-\{U \cdot X)^{2}=c^{2}\right\}$, where $|U|=1$, intersects the hyperplane π, then there are three possibilities.
(i) If $\overrightarrow{O U}$ is parallel to π, then C intersects π in a cylinder.
(ii) If $\overrightarrow{O U}$ is perpendicular to π, then C intersects π in a sphere.
(iii) If neither of the above, then C intersects π in an ellipsoid of revolution whose axis is the projection of $\overleftrightarrow{O U}$ onto π.

Proof. Choose the origin O to be on π and choose the X_{4} axis normal to π. Then π is the set of points $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ such that $x_{4}=0$. Now choose the X_{1} axis lying in π, in the direction of the projection $\overrightarrow{O U^{*}}$ of $\overrightarrow{O U}$ onto π. Thien $U=(\alpha, 0,0, \beta)$, where $c^{2}+\beta^{2}=1$. The cylinder C has the equation ${ }^{\circ} x_{i}^{2}-\left(\alpha x_{1}+\beta x_{4}\right)^{2}=c^{2}$ and C intersects π in a surface with equation $\beta^{2} x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=c^{2}$. If $\beta=0$, we have (i); if $\beta=1$, we have (ii); and if $0<\beta<1$, then we have (iii).

9. Proof of Theorem 5.2

Le: A, B, C be sets of cardinality M, N, N respectively, such that the triangles $X Y Z$ for X in A, Y in B and Z in C, all have a common positive arca Δ. We shall show that this leads to a contradiction if M and N are large enough, and the theorem will follow.

Lee us assume that $N \geq M \geq 3$; then. by Lemma 8.5 , no three points of A (or B or C) are collinear. By Lemma 8.4 and the symmetry betwe en B and C, we may suppose without luss of generality that one of the following holds:
(:) B is separated by A, but C is eciuidistant from A.
(2) B is separated by A and C is separated by A.
(3) B is equidistant from A and C is equidistant from A.

This epplication of Lemma 8.4 redu ves M and N. From now on, M and $i v$ are for the new sets.

Let $A=\left\{X_{1}, \ldots, X_{M}\right\}, B=\left\{Y_{1}, \ldots, Y_{N}\right\}$. First of all, (2) leads immediately to a contradiction. Take one point X of A and six point: Y_{1}, \ldots, Y_{6} of B. Tien, by Lemma 8.1 , there are at most 16 points Z_{1}, \ldots, Z_{16} such that $\left\{Z_{1}, \ldots, Z_{16}\right\}$ is separated by X. We get a contradiction if $N \geq 17$.

Seco adly, (3) leads to a contradiction; (3) implies that the affine hull of A is orthogonal to the affine huil of B and the affine hull of C. We shall find a subsets B^{\prime} of B and $C^{\prime \prime}$ of C whose affine hulls are orthogonal. Let X be a fixed point of A, let B^{\prime} be a subset of order three of B, let d be the common distance of B from X and let e be the common sistance of C from X. Then $4 \Delta^{2}=e^{2} d^{2}-\{(Y-X) \cdot(Z-X)\}^{2}$ or $|(Y-X) \cdot(Z-X)|$ $=\sqrt{e^{2} d^{2}-4 \Delta^{2}}$ for all (Y, Z) in $B^{\prime} \times C$. By Lemma 8.3 , there is a subset C^{\prime} of C of order $\left\{\frac{1}{B} N\right\}$ such that for each Y in $B^{\prime},(Y-X) \cdot(Z-X)$ has a constant sign as Z ranges over C^{\prime}. Hence for Z, Z^{\prime} in C^{\prime} and Y, Y^{\prime} in B^{\prime}, $(Y-X) \cdot(Z-X)=(Y-X) \cdot\left(Z^{\prime}-X\right) .(Y-X) \cdot\left(Z-Z^{\prime}\right)=0,\left(Y-Y^{\prime}\right) \cdot\left(Z-Z^{\prime}\right)$ $=9$, and the affine covers of C^{\prime} and B^{\prime} are orthogonal. Since no three points of A (or B or C) can be collinear and three pairwise orthogonal planes cannot exist in \mathbf{R}^{5}, we obtain a contradiction for $M \geq 3$ and $N \geq 17$.

