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Abstract. The question of how uften the same dzstance can occur between k distinct points in 
n-dimensional Euclidean space E, ;~a: been exteasively studied by Paul Erdijs and others. Sir 
Alexander Oppenheim posed the somewhat simi:ar problem of investigating how many triangle:; 
with vertices chosen from ar$Io.I,J k pints in E, :an have the same non-zero area. A subsequent 
article by Erdds and Purdy gave some preliminnrir results on this problem. Here we carry that 
work somewhat further and show ;har: there can-lot be more than ck3’ ’ triangles with the 
same non-zero area chosen from among k points in ES, where E is a positive constant. Since 
there can bq: ck3 such triangles in Es, the result i, in a certain sense best possible. The methods 
used are mainly combinatorial and geometrical. .4 wb,n tool is .a theorem on generalizzd graphs 
due to Paul Erdbs. 

1. Introduction 

Let there be given n points X,, . . . . Xn in k-dimensional Euc!ideas 
space Ek. Denote by d(Xi, Xi) the distance between Xi and Xj. Let 

4X 1, . . . . Xl2 ) be the number of distinct values of d(Xi, Xi j? 1 L i I i 5 II. 
hffk(n) = min A(X,, . . . . Xn ), where the minimum is taken over all pos- 
sible choices of distinct X,, . . . , X,, : Denote by gk(n) the maximum nurn- 
ber of solutions of d(Xip Xi) - CY, 15 i< j< tt, where the maximum i.s to 

be taken over all possible choices of cy and n distinct points Xl, .-., X, 
l’he estimation of fk (n) and gk (n) are difficult problems even for k =:!. 
It is known (see [ 1,7] ) that 

(2) n**(l -i-c/log log n) < g;?(n) < Cn3’:z ) 

where c and C are positive absolute constants and a*G<b denotes ab. 
If k 2 d, the study of gk(&!) becomes somewhat simpl.er [[ 4: :see also 

C21), 
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A. Oppenheim posed the problem of investi.gating the number of 
riangles chosen from n points in the plane which have the same non- 

.$;ero area. This question and its generahzation were first investigated 
in [ 51. In this note I support some claibns made in [ 51. 

2. Notations 

let II 2 3, X,, . . . . Xn be n points in k-dimensional space Ek and let 
;h :> 0. 
1 ‘We define 4*)(12 ; X, , . . . , Xn ; A) to be the number of triangles of the 

i 

form Xi Xj Xk having area A. We let . 

gX2’(n; x, , . . . . X,) = M;x,gi2:‘(n; X,, ...I XR ; A) , 

gi2)(n) = x!vlax 
,...* 

x, gi22’(n; X,, . . . . &I, * 

! Let P be &fixed point and define Gpj (n ; X, , . . . , Xn ; A) to be the num: 
i ber of trianglcs‘of-the.f~ti*~~Xi Xi having arca A. We let 

hiax G~*)(n;X,,...,X,;A). _ 

Clearly, gfJn (n) F gi*)(n) 5 n Gp’(n- 1 j 5 PI Gi*)(n). We see that gi2)(n) 
is analogous to gk (N). 

3. The a:rticle of ErdiEs and Purdy 

It was shown [S] that 

where c is a positive ;a.bsolute constant, and 

(4) g:?‘(ti) 5 g$qn) - - < n GS”)(n) < c n3- W3) * 

A simple example, which Z shall give in Sectjion 4, shows that G$‘)(n) 
2rrln:’ ancig~‘j(n)> cy2j. It is therefore worth asking whether gi2)(n) 
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and gi2)(n) are o(n3). The object of this note is to support the claim 
made in [ 51 that in fact g$2)(r:) < gp’(n) 5 c n3- E for some e > 0. 

