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SUMMARY

Sterol regulatory element-binding proteins (SREBPs)
have evolved as a focal point for linking lipid synthe-
sis with other pathways that regulate cell growth and
survival. Here, we have uncovered a polycistrionic
microRNA (miRNA) locus that is activated directly
by SREBP-2. Two of the encoded miRNAs, miR-182
and miR-96, negatively regulate the expression of
Fbxw7 and Insig-2, respectively, and both are known
to negatively affect nuclear SREBP accumulation.
Direct manipulation of this miRNA pathway alters
nuclear SREBP levels and endogenous lipid synthe-
sis. Thus, we have uncovered a mechanism for the
regulation of intracellular lipid metabolism mediated
by the concerted action of a pair of miRNAs that
are expressed from the same SREBP-2-regulated
miRNA locus, and each targets a different protein
of the multistep pathway that regulates SREBP func-
tion. These studies reveal an miRNA ‘‘operon’’ analo-
gous to the classic model for genetic control in
bacterial regulatory systems.

INTRODUCTION

Sterols and fatty acids are the twomajor lipid classes inmamma-

lian cells, and both are critical membrane components that are

continuously required for maintaining cell integrity and support-

ing optimal growth. These lipids are also utilized for more

specialized roles that rely on their unique physical properties to

influence diverse biological processes. Over the last several de-

cades, major advances in understanding the regulation of lipid

metabolism that have been fueled by parallel advances in cell,

molecular, and genomic sciences have occurred, and these

advances continue to revolutionize biomedical research. The

pioneering studies from Brown and Goldstein (2009) have pro-

vided many of the elegant advances in cell cholesterol (Ch) regu-
lation, including the discovery of a pathway for Ch uptake

through the low-density lipoprotein (LDL) receptor, which is

regulated in balance with an endogenous Ch production

pathway centered on two endoplasmic reticulum (ER) mem-

brane proteins, HMG CoA reductase and sterol regulatory

element-binding proteins (SREBPs).

Mammalian SREBPs regulate the genes of both Ch and fatty

acid metabolism, and recent studies have shown that they link

lipid metabolism to cell growth and survival through the direct

activation of additional key target genes of other cellular pro-

cesses (Jeon and Osborne, 2012). Synthesized as �125 KDa

precursors, SREBPs are composed of an amino-terminal tran-

scription factor domain connected to a membrane localization

regulation domain. Two closely spaced membrane hydrophobic

helices tether the precursor SREBP in the ERmembrane,where it

forms a complex with the SREBP cleavage-activating protein

(SCAP) (Sakai et al., 1997). ER localized SCAP interacts with a

third ER membrane protein called INSIG, and the SCAP-INSIG

association effectively anchors the precursor SREBP in the ER

(Yang et al., 2002).When cellular lipid levels decline, or other con-

ditions arise where increased nuclear SREBP levels are required

(Jeon and Osborne, 2012), key signaling pathways decrease the

SCAP-INSIG interaction. Then, the COPII trafficking system es-

corts the SCAP-SREBP complex to the Golgi apparatus where

two resident proteases sequentially cleave the SREBP precur-

sor, leaving the membrane anchor linked to the Golgi membrane

and releasing themature soluble SREBP transcription factor that

is rapidly targeted to the nucleus (Sun et al., 2007).

INSIG proteins also interact directly with the ER membrane-

localized HMG CoA reductase enzyme, which catalyzes a key

early step in the endogenous synthesis pathway for Ch (Sever

et al., 2003). INSIG directs HMG CoA reductase into a proteoso-

mal degradation pathway so that, when new Ch synthesis is

required, the INSIG-reductase interaction is disfavored, leading

to a rapid increase in Ch synthesis. Thus, the connection

between the rapid regulation of Ch biosynthesis through the

stabilization of HMG CoA reductase with the slow-to-develop

mechanism through SREBP-dependent activation of gene

expression is coordinately integrated through protein-protein

interactions with INSIGs.
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Once in the nucleus, SREBPs activate the expression of many

key genes for Ch synthesis and uptake, including those encoding

the LDL receptor and HMG CoA reductase. Recent advances in

genomic technologies have allowed the comprehensive interro-

gation of transcription factors at a genome-wide level, and, for

SREBPs, these studies have definitively shown their direct roles

in activating genes of lipidmetabolism in concert with a preferred

set of generic transcription factor partners (Reed et al., 2008;

Seo et al., 2009; Seo et al., 2011). Additionally, these global

studies have also provided evidence of a broader role for

SREBPs in physiology and metabolism (Seo et al., 2011).

Genome-wide analyses of RNA transcription patterns have

uncovered an extensive network of noncoding RNAs, including

small microRNAs (miRNAs) (Bartel, 2004). miRNAs are pro-

cessed from longer transcripts into mature �22- to 24-nucleo-

tide single-stranded RNAs. They are incorporated into RNA

protein complexes and decrease messenger RNA (mRNA)

stability and/or translation efficiency of target genes through

base pair interactions between the miRNA and target mRNA.

Recent estimates suggest there are approximately 1,000

miRNAs peppered throughout themammalian genome, of which

approximately half are encoded from their own transcriptional

units, whereas the other half are embeddedwithin the noncoding

regions of primary host protein coding mRNAs (Small and Olson,

2011). Because the embedded miRNAs are processed from the

host primary transcript, the expression of the miRNA is depen-

dent on the same transcriptional regulatory mechanisms that

govern the expression of the host gene. In contrast, the nonem-

bedded miRNAs are uniquely expressed through regulatory in-

teractions that specifically target their own promoters.

