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In this paper, we consider a broad generalization of a problem which first appeared in
Scientific American. The original problem was to find all possible ways to label n cubes with
positive integers so that the n cubes, when thrown simultaneously, will yield the same sum
totals with the same frequency as n ordinary dice labelled 1 through 6. We investigate the
analogous problem for n dice, each with m labels. A simple, purely algebraic characterization
of solutions to this problem is given, and the problem is solved for certain infinite families u: «ne
parameter m. Several results on the general problem are included, and a number of avenues for
further research are suggested.

1. Introduction

In a recent issue of Scientific American [1], Martin Gardner discusses the
possibility of labelling a pair of cubes with positive integers in such a way that the
frequency of the sum of the upward faces of the two cubes is the same as that of
an ordinary pair of dice labelled 1 through 6. He mentions that besides the
standard dice, there is exactly one more pair which produces the same result. This
problem was first posed and solved by George Sicherman. In this paper, we
consider an analogous problem for n dice, each with m labels. Throughout the
paper, we assume n>1, m>1, and the probability that any one of m positive
integer labels (counting repetitions) on a die has the probability 1/m of ozcurring.
A spinner labelled 1 through m (like those used in games of chance) is a physical
example of such a die. The cover of the Mathematics Magazine, Vol. 49, No. 3,
shows how one could construct a solid with m labels, each one having probability
1/m of occurring.

2. Definitions

A die labelled 1 through m is called a standard one. A die with a total of m
labels (counting repetitions) is said to have size m. A game with n dice is called an

245


https://core.ac.uk/display/81947893?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

246 J.A. Gallian, D.J. Rusin

n-dice game. The general problem of interest may be stated as follows: Given n
and m, determine all possible sets of n dice, each of size m, so that the probability
of obtaining any particular sum is the same as that obtained by using the set of n
standard dice of size m. Any labelling that appears on one of n such dice is called
a solution of an n-dice game with dice-size m. For example, Sicherman discovered
that the labellings 1, 2,2, 3, 3,4 and 1, 3, 4, 5, 6, 8 are solutions to a 2-dice game
with dice-size 6. Thus, a pair of cubes with these labels would yield the same
probabilities as an ordinary pair of dice. If a sequence P of labels is a solution of
an n-dice game, then P is obviously a solution of a k-dice game for any k > n, for
one cculd simply combine the original set of n solution dice, of which P was one,
with k —n standard dice. Thus, for any nonstandard solution P of some n-dice
game. it is of interest to find the smallest positive integer n for which this is true.
Such an n is called the game-size of P. Define the game-size of the standard die to
be 1.

3. The method

The general problem can be approached in the following way. Suppose, for
i =1 to n, the set of dice with labels a;,, a;», . . ., a;, yieids the same probabilities
as n standard dice of size m. Let P; denote the polynomial x“ '+ x%=+4 « + + + x%,
In this way, we establish a 1-1 correspondence between solutions and polyno-
mials. For convenience, we often refer to the polynomial corresponding to a
solution of a game as a solution itself. Now, it is easy to see that our conditions
require that

, /xm — 1 n
P,Pz'"P,,=(x'"+x'""'+ R +x-+x)n=xnk )
x—1
and P,(1)=m for i =1 to n. Since monic polynomials with integer coefficients can
be factored over the integers in only one way as a product of irreducibles, the only
roe’ =1L arreducible factors for P, are simply those of
x(x\il —_ 1)

DL B +x—_-:x(x"'~|+ e+ =——,
x—1

Thus, the possible irreducible factors for P, are x and the cyclotomic polynomials
for divisors of m greater than 1.

Let’s illustrate the technique for m =8. If P is a polynomial obtained from a
sequence of labels as described above, P(x) must have the form

x(x+ 1) (x2+ 1) (x*+1),

since x+x>+ -+ +x® factors as x(x+1)(x>+1)(x*+1). Since the labels are
positive integers, P(x) is divisible by x, and, therefore, g=1. If 1 occurred as a
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label on some solution die more than once, there would be more than one way to
obtain a sum of n, using the n solution dice. But there is only one way to obtain a
sum of n, using n standard dice, so q=1. This, together with the fact that
P(1) =23, gives

P(x)=x(x+1)"(x>+1)*(x*+ 1)

where r+s+t=3. Trying all possible combinations for r,s,t, we obtain the
following labels as possible solutions to an n-dice game with octahedrons:

(@ 1,2,3,4,5,6,7, 8 (standard),
(b) 1,3,5,5,7,7,9, 11,

(© 1,2,2,3,3,4,4,5,

d 1,2,5,5,6,6,9, 10,

(e) 1,2,3,3,4,4,5,6,

® 1,3,3,5,5,7,7,9,

(® 1,2,2,3,5,6,6,7,

(h) 1,5,5,5,9,9,9,13,

i 1,2,2,2,3,3,3,4,

M 1,3,3,3,5,5,5,7.