4. The example of Linz generdized 

We first give the example that shows that Gi2’(n) 2 c n2. Let n 2 2 
be given. Let n = 2.~2 + Y, where 0 <= Y < 2. Choose a coordinate system 
in Ed and put Xi = (ai, bi, 0,O) f2r 1 <_ i 5 m, and Yi = (0, O,a, bi) for 
1 5 i <, m + r, where (a, bi) are m f r distinct real solutions ofa2+ b2= 1. 
Then the m(m + r) triangles 0 Xi]> are all congruent to the triangles 
with sides 1 , 1, fl and therefore have the same (positive) area. Hence 
Gbz)(n) 2 m(m + r) 2 in2 -+ 2 c n2. By choosing the ai, b, SO that some 
of the triangles 0 Yi Yi and 0 Xi Xj are confluent to the 0 Xi Yi, we may 
improve this to in2 +cn, but no further. 

We now show that gk2)(n) > c 12~. Let n 1’ 3 be given - _- . Let n = 3m -+ y 
where 0 5 r < 3, Choose a coordinate system in E, , put Xi = (ai, bi, 9: ’ 
0, 0,O) for 1 <, i < m, put Yj = (0, O,ai, bi, 0,O) for 1 I i 5 m, and put 
Zi = (0, 0, 0, O,ai, bi) for 1 I i I m +r, where (ai, bi) are 17: +Y distinct 
real solutions of a2 + b2 = 1. Then the m2 (m +r) triangles Xi Yj 2, arc 
all equilateral triangles of side lengtha. Hence g&2)(n) 2 m2 (m + r) 2 6x3. 

5, Statement of the main theorems 

Theorem 5.1. There exist n 1, e > 0 such that gg2)(n) 5 n3+ for n 2 n L, 

ConsequenJly. there exists a posibive constant c such that g$2)(n) 4 cn3-+ 
for all n. 

Let ISI denote the cardinality of the set S. We shall deduce Theorerri 
5.1 from the folowing theorem. 

‘lheo*rem 5.2. Sqpose that A, B and C are finite sets in E:, such that 
IA! 2 M, 1BI 2 N and ICI ‘2 N, where M and N are certain absolute cob- 
stants. Then the triangles X Y Z for X iis. A, Y in B.and Z in C cannot 
all have the same area, unless that area be zero. 
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6. Some gxaph theory 

By an r-graph G 09 we mean an object whose basic components are 
its elements, called vertices, and certain distinguished iv-element sets of 
these elements, called r-sets. When r = 2, G(‘) is an ordinary graph. When 
we say that G is a G@)(n; m), we mean that G is an t-graph having n 
vertices a.nd M? r-sets. If G is a @)(n; (p), then G is the unique r-graph 
which has all possible r-element sets as its v-sets. We call this the com- 
plete r-graph on n vertices and denote it by K@)(n). @(nl, . . . . n,) will 
denote t1tc r-graph of ~21 + . . . + nr vertices and n 1 . .-. n, r-sets defined as 
follows: ‘The vertices are 

and the r-sets of our r-graph are the rll . . . n, r-sets 

Denote by f(n; KO(Z,, . . . . I,>‘\ the smallest inkger L so that every 
G@)(n; L) +:ontains a @)(I1 9 ....p II). 

In an elementary but not-trivial way, Erdos 13, Theorem 11 proves 
that if rz > no(r, 1): then 

(9 f(n ; JP(Z, . . ., I)) 5 n * * (r-Z** (I -rs) . 

We shall use this result with r = 3, and we shall p2fer to the 3-sets 
ol’ a 3-graph as triples in what follows. 

7. The rrelation between the main theorems 

We now prove that Theorem 5.2 implies Theorem 5.1. Let Z be the 
maximum of V and iV of Theorem 5.2, let E = Z-* and let X1, . . . . X,, be 
distinct points in E, with n > no@, I), where no@, I) is the ,function 
given in Erdos’s Inequzdity (*). It: is an easy consequence of (*I that 
Theorem 5.. 2 implies 

(53 ,f&*!(r2; K’,, ,..., X,) I n3-e . 
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To see this, let A > 0 and let Grn’ denote the 3-graph with n vertices 
x,, . ..f A;:, where the triple Xi Xi XJc is in Gt3) if and only irf the triangle 
Xi Xj Xk has area A. Then Theorem 5.2 implies t%at Gt3) does not con- 
tain a K(3)(Z, I, I) subgraph, and (5) then follows from (*). Theorem 
5.1 follows since A\ was arbitrary. 