Recent studies have uncovered a pair of miRNAs, miR-33a

and miR-33b, that are encoded within introns of the human

SREBF-2 and SREBF-1 genes, respectively (Gerin et al., 2010;

Horie et al., 2010; Marquart et al., 2010; Najafi-Shoushtari

et al., 2010; Rayner et al., 2010). However, only miR-33a is

conserved in the mouse genome. These two miRNAs have iden-

tical seed regions and, therefore, are predicted to inhibit expres-

sion from many of the same genes. One conserved miR-33

target gene encodes the ABCA1 transporter, which plays an

important role in modulating intracellular Ch metabolism by

effluxing free Ch to extracellular Ch carriers such as HDL. This

pathway plays a key role in regulating reverse Ch transport

frommacrophages and is also part of the interactive mechanism

for controlling intracellular Ch balance in many other cell

types (Fernández-Hernando and Moore, 2011; Rottiers et al.,

2011). Because the SREBF-2 gene is autoregulated, the increase

in miR-33a and SREBP-2 provides two complementary mecha-

nisms whereby increased SREBP-2 transcription increases

intracellular Ch.

The SREBF-2 gene is autoregulated, and the magnitude of

autoinduction is relatively mild at 2- to 3-fold, which is similar

to the magnitude for miR-33a induction by sterol depletion in

macrophages (Rayner et al., 2010). In contrast, other target

genes show much more robust induction by SREBP (Horton

et al., 2003; Yokoyama et al., 1993). Because intracellular Ch

levels are tightly controlled (Goldstein and Brown, 1990), we

reasoned that additional miRNAs might be involved in regulating

intracellular Ch, possibly being more robustly activated by

SREBPs than miR-33 and having unique target genes involved
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in the multistep SREBP regulatory pathway. In the current study,

we performed a genome-wide analysis searching for miRNAs

that are differentially expressed in the livers of mice fed a normal

chow diet supplementedwith excess Ch versus a chow diet sup-

plemented with a combination of lovastatin plus ezetimibe (LE).

Variations of this dietary regimen have been used for three de-

cades to analyze the hepatic regulatory pathway for Ch meta-

bolism (Bennett et al., 2008; Liscum et al., 1983; Seo et al.,

2011; Sheng et al., 1995). The LE combination inhibits both

endogenous Ch synthesis and dietary absorption of Ch, and,

when combined with the Ch-supplemented group, the diets

represent homeostatic extremes for hepatic Ch overload versus

depletion.

We identified 30 differentially expressed miRNAs, 21 that

were expressed at higher levels in the LE-supplemented group,

and 9 that were more abundant in the Ch-fed sample. At the

extreme, miR-182 was expressed at 80-fold higher levels in

the LE versus the Ch group. miR-182, along with its two miRNA

siblings, miR-96 and miR-183, is expressed from a unique pri-

mary transcript (Xu et al., 2007) at an miRNA locus on mouse

chromosome 6, and we show that the promoter for this locus

is a direct target for SREBP activation. We also demonstrate

that miR-182 and miR-96 negatively regulate the expression of

Fbxw7 and Insig-2, respectively; two proteins that are known

to negatively influence the levels of nuclear SREBPs. Further-

more, we show that this regulatory pathway is conserved in

human cells and that the direct manipulation of miR-182 and

miR-96 expression leads to changes in nuclear SREBPs as

well as alterations in endogenous lipid synthesis. Thus, we

have uncovered a mechanism for the regulation of intracellular

Ch metabolism mediated by the concerted action of a pair of

miRNAs. Importantly, both miRNAs are expressed from the

same SREBP-2-regulated miRNA transcription unit, and each

miRNA targets a different protein in the multistep pathway that

regulates SREBP action. Thus, this regulatory system is analo-

gous to the classic operon mechanism for genetic regulation in

bacterial systems where gene products that function together

in a common biological pathway are coordinately expressed

from the same primary transcript and from a single promoter

that is regulated by the biological pathway associated with the

operon (Jacob and Monod, 1961).

RESULTS

Molecular pathways that maintain hepatic Ch balance have been

investigated in rodent models by combining dietary manipula-

tions with statin supplementation for over three decades (Ben-

nett et al., 2008; Liscum et al., 1983; Seo et al., 2011; Sheng

et al., 1995). As novel methods, reagents, and molecular path-

ways have been developed or uncovered, the same basic dietary

programs have been very useful in applying new principles

to further understand the regulatory mechanism for Ch meta-

bolism. For example, we recently uncovered an unexpected

connection between autophagy and Ch regulation by combining

a chromatin immunoprecipitation (ChIP) sequencing approach

for the genome-wide localization of SREBP-2 in hepatic chro-

matin from mice fed a chow diet supplemented with LE to inhibit

hepatic Ch synthesis and limit dietary absorption of Ch (Seo

et al., 2011). In the current studies, we have used this dietary



Table 1. Hepatic miRNA Differential Expression Profiles from

Mice Fed a Normal Chow Diet Supplemented with a Mixture of

Lovastatin plus Ezetimibe versus Cholesterol

miRNA Fold Change (LE/Ch)

182 81.6

470* 28.3

34b-3p 17.7

741 12.5

877 7.2

20b 6.2

297a* 5.7

19a 4.3

875-5p 3.6

33* 3.2

188-5p 3.2

467a* 3.0

195 2.9

877* 2.9

126-5p 2.8

130b 2.7

101a 2.3

339-3p 2.1

301b 2.1

331-3p 2.1

135a* 2.1

185 2.1

676 0.5

15a .28

339-5p .255

425 .23

221 .20

215 0.19

210 0.1

455 0.04

microRNA expression profiling for total RNAs pooled from six C57BL/6

mouse livers for each feeding condition. Expression was analyzed by

TLDA profiling, as described in the Experimental Procedures. miRNA

expression is displayed as the fold change from the lovastatin plus eze-

timibe (LE) versus cholesterol (Ch). Only thosemiRNAs that were differen-

tially expressed by R2-fold with a p < 0.05 with a Ct value % 35 are

shown.

See also Figure S1.
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comparison to analyze differences in expression for the individ-

ual members of the small miRNA family of noncoding transcripts.