A pair of dice with labels b and c yields a 2-dice game. The same is true of d and
e, and f and g. Thus, the sequences b through g have game-size 2. Although h, i,
and j are not solutions to a 2-dic: game, {h, e, c}, {i, b, f}, and {j, d, g} each form
3-dice games.'

4. General results on solution dice

In this section, we piesent the solutions for certain infinite families of dice and
give some general properties that solutions must have. :

Throughout the remainder of the paper, p and q dencte primes. We use A, (x)
to denote the kth cyclotomic polynomial. Properties of these polynomials can be
found in [2, pp. 263-267].

Our first result gives a convenient way to determine whether or not a polyno-
mial is the solution to some dice game.

Theorem 1. A polynomial P(x) is a solution to some game with dice of size m if
and only if:

(1) P(x) has nonnegatwe, integral coefficients;

(2) P(x) is monic;

3) P(1)=m;

(4) P(x)/x is a polynomial, all of whose roots are mth roots of unity.

'Incidentally, standard dice in the shape of an octahedron, as well as the other four Platonic solids,
are commercially available from Creative Publications, 3977 East Bayshore Road. P. 0. Box 10378,
Palo Alto, California 94303.
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Proof. Necessity is easy. We need (1), since the coefficient of x* is the number of
sides labelled “k.” For (2), recall that

m_l n
P.PZ. “ e .Pn=x"(xx_1)

where P,, P, ..., P, correspond to the other dice in the game; using (1) on each
P,, and comparing the leading coefficients, we see that each P, is monic. Condition
(3) ensures that the number of labels assigned (= P(1), the sum of the coefficients)
is the same as the number of sides (= m). And (4) follows, since P(x)/x divides
(x™—-1)"/(x—1)" as in Section 3.

For the proof of sufficiency, we must show how to construct dice, given a
polynomial P(x) satisfying (1) through (4). Conditions (1) and (4) together yield

P(x)=c - xn Ay (x)

for some (not necessarily distinct) divisors d; of m. Sir.ce the A, are known to be
monic, (2) implies that c=1.
Now recall that each A; may be written

k-1
KA P

for some n, where each k; divides d. This means that P(x) may be written

_X || (x4 -1)

PO =T o

for some n and for some k; dividing m.
Let Q(x) be the polynomial

" ‘x"l_i n
o () s
— n xM-1 . i (x"'_])
X ,[I,(x"'—l) ,_l-[, x—1/

Next, we use the fact that k; | m and the identity

xfh(_l_xlsl_l.xrs__l
-1 x"-1 x"-1

repeatedly to factor each of the terms

xm__l x,'_l
(x“‘—l) and (x—l)
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into the product of terms with the form (x°" —1)/(x® — 1) with p prime.
This gives

*) Q(x)=x""[] (xaipi — 1).

x%-1
Now,

o =[v(E=1)" atx=1] /Py

=m"/m=m""', by (3).

On the other hand, when we evaluate

aipi—l
(xa ) at x=1,
x%=1

we get p. Thus, (*) gives m" ™' =[] p.. So, for each fixed prime p, the nuinber of
times p, =p in the expression (*) is

(n—1) - (number of times p divides m).
Therefore, we may partition the set of subscripts i into n—1 subsets

$1,S,, ..., S, such that [[ics p, =m for each j.
If we let

Q(x)=x]] (xxa:-_— 11)’

i€

then Q=Q, - Q,* -+ - Q,_,. Now, each Q; is the product of x and expressions
of the form

x—1
( 1)=1+x“+x2“+---+x"’")“.

a

x" -

So, eack i certainly has nonnegative, integral coefficients whose sum is

ap, 1
Q’(l) = l-[ x(%; "1 )x=1 N n pi -m

i€, ieS;

P(x) likewise has nonnegative integral coefficients with sum m (only here do we
really use condition (3)!).