8. Some lemmas 

Before proving Theorem 5.2, we must introduce some definitions 
and lemmas. We shall use the notation {x) to mean least integer not 
Pew than x. 

Lemma 8.1. Let triangles PXi Yjy I 5 i L n + 1, 1 <_ j 5 H, ull have the 
same non-zero area A, whl;?re Xi, Yi are points in real Euclidean n-dimen- 
sional space. if the n + 1 distances d(P, Xi> are all different and non- 
zero, then there are not mm than 2”- 1 distinct distances d(P, Yj>. 
Hence at least (H/2*-’ ) of the Yj are equidistant from P. 

Roof. Let P be the origin of c:pordinates. Let Ui be a unit vector paral- 
lel to Px,‘. l%e area of a triangle 0 X Y can be written in terms of lengths 
and the inner product as half t.he square root of IXi2 [Yi2 -- (X0 Yj2. For 
all i and j, we have 4A2 
rf, where ri = 

= IXil’ rY~l’-(Xi~ Yjj’, or IYj~2-(:U~oYj)2 = 
.la/lXii. Let Ci be the set of solutions Y of 

(6) t i ly12_(U-y)z =y? 
1 - 

In fact, Ci is a cylinder with axis Ui and radius ri. Let k be the rank of 
the set {U,, . . . . Un+l ). By renaming the pi and choosing a suitable co- 
ordinate system, we may suppose that UJ = (ail, . . . . ad,,) for 1 I i 5 n + 1, 

. 
aii f: 0 for 1 <, I 5 k, and aii = 0 if j > k fbr all i. Putting Y :r I YI and. 
Y = Q1, . . . . y,) in (6) and solving for Y= Eli, we obtain 

We shall kow that Y’ is the rocit of a non-zero polynomial I-jf degree at 
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most 2”-1, and the lemma till ..bllow. Let the system of equations 

Z;=l a,:jY/ = zj (1 5 i 5 k) have thfl solution yi = Z;=i bii ~1 (1 I i < k) 
and sl:np&e that zR+t = Zf=i ok+ ,, i yi. The substituting the tXpreS§iOa 

for the: yj., we get 

k 

‘- C ak+l j & biiZi = 5 CjZj ,‘k+l izl ’ i=l j=l 
for some ci. 

There are 2” fUnCtiOnS fi(l’) of the form Jxl - ZFZ1 1 CjJq 
corresponding to the choices of sign. Let P(t) =fl (t) . ..fm (0, where 
m=2k. If Y is a solution of (7), then clearly P(r*) = 0. It is therefore 
sufficient to show that P is a non-zero pol nomial of degree at most 
2k-1 . ;Let W, = +/xi and let Wi = Ci J-- t-u: for 1 <_ i <, !<. By in- 
duction on k, we have II(W, & W, A: . . . + wk) = Fk(h$, Wt, .-., Wi), 
where Fk is a homogeneous polynomial of degree 2k-1 and the product 
is tclke:n over all 2k possible combilsations of signs. Hence P(t) = 
F;( (t-/*;+i, c:(t+. . . . . ci(t-$)) is a polynomial in t of degree at 
mo$t 2k-l. 

To show that P is nqt the zero polynomial, we proceed as follows: 

ZC( P) = 11-L -t- 6 it qJ+ 
j=l 

Lad ck + 1, == 1 and let R = rp be the maximum ri for which ci # 0. Then 
q.$(J”) is of constant sign for R’” < t <: R* + ei( some positive ‘?i, since 

the term c,/\&F goes to infinity as t ,5 R* , and the other terms remain 
bounded. {If the ri wtere not distinct, considerable difficulty would 
arise a;: this point.) Hence fi has at most one zero. in tha[ intlerva!, and 
P has at most m zeros in the interval R* < t < R* + min Ci. ‘The lemma 
is proved. 

Defiiir:ion.8.:2. ff all the points of a set B art: equidistant from a point 
X, then we say that B is equidistant from X. If B is equidistant from 
every point X of A, then we s,ay that B is equidistant fhm A. This .re- 
lalion is clearly not symmetric. If all the points of a set R ark different 
di:;tances from a point X, then we say that B is separalsd &y X. If .B is 



311 

separated by every point X of A, then WC: say that B is separated bv A. 
TInis reMon is also not symmetric. 