Identification of 30 Ch-Regulated miRNAs in the Mouse
Liver
We fed mice a regular chow diet supplemented with either

excess Ch or the LEmixture and compared the expression of he-

patic miRNAs from each group using a mouse tiling low-density

PCR array (TLDA). A heat map for the data is presented in Fig-

ure S1 (available online) along with control measurements

showing the LE-diet-induced expression of HMGCoA reductase

mRNA and protein as well as the mature nuclear form of

SREBP-2. The heat map emphasizes that there is a range in

expression for individual miRNAs that includes some that are

highly induced by the LE diet and some that were expressed at

higher levels in the Ch-supplemented samples. In further

analyzing the data, we focused on miRNAs that were expressed

with a Ct value % 35 with a differential expression of 2-fold or

greater relative to the two treatment groups at p% 0.05 (Table 1).

There were 30miRNAs that met these stringent criteria, and they

ranged from miR-182, which was expressed at 80-fold higher

levels in the LE-treated livers, to miR-455, which was expressed

at 25-fold higher levels in the Ch-fed group. The primers included

with the TLDA kit do not accurately measure the expression of

miR-33a, which is encoded within the Srebf-2 host gene and is

known to be autoregulated. However, this analysis did identify

the complementary strand miRNA miR-33* as being increased

2- to 3-fold by LE supplementation.

miR-182 is expressed from a miRNA island locus on mouse

chromosome 6 that also encodes miR-96 andmiR-183. Interest-

ingly, all three miRNAs are transcribed from a single promoter

(Chien et al., 2011) and are part of the same primary transcript

(Xu et al., 2007) (Figure 1, bottom). It was previously shown

that the expression of this miRNA locus is activated during T

helper cell clonal expansion (Stittrich et al., 2010) and light-

dark transition in the retina (Krol et al., 2010). Interestingly, in

both cases, miR-182 was more robustly expressed than the

other two coexpressedmiRNAs, which was similar to our results.

To begin to evaluate the potential role for these miRNAs in regu-

lating hepatic Ch metabolism, we analyzed the expression of

each one separately with specific quantitative PCR (qPCR) ana-

lyses, and all three miRNA siblings were robustly induced by LE

treatment (Figure 1A). We also measured miR-33 directly and

confirmed that it was also induced by LE feeding as expected.

In evaluating the TLDA data, the Ct values for miR-96 and miR-

183 were below the 35-cycle cutoff in the Ch-fed sample and

did not meet the stringent criteria we used to prepare the list in

Table 1. The expression of these threemiRNAswas also robustly

increased in the livers of transgenic mice overexpressing

SREBP-1a or SREBP-2, but not by SREBP-1c (Figure S2). These

results suggest that the miRNA locus may be directly activated

by SREBPs.

The miR-96/182/183 Locus Is Regulated by SREBP-2
On the basis of the above data, we reasoned that the promoter

driving the expression of themiRNA locusmight be directly regu-

lated by SREBP-2. Computational methods have been used to

predict putative miRNA promoters throughout the human

genome by combining sequence analysis with epigenetic signa-
tures and mapping short promoter-proximal RNA transcripts

(Chien et al., 2011). This analysis predicted a putative promoter

for the human miR-96/182/183 cluster. A sequence alignment

with the corresponding region of the mouse genome revealed

a high level of conservation between the two species (Fig-

ure S3A). It is noteworthy that there are conserved putative

binding sites for SREBPs, as well as for other more generic tran-

scription factors, such as Sp-1, NF-Y, and CREB and ATF, that

have been shown to interact with SREBPs for efficient promoter

activation (Osborne and Espenshade, 2009). Additionally, the

expression of these human miRNAs were increased similarly to

miR-33a in RNAs isolated from two different human hepatoma
Cell Metabolism 18, 51–61, July 2, 2013 ª2013 Elsevier Inc. 53



Figure 2. SREBP-2 Activates the miR-96/182/183 Promoter

The putative promoter region shown in gray at the bottom of Figure 1 was

cloned upstream of luciferase in the control luciferase reporter, as shown and

described in the Experimental Procedures. Key putative transcription-factor-

binding sites that are conserved between mice and humans (Figure S3) are

noted on the diagram of the sequence. Top, there are two E boxmotifs that are

putative SREBP response elements, and point mutations were engineered into

each separately or in combination, as noted by the X. Bottom, wild-type and

the indicated mutant promoters were transfected into human embryonic kid-

ney 293T cells along with increasing amounts of an SREBP-2 expression

vector, as described in the Experimental Procedures. The negative and pos-

itive control promoters analyzed in parallel are shown as pSynTLuc and

pSynSRELuc and are described elsewhere (Dooley et al., 1998). Luciferase

activities were normalized to b-galactosidase that was expressed from an

internal control cotransfected cytomegalovirus b-galactosidase plasmid.

Data are represented as mean ± SEM. See also Figure S3.

Figure 1. The miR-96/182/183 Locus Is Directly Regulated by

SREBP-2

(A) qPCR analysis of miR-96, miR-182, and miR-183 in RNA from mice fed

chow (N), chow supplemented with cholesterol (Ch), or chow supplemented

with lovastatin plus ezetimibe (LE). Samples were normalized to sno202 RNA

samples analyzed in parallel. Data are plotted relative to normalized values

from the chow group set at 1.0.

(B) ChIP analysis for SREBP-2 binding in hepatic chromatin from Ch- versus

LE-supplemented mice. The three regions in the miR-96/182/183 locus that

were analyzed for SREBP-2 association are shown by the location of forward

(F) and reverse (R) primer pairs 1, 2, or 3 used for the qPCR analysis as indi-

cated. The thick gray box denotes the putative promoter region for the locus

interrogated by primer pair 1, as discussed in the Results.

Data are represented as mean ± SEM. See also Figure S2.
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cells infected with an adenovirus expressing the mature form of

SREBP-2 (Figure S3B). Thus, the human miR-96/182/183 locus

is also most likely regulated directly by SREBPs.

This putative promoter region is schematically represented as

a gray box in the diagram at the bottom of Figure 1. To determine

whether the predicted SREBP sites are functional, we performed

a ChIP study to evaluate SREBP-2 binding in chromatin pre-

pared from the LE versus Ch samples. The results in Figure 1B

demonstrate that SREBP-2 binds to this predicted promoter re-
54 Cell Metabolism 18, 51–61, July 2, 2013 ª2013 Elsevier Inc.
gion in the LE chromatin (detected by primer pair 1F and 1R in

Figure 1B), but not to the coding regions of the miRNA locus,

which were analyzed as negative controls.