Therefore, for each of the n polynomials Q;, Q,, ..., Q,_; and P, we label the
sides of an m-sided die by letting the number of sides labelled “k’ be the
coefficient of x* in that polynomial. When these n dice are thrown together, the



250 LA, Gallian. D.J. Rusin

frequencies of the possible face-sums may be read off from the coefficients of

. xm__l
0,:0, - -0, l.p:()-p:,((x_l),

that is, this sct of n dice is equivalent to n standard (m-sided) dice. This makes P
(as well as each Q;) a “'solution,” as desired.

Theorem 2. There are exactly 3 distinct solution dice in an n-dice game with
dice-size pq, where p and q are not necessarily dist:nct primes. Moreover. the 3

solutions are the same for all n.

Proof. Suppose P(x) is a solution to an n-dice game with dice-size pq. We
consider the case that p# g first. The analysis in Section 3 shows that P(x) has the
form

X (AL (XD (A D (A (XD,

Since P(1) = pq. it follows that r =y = [. We next establish a bound for t. To this
end. denote the degree of A, (x) by w. and the degree of P(x) by ». Then the
cocflicient of x* "in A,,{x)} is —1 and. therefore, the coefficient of x* ' in P(x) is
2—1. Thus, we need only consider the cases where t=0, =1, t =2, (Note that
t = 1 corresponds to the standard dic.) It is straightforward to check that these
three cases yield polynomials that satisfy Theorem 1 and have game-size at most
2. so we are finished with the case that p# q.
Now. consider the case when p=q. Then, P(x) has the form

XA, (XD (A, (X))

Siace all the cocflicicnts of A, (x) are nonnegative and P(1) = p°, we must have
rts =20 This gives rise to three cases also, and, as before, cach of the three
resulting polynomials satisfies Theorem | and has game-size at most 2.

Since the above pofynomials are independent of i (recall, we assume through-
out the paper that r > 1) and have game-size at most 2, the “*morcover™ part of
the theorem is true.

The actual solutions for two special cases of Theorem 2 are worth singling out.

Corollary 1. The totality of solutions for an n-dice game with dice-size 2p(p=>2)
is:

(Y 1.2 3.....2p (standard labelling):
(2)y 1L2.2.3,3,....p.pp+ 1
(W L3S p=-2pp+lp+2,....2p-2.2p - 1. 2p. 2p + 2,

p+d L 3p -,
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Corollary 2. The totality of solutions for an n-dice game wirh dice size p® is:
(D 1.2,3,....p° (standard labelling);
(2) labels: 1,2.3.4....,p~-L.pp+1,.....2p-2.2p—-1}
corresponding frequencies: 1,2.3.4,....p—-1.p.p—-1,.... 2. {;
(3) labels: 1,p+1.2p+1,....(p—Dp+1l,pp+1.....2p-2)p+1
corresponding frequencies: 1.2,3,4,....p.p—-1,..., 1.
(For example, for p =3, (2) yields the labels 1,2,2,3, 3,3 4,4,5))

Theorem 3. The standard die is the only solution for an r-dice game with dice-size
m if and only if m is prime.

Proof. If m is prime, then any solution P(x) must have the form xA,,(x). so there
is only one possibility for P(x).

Now suppose m =k - [ with k. 1# 1. It suffices to show th .t there is a die of size
m that is the solution to a 2-dice game. Let

P(x)= x(-“'" L\ Ve 1)

-1/ \x'—1

and

Q(x)= x(x:: |l)(}:—_ tl)'

Since P and C satisfy Theorem 1 and

2(x) Q(x)= x:(x - l)k.

x—1

P is the solution of a 2-dice game. But P has double roots, namely, the primitive
mth roots of unity: s0 P is not the standard solution.

Before stating the next theorem, it is convenient to introduce the following
notation: For a dic with labels ranging from | to &, let «; denote the number of
times the label i occurs. For example, the octahedron labetled 1,2,2,3,5.6,60,7
gives us a, = |, a, = 2. ay= Lia, =0 as= 1. a,* 2, a,= |

Theorem 4. For any solution die to an n-dice game with labels ranging from 1 to k,
the sequence oy, o, ..., a is a palindrone.