Emma 8.3. Let S and T be arbitrary sets of cardinakties M and N re- 
spectSvel,,s, and suppose that the elements of S X Tan? divided in to two 
classes C, L!.nd Cz . (Suppose that the paks are colored two colors C, 
a:td Cz .) .Then there is a sub,:et T’ of T qf cardinality {N/(2M )) such 
that for every X in S. the eletments (X, Y.1 for Y in T’ are either all in C, i: 
or all in C2. (For evely X, the color of the pair (X, Y) for I' in T’ depends 
on& on X.) 

ProzL Use induction on M and the pigeon-hole principle. 

Letlima 8 4. Given pairwise disjoint finite subsets A, B, C of E,, there 
are subsets A’ of A, B’ of B, and C’ of C :;uch that B’ is sepurated by or 
equidistant from A’ and C’ ii; separated by or equidistant fro.m A’. Fur- 
ther if IAl = H, we have iA’1 = ;#H}, IB’i = @I** 2-H and IC’I = 
1~1:;;” 2- {H/2 1. 

Proof. Let B, = B, and i 2 1 If the elements of A are XI, X,, . . . . AH, 
we def?ne sets B,, B,, . . . . BH as follvws. For each Xi, we color Xi :ind 
take a .sq_tbset of Bi_ 1 UPS foil: ws. it” Bi_ 1 has a suoset of (dlBi_~ I ( } 

points separated by Xi, let El the this subset and we color Xi red. Other- 
wise, by the pigeon-hole pril !!.le, there is a subset Bi ‘of 3’i_l of cardi- 
nality {.,/Ki i }, equidistant: kern Xi, and we color Xi blue. If we do 
this for I 5 i 2 H, we get a slj! s2t BH of B of cP;.dinality @I**: 2-.H 
that is separated by all the t-EC .I’) and equidistant from al the blue Xi. 
Let B’ = BH. Then there is a sctset A* of cardinslity {$H) of A such 

that B’ is either separated by L: .,:;juidistant from A*. 
Similwly, there is a subs& <I’ (.f C of cardinality ICI*:* Z,-” ! K ={f H), 

and a subset A’ of A* of cz,r( L,ai,ty {$Hj such that C’ is eithe.r separated 
by or equidistant from A’. ‘r kgnma follows. 

Lemma 8.5. Let P Xi Yi , (A>Ofo~l<Ii<3a,r?;Fl<jr,3, 

where X; , X2, X, are dG+ ‘1 ,t ~I’(G YI, Y,, j’, are distitzcf. Thetl the Xi 

are not collinear. By SJ~J;U: :o ‘, the Yj are not cokdinear,. 
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Proof. Suppose the Xi are collinear. LC t 1 5 i 5 3. The Xi lie on the SUP 

,f;xe of a cylinder with axisP Yi. This can happen only if the Xi lie on a lint* 
parallel to P Yj. Consequently, P and the Yi are collinear. The distances 
d{P, I>> caiirlot all be equal. Suppose; without loss of generality, that 
d<P, I’, ) > d(P, Y, ). Then tria,ngle PX, Y, has :. rgeater area than trian- 
gk PX, Y, , contrary to the hypothesis. 

Lemma $.Q. Ij‘in E, the Lylirtder C = (X: IX?- --CU*X)2 = c2 ) , where 
1 UI = I, intersects the hyperpr!ane T, then there are three possibilities. 

(iji If OTis pal*allel to V, then C intersects T in a cylinder. 
(ii) If OLr’is perpendicular to 1~, then C intersects R irl a sphere. 
(iii 1 If’ neither of the above, then C intersects R irz an ellipsoid of re- 

v~.~Eiui0~2 whose axis is the projection uJrIZ?mto n. 