A cartoon diagram of the promoter region from Figure S3 is

presented at the top of Figure 2 highlighting the E box sites,

which are classic recognition elements for bHLH proteins, such

as SREBPs, along with the predicted binding sites for the more

generic transcription factors Sp1 and NF-Y, which are preferen-

tially coenriched in SREBP target promoters (Seo et al., 2011).

Next, we fused the putative promoter DNA from the mouse

genome to luciferase and showed that luciferase expression

was enhanced in a dose-dependent fashion by the cotransfec-

tion of an expression vector encoding the nuclear-targeted

SREBP-2 protein (Figure 2, bottom). When the two predicted

SREBP-binding E box elements were mutated, SREBP-2 activa-

tion was significantly reduced. Along with the ChIP studies,

these results provide compelling evidence that the expression

of the miR-96/182/183 locus is directly regulated by SREBP-2.

miR-96 andmiR-182 Decrease the Expression of Insig-2
and Fbxw7, Two Proteins that Negatively Regulate
Nuclear Levels of SREBP-2
miRNAs regulate gene expression through putative base-pair

interactions with target mRNAs as part of the RNA-induced



Figure 3. miR-96 and miR-182 Target Key Proteins of the SREBP

Maturation Pathway

(A) A cartoon depicting key molecules and trafficking of the SREBPmaturation

pathway is presented alongwith the putative target genes for miR-96 andmiR-

182 as Insig and Fbxw7, respectively.

(B) Immunoblotting and qPCR analyses for Insig-2 and Fbxw7 in extracts from

the livers of Ch- and LE-treated mice.

Dataare representedasmean±SEM.SeealsoFigureS4andTablesS1andS2.

Figure 4. Coordinate and Reciprocal Regulation of nSREBP-2 with

miR-182 or Fbxw7, Respectively

(A and B) Mice were fed chow (N) supplemented with Ch, LE, or LE followed by

Ch for 1–3 days as indicated. Equal amounts of protein from two separatemice

were analyzed for nSREBP-2, Fbxw7, and control proteins, as indicated by

immunoblotting (A), and results were quantified and plotted as relative ex-

pression (B) along with the relative expression of miR-182 analyzed by qPCR.

(C) Hepatic protein from three individual mice was analyzed as in (A). Where

indicated, a control anti-miRNA (A-miR-Con) or an anti-miRNA designed to

target miR-182 (A-miR-182) were injected (30 mg/kg) on days 3, 4, and 5 of LE

diet supplementation, and mice were sacrificed on day 7.

Data are represented ad mean ± SEM. See also Figure S5.
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silencing complex (RISC) and reduce the expression of the

encoded proteins by inhibiting translation and/or increasing

mRNA degradation (Bartel, 2004). We hypothesized that,

because the miR-96/182/183 locus is directly activated by

SREBP-2, these miRNAs might target proteins involved in the

SREBP regulatory pathway. Thus, the TargetScan program

was used to identify putative target mRNAs for miR-96, miR-

182, and miR-183, and this list was cross-matched for proteins

that are known to be involved in the complex sterol-regulated

SREBP proteolytic maturation pathway, which is partially

diagrammed in Figure 3A. Lists of the highest-scoring putative

gene targets predicted by TargetScan for miR-182 and miR-96

are shown in Table S1 and S2, respectively. This analysis pre-

dicted that genes encoding INSIG-2 and FBXW7 are putative tar-

gets of miR-96 and miR-182, respectively, across several

mammalian species (Figures 3 and S4). In fact, there are two

putative miR-182 sites within the FBXW7 30 untranslated region

(30UTR). INSIG-2 is key for retaining the SCAP-SREBP-precursor

complex in the ER (Yabe et al., 2002) (Figure 3A), and FBXW7 is

the E3 ubiquitin ligase that targets nuclear SREBPs for proteaso-

mal degradation (Sundqvist et al., 2005) (Figure 3A). Because

INSIGs and FBXW7 both limit the accumulation of nuclear

SREBPs, the elevated expression of miRNAs that target these

proteins would be predicted to increase nuclear SREBP-2,

which is a signature hepatic response of the LE dietary supple-

mentation. To test this prediction, we measured Insig-2 and

Fbxw7 mRNA and protein levels in extracts from Ch- or LE-

treated mice. The results demonstrate that Insig-2 and Fbxw7

protein levels were both significantly lower in the LE- versus

Ch-fed samples (Figure 3B). Interestingly, this was accompanied

by a decrease in Insig-2mRNA, but Fbxw7mRNAwas not signif-

icantly altered. These results are consistent with miR-96 and

miR-182 targeting Insig-2 and Fbxw7, respectively.
Additional studies were focused on Fbxw7, given that the Ct

value for miR-182 suggested that it was more highly expressed

after LE treatment than miR-96 and miR-183 in the liver. We

reasoned that, if miR-182 repression of Fbxw7 was crucial for

increasing SREBP-2 levels in response to LE feeding, then the

addition of Ch after LE induction would coordinately suppress

SREBP-2 and miR-182 while reciprocally increasing the expres-

sion of Fbxw7 back to the level observed in control animals. The

results in Figures 4A and 4B show that the increase in expression

of both SREBP-2 and miR-182 in response to LE supplementa-

tion was significantly suppressed after 1 day of Ch supplemen-

tation. Additionally, the low levels of Fbxw7 protein observed

after LE supplementation increased steadily as miR-182 levels

declined over the course of 3 days of Ch feeding. We also

measured the expression of SREBP-2 mRNA along with its

embedded miRNA, miR-33a. As predicted, the expression of

SREBP-2 and miR-33a were induced similarly by LE and sup-

pressed in parallel by Ch addition (Figure S5).