We next show that (1) leads to a contradiction. This is the last and hardest case. We start by reducing B tc be $\left\{Y_{1}, \ldots, Y_{M}\right\}$ by throwing away $N^{\prime}-M$ points. Now $4 \Delta^{2}=|X-Z|^{2}|Y-X|^{2}-\{(Y-X) \cdot(Z-X)\}^{2}$ for all (X, Y, Z) in $A \times B \times C$. Herce $\mid \cdot Z-X) \cdot(Y-X) \mid=$ $\sqrt{|X-Z|^{2}!\underline{\underline{V}}-\left.X\right|^{2}-4 \Delta^{2}}$, and the righ -hand side is independent of Z since $|X-Z|$ is independent of Z. Let $\gamma_{1}, \ldots, \gamma$, where,$=M^{2}$, be an enumeration of $A \times B$. Let us 2-color $\left.G^{(2)}=A \times B\right) \times C$ as follows: If $(7,-X) \cdot(Y-X) \geq 0$, then color $((X, Y), Z)$ sed. Otherwise, color $((X, Y), Z)$ blue. By Lemma 8.3 , there is a subset C^{\prime} of C of cardinality $\left\{N /\left(2^{r}\right)\right\}$ such that $(Z-X) \cdot(Y-X)$ is of constant sign as Z range: over C^{\prime} with (X, Y) fixed. Hence for (X, Y) in $A \times B$ and Z, Z^{\prime} in C^{\prime}, $\left(Z-Z^{\prime}\right) \cdot(Y-X)=0$; for Y, Y^{\prime} in B, Z, Z^{\prime} in C^{\prime} and X, X^{\prime} in A, we have $\left(Z-Z^{\prime}\right) \cdot\left(Y-Y^{\prime}\right)=\left(Z-Z^{\prime}\right) \cdot\left(X-X^{\prime}\right)=0$. Hence the affine hull of C^{\prime} is orthogonal to the aftine hull of $A \cup B$. Lat us assume that $N \geq$ $2 * *\left(M^{2}+1\right)+1$, so that the order $\left.N /\left(2^{r}\right)\right\}$ of $C^{\prime} \mathrm{s}$ at least 3 , so that $C^{\prime \prime}$ containe three non collinear points.

Hence the dimension of the affine huil of C^{\prime} is at least two, and this forces $A \cup B$ to lie in a three dimensional subspace π.

If C^{\prime} is also contained in π, the η the whole configuration is in R^{3},
and if M and N are large enough, we have a contradiction by (4). We raty therefore suppose the existence of a point Z of C^{\prime} that is not in π. Let Z^{*} be the orthogonal projection of Z onto π. The points of B lie on cylinders with axes $\widehat{X}_{i} Z(1 \leq i \leq M)$, which, by Lemma 8.6, intersect $\%$ in surfaces ξ_{i} which are either cylinders, spheres, or ellispoids of revolution with axes $\overleftarrow{X_{i} Z^{*}}$. Call these surfaces ξ_{i} By the same lemma, ξ_{i} cannot be a cylinder since $\widehat{X_{i}}{ }^{\prime \prime}$ is not parallel to π.

Also by Lemma 8.6, ξ_{i} is a sphere only if $X_{i}=Z^{*}$. Since no three points of the set A are collinear, there exist two points, say X_{1} and X_{2}, of A such that X_{1}, X_{2}, Z^{*} are not collinear. This imples that neither X_{1} nor X_{2} coincide with Z^{*}, so that by Lemma 8.6, ξ_{1} and ξ_{2} are ellipsoids of revolution with axes of revolution $\overleftrightarrow{X_{1} Z^{*}}$ and $\underset{X_{2} Z^{*}}{ }$.