Proof. Choose the origln 0 to be on R and choose the X4 axis normal 
to r. Then r is the set of points (x1, x2, x3, :I;~) such that x4 = 0. Now 
choose the -‘Y, axis lying i.n R, in the directkn of the projection Otr’ of 
sonto 7r Trien I/ . = (Q, 0, 0, /I), where Q? t p2 = 1. The cylinder C has 
the equation ’ ;.x~-(CaXI+px4)2 = c2 and C intersects T in a surface 
with equation f12 x: + xz -k x3 =c2.1fig~0,wel~ave(i);if~=1,we 
h;ive (ii); and if 0 < p l < 1, then we have (iii). 

9. ,Proof of Theorem 5.2 

?A; A, B, C be sets of cardinalitg M, &“, Iv respectively, such that the 
tria@es X Y 2 for X in A, Y in B and 2 in C, all have a common positive 
area r.i. We shall show that this leads to a contradiction if M and iU are 
karge enough, and tha theorem will follow. 

Le.;: us assume that IV 2 114 2 3; then. by Lemma 8.5, no three points 
of’.3 1.0~ I!$ or C) are collinear. By Lemma 8.4 and the symmetry be- 
tw: ,:r’: B and C, we may suppose witht)ut luss of generality that one of 
the fclllowing holds: 

(: ) B is separated by A. but C is ec,uidistant from A. 
(2) B is separated by A and C is separated by A. 
(5) B is equidistant from A and C is t=quidistant from A, 

This :.pplicntion of Lemma 8.4 redu :es N and JV. From now on, A4 and 
A’ are for the new sets. 
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Let 11 = {Xl, . . . . XM 1, B = {Y,, . . . . UN ). First of all., (2) leads imme- 
diately to a contradiction. Take one point X of A and six. point! Y1, . . . . Q 
of B. T:len, by Lemma 8.1, there gre at most 16 points Z,, ..:, Z,, such 

that {Z,, . . . . Z,, ) is separated by X. We get a contradiction if N Z 17. 
Seco~~dly, 23) leads to a contradiction; (3) implies that the affine hull 

of A is Qrthogonal to the affine hull of B and the affine hull of (3. We 
all find a subsets R’ of B and C” of C whose affinc hulls are orthogonal. 

Let X be a f?xc?d point of A, let 13’ be a subset of order three of B, let ,i 
be the common distance ofB from X and let e be the common -distance 
of C from X. Then 4A2 = e* j2 -- :( Y--X) = (2-x)) * or I(&X) l (Z--x)I 

= dm2 for all (Y, Z) in 11’ X C. By Lemma 8.3, there is a subset 
C’ of C of order {+N} such that for each 1y in B’, (Y--X) l (Z-X) has a 
constant sign as 2 ranges over C’. !-Ience for Z, Z’ in C’ and Y, I” in B’, 
(Y-X::. (Z-x-) = (Y-X) l (Z’-X). (Y--X) ’ (Z-Z’) = 0, (Y-Y’). (Z-Z’) 
= 3, and the affine covers of C’ and B’ are orthogonal. Since no three 
points of A (or B or C) can be collinza:c and three pairwist: orthogonal 
planes cannot exist in R5, we obtain a contradiction for M 2 3 and 
N> 17. 

We next show that (1) leads to a contradiction. This is the last and 
hardest case. We start by reducingB tc be {Y,, . . . . YM } by thawing 
away A’-M points. Now 4A2 = IX-ZI: IY-xl’-{(Y-~~~(Z-X)}* 
for all (X, Y, Z) in A X B X C Herze IEZ-X)*(Y-X)I = 
\~lx-zl* ! Y-XI2 - 4A’, and the righr:-hand side is independent of Z 
since IX-Z1 is independent of Z. Let yl, . . . , y ,, where )’ = M*, be an 
enumeration of A X B. Let us 2-color G(*) = A X B) X C as follcws: 
If (Z-_Q(Y--X) 2 (3, then color ((X, :‘), Z) l,ed. Otherwise, color 
(;c’X, Y), Z) blue. By Lemma 8.3, trlere is a subset G’ of C of cardinality 
{N/(2’)} such that (Z-X)* (Y-X). is 01:‘ constant sign as Z ranget: over 
C’ with (X, Y) fixed. Hence for (X, Y) in A X B and Z, Z’ in C’, 
(Z-Z’)- (Y-X) = 0; for Y, Y’ in B. Z, Z’ in C’ and X, X’ in -4, we have 
(5-Z’). (Y- Y’) = (Z-Z’)* (X-X’) = 0. Hence th*: affine hull of cl’ is or- 
thogonal to the affine hull of A w B. L=t us a,;sume that N > 
2**(M*+l)+ 1, so that the order -.V/(?‘)) of C’ s at least 3, so that C’ 
contain: three noncoilinear points. 