To directly determine whether the increase in miR-182

following LE treatment contributes to the increased nuclear
Cell Metabolism 18, 51–61, July 2, 2013 ª2013 Elsevier Inc. 55



Figure 5. Regulation of SREBPs by themiR-

182 Locus through FBXW7 Is Conserved in

Human Cells

(A) HeLa cells were transfected with siRNA or

pre-miRNAs as indicated (10 nM, Ambion) in

antibiotic-free medium as described in Materials

and Methods. After 24 hr, the dishes were

switched to DMEM containing 5% lipoprotein-

deficient serum, 12 mg/ml Ch, and 1 mg/ml 25-hy-

droxycholesterol and incubated for 24 hr at 37�C.
Also shown are qPCR for FBXW7 and immuno-

blotting for FBXW7, SREBP-1, and b-actin.

(B) The full-length FBXW7 coding sequence was

cloned downstream of the constitutive RPL10

promoter with the natural FBXW7 30UTR intact.

We also prepared a version where the two pre-

dicted miR-182 targeting sites were mutated to

decrease the predicted complementarity. These

constructs were transfected into HeLa cells in

combination with miR-182 or controls and

cultured as described in the Experimental Pro-

cedures and in the figure diagram. Quantitation

from a scanned image of the immunoblot is pre-

sented at the top.

Data are represented as mean ± SD. See also

Figure S6.
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accumulation of SREBP-2, we treated mice with LE and injected

them with an anti-miRNA designed to pair with and inactivate

miR-182. The results show that anti-miR-182 treatment blunted

the induction of SREBP-2 by LE treatment (Figures 4C and S6).

The expression of some SREBP target genes, such as SREBP-2

itself, were also reduced (Figure S6), whereas others, such as

Hmgcr, were minimally affected (Figure S6). This is consistent

with many other observations that demonstrate that individual

SREBP target genes are differentially affected by direct changes

in SREBP levels (Osborne and Espenshade, 2009).

Fbxw7 protein levels were only minimally affected by the anti-

miRNA-182 treatment (Figures 4C and S6), suggesting there are

other miR-182 target genes involved in regulating nuclear

SREBP levels. Mice were also injected with anti-miRNAs target-

ing either miR-96 or miR-183, and neither miRNA resulted in a

decrease in nuclear SREBP-2 (Figure S6). Altogether, the results

suggest that miR-182 plays a dominant role in the regulation of

SREBP-2 under these conditions, which is consistent with its

more robust induction relative to the other two miRNAs in

response to the LE diet challenge.

miRNA Regulation of SREBPs through FBXW7 Is
Conserved in Human Cells
To analyze the role of miR-182 in regulating human SREBPs

through FBXW7, we compared the effects of direct small inter-

fering RNA (siRNA) targeting of Fbxw7 to miR-182 on nuclear

SREBP levels in HeLa cells (Figure 5A). Treatment of HeLa cells

with siRNA targeting FBXW7 resulted in an increase in nuclear

SREBP-1, and this was similar to the samples treated with pre-

miR-182. The magnitude of the induction of nuclear SREBP-1

was similar to that obtained by sterol depletion, which is the

classic treatment for inducing nuclear SREBP accumulation in

cultured cells (Brown and Goldstein, 1986, 1999). Interestingly,

although siRNA targeting resulted in parallel reduction in

FBXW7 mRNA and protein, the pre-miR-182 treatment resulted
56 Cell Metabolism 18, 51–61, July 2, 2013 ª2013 Elsevier Inc.
in a decrease in FBXW7 protein without a change in RNA. This is

consistent with the effects observed for the LE diet treatment on

Fbxw7 levels in mice (Figure 3).

Increase in Nuclear SREBP-2 Mediated by miR-182
Transfection Is Reversed by the Reintroduction of
Ectopic FBXW7 and Is Sensitive to the 30UTR
To directly analyze the effects of miR-182 on FBXW7 protein

expression, we transfected HeLa cells with an expression vector

encoding the full-length SREBP-2 protein, including its carboxy-

terminal membrane-targeting domain and a FLAG epitope tag at

the amino terminus. Where indicated, cells were cotransfected

with pre-miR-182, and, in order to restore FBXW7, an expression

vector encoding FBXW7 (without its native 30UTR) was added as

shown in Figure S6A. In this study, the increase in nuclear

SREBP-2 that resulted from pre-miR-182 addition was similar

to that observed when cells were depleted of endogenous ste-

rols. Importantly, the effect was reversed when the FBXW7

expression vector was also included, which was consistent

with FBXW7 being the major target of miR-182 for the regulation

of nuclear SREBP levels under these conditions.

To determine whether the effect of ectopic FBXW7 was sensi-

tive to miR-182 targeting the predicted miR-182-binding sites in

the FBXW7 30UTR, we performed two experiments. First, we ex-

pressed FBXW7 protein from a constitutive mRNA that contains

either its natural 30UTR or amutant version where both predicted

miR-182-targeting sites (Figure S4) were changed to destroy

complementarity (Figure 5B). We also showed that FBXW7 pro-

tein was expressed at similar levels from both constructs in

transfected cells (Figure S6). When we cotransfected a pre-

miR-182 along with the two FBXW7 expression constructs,

only the one with the mutated miR-182-targeted sites was able

to decrease the nuclear SREBP-1. In a separate experiment,

we also inserted the wild-type and mutant FBXW7 mRNA

30UTR regions downstream from the luciferase coding sequence



Figure 6. miRNARegulation of SREBP Levels Is Accompanied by the

Robust Induction of Lipid Biosynthesis

(A) HeLa cells were transfected with the indicated human pre-miRNAs alone or

in combination (10 nM, Ambion), as indicated and cultured in antibiotic-free

medium. After 24 hr, the dishes were switched to DMEM containing 5%

lipoprotein-deficient serum with or without sterol mixture (12 mg/ml Ch and

1 mg/ml 25-hydroxycholesterol) and incubated for 24 hr at 37�C and harvested.

Western blot analysis for the precursor (P) and nuclear (N) form of SREBP-1

was performed. Fatty acid synthase protein was also analyzed by immuno-

blotting (FASN), and b-actin was measured as a control.