Suppose that B has a mine-point subset B^{*} that is equidistant from Z. Then B^{*} lies on a sphere S^{*} having center Z^{*} and lying in π, and for $i=1,2$, each ξ_{i} intersects the sphere S^{*} in a pa.r of circles C_{i} and C_{i}^{\prime} whose centers lie on the line $\overline{X_{i} Z}$. For $i, j=2$ and $j \neq i, C_{i}$ is distinct from C_{j} and C_{j}^{\prime}, since the normals $\widehat{X}_{i} Z^{*}$ and $\widehat{X}_{j} Z^{*}$ are not parallel, due to the fact that X_{1}, X_{2}, Z^{*} are non collinear. Two distinct circles on the surface of a sphere in \mathbf{R}^{3} intersect in at most two points. Hence $\left(C_{1} \cup C_{1}^{\prime}\right) \cap\left(C_{2} \cup C_{2}^{\prime}\right)=C_{1} \cap C_{2} \cup C_{1}^{\prime} \cap C_{2} \cup C_{1} \cap C_{2}^{\prime} \cup C_{1}^{\prime} \cap C_{2}^{\prime}$ is a set of order less than nine containing a set B^{*} of order nine, which is absurd.

Hence there exists a se: B^{\prime} of cardinality $\left\{\frac{1}{B} M\right\}$, which is separated ly Z. Let us suppose that $M \geq 41$ and take B^{\prime} to have cardinality at least 6 . By Lemma 8.1, there exists a subset A^{\prime} of A of cardinality $R=$ $\{M / 16\}$ that is equidistant from Z; let d be the common distance of the points of A^{\prime} from Z. Let $B^{\prime \prime}$ be a subset of thee elements of B^{\prime}. Then $4 \AA^{2}=d^{2}\left\{Y-\left.Z\right|^{2}-\{(Y-Z) \cdot(X-Z)\}^{2}\right.$ or $|(Y-Z) \cdot(X-Z)|=$ $\overbrace{d^{2}\left|Y-L^{\prime}\right|^{2}-4 \Delta^{2}}$ for all $(X, Y) \in A^{\prime \prime} \times B^{\prime \prime}$. The right-hand side is independent of X. By Lemmą 8.3, there is a subset $A^{\prime \prime}$ of A of order $S=$ $\left\{\frac{1}{8} R\right\}$ such that $(Y-Z) \cdot(X-Z)$ is of constiant sign for fixed Y in $B^{\prime \prime}$ as X ranges over $A^{\prime \prime}$. Hence $(Y-Z) \cdot\left(X-X^{\prime}\right)=0$ for all X, X^{\prime} in $A^{\prime \prime}$ and Y in $B^{\prime \prime}$. Heace $\left(Y-Y^{\prime}\right) \cdot\left(X-X^{\prime}\right)=0$ for all X, X^{\prime} in $A^{\prime \prime}$ and Y, Y^{\prime} in $B^{\prime \prime}$, and the affine hull of $A^{\prime \prime}$ is orthogonal to the affine hull of $B^{\prime \prime}$. Comlining this with cur earlier iesult, we see that the affine hulls of $A^{\prime \prime}, B^{\prime \prime}$ and C^{\prime} are pairwise orth ugonal. To get a contradiction, it is sufficient to ensure that each of these sets has at least three elements. If $M=257$,
then $R=17$ and $S=3$. If $N \geq 2 * *\left(M^{2}+1\right) \div 1$, we obtain the desired contradiction.

References

[1] P. Erdös, On sets of distances of n points, Am. Math. Monthly 53 (1946) 248-250.
[2] P. Erdös, On sets of distances of n points in euclidean space, Publ. Matt. Inst. Hungar. Acad. Sci. 5 (1960) 165-169.
[3] P. Erdös, On extremal problems of graphs and genera:ized graphs, Israel J. Math. 2 (1964) 183-190.
[4] P. Erdös, On some applications of graph theory to geometry, Canad. J. Mati. 19 (1967) 968-971.
[5] P. Erdös and G. Purdy, Some extremat problems in grometry, J. Cembin. Theory 10 (1971) 246-252.
[6] T. Kovari, V.T. Sós and P. Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3 (1945) 50-57.
[7] L. Moser, On the different distances determined by n points, Am. Math. Monthly 59 (1952) 85-91.