Hence the dimension of the affine huiIl of C’ is at least two, and this 
fl,rces A u I3 to lie in a three dimi$nsional subspace K. 

If C’ is also contained in 7~, theq the whole configuration is in R3, 
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and if M and 1V are large enouzb, we have a contradiction by (4). We 
r:nag’ tliereforc: suppose the existence of a point Z of C’ that is not in 
r. Let 2”’ be the orthogonal projection of Z onto R. The points Of B lie 
on cybnders with axes’xi( 1. 5 i 2 M), which, by Lemma 8.6, intersect 
rf in surfaces &+w*h are either cylinders, spheres, or ellispoids of revolu 
a.ion with axw, X,2*. (311 these surfaces ii. By the same lemma, ki can- 

% 
_._ + 

not be a cylinder since ; i’ is not parallel to R. 
Also by Lemma 8.6, &. is a sphere only if Xi = Z* . Since no three points 

of the set A are collinear, there exist two points, say XI and X2, of A 
:;uch that X, , Xz, Z* are not collinear. This implies that neither X, nor 
;I:, coincide v&h Z* , so that by Lemma 8.6,$, and r2 are ellipsoids of 
revolution with axes of revolution &?? and X,Z* . 

Suppose that B has a &e-point subset B* that is equidistant from Z. 
Then B” lies on a sphere S” having center Z* and lying in r, and for 
i = 1,2, each ti intersects the sphere S* in a pair of circles Ci and Cf 
whose centers lie on the line Xi Z* . For i, j = 2 and j # i, Ci is distinct 
from Ci and (y, since the normalsv ‘and. v are not parallel, due 
to the fac,t that X,, X,, Z* are non collinear. Two distinct circles on the 
surface of a sphere in R3 intersect in at most two points. Hence 
(‘C, u C; ) n (C2 U Ci) =, Cz n C2 U Ci n C2 U C, n C; U Ci n C; 
i!; a set of ord.er less than ni!lc containing a ser B* of order nine, which 
i !s absu:;d. 

Hence there exists a se i; B’ of cardinahty {&Ml, which is separated 
by Z. Let us suppose thal M 2 41 and take B’ to have cardinality at 
li:asl 6. .3jr Lemma 8.1, there exists a subset A’ of A of cardinality R = 
(M./l 6 ) that is equidistant from Z; 4et d be the common distance of the 
points OF A’ from Z. Let B” be a subset of three elements of I?‘. Then 
4n2 = d’!Y-Z12.r ((Y-.2T)*(X-Z)}2 or [(Y-,Z)*(X-.~)I = -. 
,., $2 1 ‘&-zl 2 -482 for all (X, Y) E A” X B”. The right-hand side is inde- 
pendent of X. By Lemma 8.3, there is a subset A” of A of order S = 
;l$fi 1 stlch that (Y--Z)* (X-Z) is of conshnnt sign for fixed Y in B” as 
1’L ” ranges over A “, Hence (Y-Z). (X-X’) =: 0 for all X, X’ dn A” and Y 
HIS B”. HelIce (Y-Y’)*(X-X’) = 0 for all .A’, X’ in A” and Y, Y’ in B”, 
:lnd the acfine hull of /I” is orthogonal to the affine hull of R”. Com- 
I,ining this with our earlier result, we see that the affine hulls of A”, B” 
ilrtd C’ are pairwise orthtigonal. To get a contradiction, it is sufficient to 
E”rFsure that each 63f th::se sets has at least -three elements. If M = 257, 
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then R =r 17 and S = 3. If N 2 2** (M’ + 1) + 1, UT obtain the desired 

contradiction. 
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