(B) Companion dishes of HeLa cells were treated as in (A), and de novo syn-

thesis of fatty acid and Ch were measured with [14C] acetate incorporation.

Either control miRNA (Con) or a mixture of all three specific miRNAs (miR-96,

miR-182, and miR-183) were added together. The p values for differences

relative to control were *p = 0.035 for fatty acids and **p < 0.0001 for Ch.

Data are represented as mean ± SEM. See also Figure S7.
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driven by a constitutive ribosomal protein gene 10 promoter (Fig-

ure S6). When these two luciferase expression constructs were

transfected into mammalian cells, luciferase expressed from

the FBXW7 construct containing the native FBXW7 30UTR was

suppressed by the addition of miR-182, whereas luciferase ex-

pressed from the 30UTR mutant construct was not affected.

We also performed a similar experiment to analyze miR-96 tar-

geting of INSIG-2 (Figure S6). In this experiment, the reduction

in luciferase expression in response to miR-96 cotransfection

was abrogated when the bases complementary to the miRNA

seed sequences in the corresponding 30UTRs (Figure S4) were

mutated (Figure S6). Altogether, the results from the cotransfec-

tion studies with themutant 30UTRs support our conclusions that
miR-182 directly targets the FBXW7 30UTR and that miR-96

directly targets the INSIG 2 30UTR.

miR-96, miR-182, andmiR-183 Regulate Lipid Synthesis
through the Modulation of Nuclear SREBP Levels
The miR-96/182/183 locus is conserved in humans, and

sequence alignment predicts that human INSIG-2 and FBXW7

are also targeted by the corresponding human miRNAs (Fig-

ure S4). To test this prediction, HeLa cells were cultured in the

presence of sterols, where nuclear levels of SREBPs are low

and cells were treated with individual pre-miRNAs correspond-

ing to human miR-96, miR-182, miR-183, or the combination

of all three pre-miRNAs (Figure 6A). Nuclear SREBP-1 was

increased similarly by each individual miRNA or the combination.

There was a similar increase in SREBP-2 nuclear accumulation,

and SREBP target genes were stimulated in parallel with

changes in nuclear SREBPs (Figure S7).

To determine whether the regulation of SREBP levels by this

miRNA pathway had a significant physiologic impact on endog-

enous lipid synthesis, we measured the effects of the combina-

tion of all three pre-miRNAs on the synthetic rates for fatty acids

and Ch in HeLa cells. The low level of endogenous lipid synthesis

in sterol-treated HeLa cells was significantly enhanced by the

pre-miRNA combination (Figure 6B).

DISCUSSION

In classic experiments dating to the middle of the last century,

hepatic Ch synthesis was suppressed when animals were fed

a diet supplemented with excess Ch (Gould, 1951; Langdon

and Bloch, 1953). This first demonstration of end-product

repression in a complex mammalian system in vivo predated

most of the key experiments that defined the fundamental

molecular mechanisms for nutrient sensing in bacteria (Monod

et al., 1963). Since that time, mammalian Ch metabolism has

been an experimentally rich and clinically relevant experimental

system for understanding how the classic regulatory mecha-

nisms for small-molecule sensing have evolved to maintain

homeostasis in a complex and highly integrated multicellular

eukaryotic environment (Brown and Goldstein, 2009).

Using an updated version of the original animal feeding proto-

col, we have uncovered a role for a coordinately expressed clus-

ter of noncodingmiRNAs in the pathway that maintains feedback

control of intracellular lipid metabolism. In an unbiased screen,

we noticed that levels of miR-96, miR-182, and miR-183 were

dramatically increased in the livers of mice fed a chow diet
Cell Metabolism 18, 51–61, July 2, 2013 ª2013 Elsevier Inc. 57
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supplemented with LE relative to a group fed chow supple-

mented with excess Ch. These three conserved miRNAs are

transcribed together in the same transcription unit to from a

miRNA locus on mouse chromosome 6 and the homologous re-

gion from human chromosome 7 (Chien et al., 2011; Xu et al.,

2007). Nuclear SREBP-2 levels increase dramatically by the LE

feeding protocol, and the expression of this miRNA locus was

also induced along with the known SREBP-2 transcriptional pro-

gram driving lipid accumulation. We also showed that SREBP-2

binds to the promoter for the miRNA locus, providing a mecha-

nism for the LE-dependent induction.

Additional studies demonstrated that the promoter driving the

expression of the miRNA locus encoding miR-96/182/183 is

directly activated by SREBP-2. We also show that miR-96 in-

hibits Insig-2, that miR-182 inhibits Fbxw7, and that both of

these proteins have well-described roles in limiting the accumu-

lation of nuclear SREBPs, as diagrammed in Figure 3A (Sundqv-

ist et al., 2005; Yabe et al., 2002). Insig-2 reduces the proteolytic

activation of the membrane-bound SREBP precursor, and

Fbxw7 is the E3 ubiquitin ligase that targets nuclear SREBPs

for turnover by the proteasome. In fact, the major effect of a he-

patic knockout of Fbxw7was an increase in nuclear SREBPs and

hepatic lipid accumulation (Onoyama et al., 2011), which further

emphasizes the importance of Fbxw7 in hepatic lipid accumula-

tion and the SREBP pathway. Additionally, an FBXW7 siRNA

titration experiment showed that a similar change in FBXW7

mediated by miR-182 resulted in an increase in nuclear SREBP

levels in HeLa cells.

Treatment of HeLa cells with pre-miR-183 also increased nu-

clear SREBP-1, suggesting that miR-183 also targets a protein(s)

involved in regulating SREBP levels. We were initially encour-

aged when a target scan predicted that miR-183 might target

Insig-1 directly. However, we have been unable to confirm this

by direct studies with pre-miR-183 and the INSIG-1 30UTR re-

porter. Unfortunately, there were no other obvious SREBP-

pathway-associated genes within the list of putative miR-183

candidates predicted by TargetScan (data not shown) or addi-

tional prediction programs. Our results strongly suggest that

miR-183 targets a key gene that regulates nuclear SREBP levels;

however, its identification will require the development of more

robust and accurate methods for identifying miRNA target

genes. Because miRNAs often target several genes in the

same pathway, it is also possible that future studies will identify

additional relevant target genes of miR-96 and miR-182 as well.

The miRNA regulatory pathway described here is conserved

from mice to humans, and we show that the introduction of the

corresponding pre-miRNAs into human cells increases nuclear

levels of both SREBP-1 and SREBP-2. Importantly, this is

accompanied by an increase in the rates of synthesis for fatty

acids and Ch, which are major physiological outcomes for

increased SREBP activity. It is noteworthy that the increase in

lipid synthesis occurs in cells cultured in the presence of excess

sterols, indicating that this miRNA pathway can significantly

affect lipid metabolism in the absence of other signals that in-

crease SREBP activity in response to low intracellular sterol con-

ditions. Even though the addition of ectopic miRNAs can drive

significant SREBP accumulation in transfected cells, this miRNA

pathway represents only a portion of the overall multifaceted

mechanism for regulating SREBP levels in response to physio-
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logic cues. This is evident from the experiment where Ch was

added to the diets of mice that were pretreated with LE to induce

SREBP-2. In this experiment, SREBP-2 protein levels decline

rapidly and dramatically, whereas the levels of miR-182 decline

more slowly over time.

miR-182 has also been implicated in oncogenesis, and anti-

miRNA targeting of miR-182 decreases hepatic metastasis in a

mouse melanoma model (Huynh et al., 2011). Although compar-

ative microarray analyses showed several putative miR-182

target genes were altered by the anti-miRNA targeting in this

study, the identity of key oncogenic targets were not clearly es-

tablished. On the basis of our studies and the known role of

Fbxw7 in regulating the turnover of cyclins (Koepp et al., 2001)

and oncogenes such as c-Myc and c-Jun (Nateri et al., 2004;

Yada et al., 2004), it is possible that Fbxw7 is an important target

in this liver metastasis model as well.

The hepatic induction of miR-182 by LE treatment was signif-

icantlymore robust than formiR-96 andmiR-183. A similar differ-

ential accumulation of miR-182 was also observed when the

locus was activated during the clonal expansion of T helper cells

(Stittrich et al., 2010). The reason for the differential accumulation

of miR-182 relative to the others is not clear because all three are

processed from the same initial transcript. However, individual

miRNAs are assembled into an active RISC after a multistep pro-

cessing and assembly pathway, and the mechanistic details are

not fully understood (Bartel, 2004, 2009). Thus, it is likely that the

differential accumulation and loading of specificmiRNAs into the

RISC is related to differences in the efficiency of pre-miRNA pro-

cessing and differential complex assembly.

The concentration of miR-182 decreased by approximately

50% from its peak value in the LE treatment group after 1 day

of Ch supplementation, and it declined more over the course

of the experiment. Thus, hepatic miR-182 levels respond more

rapidly than miRNAs in general, which have been reported

to be quite stable and to have an average half-life of approxi-

mately 5 days (Gantier et al., 2011). miR-182 levels also change

quickly during the light-dark transition in the retina (Krol et al.,

2010). Thus, relatively rapid changes in miR-182 levels are

compatible with a significant role in more dynamic metabolic

control.

miRNA regulation often results in modest decreases in target

protein expression. However, singular miRNAs are known to

target several proteins in a common pathway, so, even though

individual changes are modest, the overall effect on pathway

flux can be quite significant (Small and Olson, 2011). Our studies

reveal another mode ofmiRNA regulation of a biological pathway

where two separate miRNAs that are encoded from a common

RNA transcript (Chien et al., 2011; Xu et al., 2007) target different

steps in a pathway that regulates a transcription factor that con-

trols expression from the correspondingmiRNA promoter. In this

way, our study reveals a regulatory loop whereby SREBP-2 con-

trols expression from a genetic locus that produces miRNAs that

regulate SREBP activity (Figure S7C). This mechanism is remi-

niscent of the classic ‘‘operon’’ paradigm for coordinate regula-

tion of biological processes in bacterial systems where gene

products that function together in a common pathway are coor-

dinately expressed from one primary transcript and downstream

from one promoter that is regulated by the biological process

associated with the gene products encoded by the operon
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(Jacob and Monod, 1961; Monod et al., 1965). In bacteria, end-

product repression of amino acid operons occurs through a

transcriptional regulatory protein that is also subject to autoregu-

lation. It is interesting that this common feature is also shared

with the miRNA-SREBP-2 regulatory circuit we describe here

(Figure S7C). Because a prominent feature of the operon mech-

anism of genetic control is a polycistronic mRNA, it was un-

known whether this mechanism was conserved in eukaryotic

organisms where mRNAs are monocistronic and transcription

and translation occur in separate cellular compartments. How-

ever, because miRNAs are encoded in polycistronic units and

the RNAs function as the active gene products, it was formally

possible that miRNA operons might exist in eukaryotic organ-

isms. The SREBP-regulated miRNA operon described here con-

stitutes an example of a true eukaryotic operon.

Overall, this study has uncovered a unique role for miRNA-

dependent regulation of intracellular lipidmetabolism that is inte-

grated with the INSIG-SCAP pathway for controlling nuclear

SREBP levels. Several other miRNAs were differentially ex-

pressed in the TLDA array profile from LE versus Ch feeding

groups. Recent studies indicate that SREBPs link lipid meta-

bolism with additional physiologic processes (Jeon and

Osborne, 2012), and it is likely that future studies will reveal

new roles for these other miRNAs and, perhaps, additional target

genes of the miR-96/182/183 locus in the integrated processes

controlled by SREBP action.

EXPERIMENTAL PROCEDURES

Animals

All animal experiments were performed in accordance with accepted stan-

dards of animal welfare and with permission of the Sanford-Burnham Medical

Research Institute at Lake Nona International Animal Care and Use Committee

(protocol 2012-88). We obtained 6-week-old male C57BL/6 mice from the

Jackson Laboratory and maintained them on a chow diet for 1 week with a

12 hr light, 12 hr dark cycle for acclimatization.

For miRNA expression profiling, mice were separated into two groups of six

animals per group and treated as described by Seo et al. (2011). In brief, one

group was fed with normal chow supplemented with Ch (1%w/w) for 10 days,

and another group was fed with chow supplemented with a mixture of lova-

statin (100 mg lovastatin [2.5 tablet equivalents]/100 g chow, w/w; Mylan)

and ezetimibe (from Schering-Plough Pharmaceuticals; 21 mg ezetimibe [2.1

tablet equivalents]/100 g chow, w/w) for 7 days. All mice were sacrificed at 8

a.m. (at the end of the dark cycle) via CO2 asphyxiation followed by cervical

dislocation. This basic feeding regimen was used in all experiments, and spe-

cific variations are described in the appropriate figure legends.

For the anti-miRNA experiment, mice were fed Ch or LE as above, and con-

trol or experimental anti-miRNA oligonucleotides were dissolved in 1 3 PBS

and intraperitoneal injected at 30 mg/kg on days 4, 5, and 6 at 8 a.m. (end of

the dark cycle). Mice were sacrificed on day 7 at the end of the dark cycle.

RNA Isolation, qRT-PCR, and miRNA Expression Profiling and

Validation

Total RNA was isolated from mouse liver and cultured cells with a mirVana

miRNA Isolation Kit (Ambion). Primer sequences used in this study are pro-

vided in Figure S7D.mRNA levels were normalized for the expression ofmouse

ribosomal protein L32 and human glyceraldehyde 3-phosphate dehydroge-

nase mRNA as a control and calculated by the comparative threshold cycle

method. miRNA expression profiling was carried out with the TaqMan Rodent

Array MicroRNA Card Set v2.0 (Applied Biosystems) in triplicate at the

Sanford-Burnham Genomics Core facility. Then, differential expression was

assessed with the Partek Genomics Suite (Partek). Then, expression levels

for miRNAs were quantified with a TaqMan MicroRNA Assay kit (Applied

Biosystems) with a CFX96 Real-Time PCR Detection System (Bio-Rad).
miRNA expression levels were normalized to sno202 (for mouse) and RNU48

(for human) expression.

Cell Culture and Small RNA Transfection

HeLa cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 10% heat-inactivated fetal bovine serum (FBS) and antibi-

otics in an atmosphere of 5% CO2 at 37
�C. HeLa cells were transfected with

10 nM pre-miRNAs (Ambion) with Lipofectamine RNAiMAX Reagent (Invitro-

gen) or FBXW7 siRNA (Dharmacon) using a Dharmafect 1 reagent. Manipula-

tions were performed according to the manufacturer’s instructions, and cells

were cultured in DMEM with 10% FBS without antibiotics. HeLa cells were

switched to DMEM containing 5% lipoprotein-deficient serum (LPDS,

Sigma-Aldrich) and sterols (12 mg/ml Ch, 1 mg/ml 25-hydroxycholesterol)

24 hr after transfection. Cells were harvested 24 hr later. Where indicated,

plasmids encoding the full-length human SREBP-2 with three copies of the

FLAG epitope (a gift from J. Rutter) or human FBXW7 with a GST tag (Sundqv-

ist et al., 2005) were included in the transfection.

ChIP Assay

Chromatin preparations for ChIP assays with mouse livers were performed as

previously described (Bennett et al., 2008; Seo et al., 2009). For gene-specific

ChIP, qPCR analysis of SREBP-2 binding to specific gene promoters was per-

formed in triplicate with a standard dilution curve of the input DNA performed in

parallel, and enrichment was measured by SYBR green incorporation with the

use of a CFX-96 Real-Time PCR Detection System. Analyses were performed

by the standard curve method, and values were normalized relative to a

nontarget control region from the ribosomal L32 gene. The qPCR oligonucle-

otide pairs for the mouse promoters are provided in Figure S7.

De Novo Lipid Biosynthesis Assay

HeLa cells were transfected with pre-miRNAs as described above. Cells were

switched to DMEM containing 5% LPDS with or without sterols for 24 hr. Cells

were incubated in DMEM containing 5% LPDS 24 hr later, with or without ste-

rols, plus 0.5 mM sodium [14C]-acetate for the indicated times up to 3 hr. The

cells were harvested by scraping into 0.5 ml 0.1 N NaOH followed by 0.5 ml

distilledwater, and100ml of thecell lysatewasused todeterminecellularprotein

contentwith a PierceBCAProtein AssayKit (ThermoScientific). The contents of

[14C]-labeledChand [14C]-labeled fattyacidswereextracted from the remainder

of the lysates as previously described (Horton et al., 1999) and spotted onto

plastic-backed silica gel thin-layer chromatography (TLC) plates (Macherey-

Nagel). TLCplateswere resolved in chloroformor a heptane:diethyl ether:acetic

acid (90:30:1) mixture (fatty acids) and stainedwith iodine vapor. The TLC spots

were excised and transferred to scintillation vials containing 10 ml Ultima Gold

XR scintillation fluid (PerkinElmer) for radioactive counting of [14C] and [3H].

The rate of incorporation for the 3 hr time course was linear under all assay

conditions, indicating that the endogenous acetate pool was unaffected by

the sterol manipulation (data not shown). All data for each sample were normal-

ized to starting protein concentration and extraction efficiency with the internal

[3H]-chloroform and [3H]-oleic acid standards. Data were reported as [14C]-

acetate incorporation per unit mass of protein (nmol/mg protein).

Statistics

The data are presented as mean ± SEM or mean ± SD, as detailed in the figure

legends. Differences between the means of the individual groups were

assessed by one-way ANOVA with a Dunnet’s multiple comparison test and

a Student’s t test. Differences were considered significant at p < 0.05. The sta-

tistical software package Prism 5.0 (GraphPad) was used for these analyses.
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