Proof. Let P(x) be any solution to some game. Then Pix) can be writien as
x [TA,(x) for some collection {A, ()} of cyclotomic polynomials (allowing repeats)
with d# 1. The theorem now follows from that fact that all cyclotomic polyno-
mials with d# | are palindromic and the product of palindiomic polynomials is a
palindrome.
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Standard dice in the shape of a cube are always labelled so that the sum of
opposing faces is 7. As an imiaediate consequence of Theorem 4, we see that all
solution dice have the analogous arithmetic property.

Corollary. If a,,a.....,a, are the m labels, listed in ascending order, of the
solution to some game, then

ai+annl i:1+am for i:],...,m.

In Section 3. we listed all of the solutions of an n-dice with dice-size 8. Solution
h on that list is particularly interesting because of the relatively large gap between
successive distinct labels. This raises the question of how large the gap between
successive distinct labels can possibly be for a given dice size. The next result
provides a bound on this gap.

Theorem 5. If an m-sided die has a face labelled k, then the next largest label is at
most k + m.

Proof. In view of the palindrome property given in Theorem 4, it suffices to
prove, instead, that if k is one of the labels on an m-sided die, then one of k — 1,
k-2,....,k—m+1 or k—m is also a label on the die. To prove this, we first
recall some facts from the theory of equations. If a polynomial

P(x)=x"+p,x" ' +p.x"+ -+« +p,

has roots vy, v,...., %, in some splitting field, let
o =Y Y5+ oyl

Ther Newton's Identities give (set p, =0 for i >r)
0=0,+1p,,
0=0,+0,p,+2p,.

V=03+0,p,+0,p,+3p;,

Subtracting the (i —m)th equation from the ith (:>m), we obtain
0=(o,—0, ,)+(0,_, ~Ci Pt
+(a-m -[' - rn])pi'ﬂn +0m—lpi—m+l +oee (*)

Now take, in particular, P(x) to be a polynomial corresponding to a die. Then,
since any root y of P(x) is either O or an mth root of unity, we have y' = y'~™ and
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therefore o, =g, ., for all i>m. Thus, (*) becomes
() = (Um _[’ —m ])pl ~m +0'm Wlpi -m+1 toee +Glpi -1 + ipi’

If we suppose p,=p, 1= ** =pi_m+1 =0, then using the fact that
0m= X ‘Y:"=(i‘“‘l)' 1+] '0=r—1,
i=1

we have
0= ([r - l]_(l - m))piAm'

Thus, either i—m =r—1 or p,_,, =0. So, by choosing i —m = r—k, we see that the
assumption

pr—k+l=pr»~k+2= = pr~k+m=0

leads to k =1 or p,_, =0. Since we have chosen our subscripts so ‘hat p,_, is the
number of faces labelled k, which by hypothesis is not zero, we see that, when
k#1,o0ne of p,__1y Pr—k-2)s - - - » Pr—k—my 1S NOt zero. That is, some face has one
of the labels k—1,k—2,..., or k—m. This completes the proct.

Numerous examples lead us to believe that Theorem 5 is true when the m in
the conclusion is replaced by 3m. Since there are dice of sizes 8 and 16 that have
gaps between a pair of successive labels of 4 and 8 respectively, no better bound
than 3m on the gap size is possible.

Our next result gives a bound on the magnitude of the labels of a die as a
function of the size of the die.

Theorem 6. No label on an m-sided die is larger than m*>—m +1.

Proof. Let
P(x)= x'+p,x""'+p2x""z+ “ e +p,‘.x'~"-

(where p,#0 for i=1,...,s) be a polynomial corresponding to an m-sided die.
By Theorem 5, we kiiow n,<m and (r;,, —n;)<m for all other i. Adding these
successive gaps between labels, we obtain a sum that telescopes to n,<s - m.
Since x divides P(x) while x> does not, we have r—n,=1 and therefore r<
1+s+ m. On the other hand,

m=P(1)=1+ ), p=1+s

i=1

so that s<m—1. Thus, r<1+m(m—1) and the theorem is proved.
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Our examples suggest that the bound on the largest label given in Theorem 6 is
not a good one. It can be shown that when m = p*, the largest label on an m-sided
die is

log m

m
1+k(p—1Dp* ' =—=o(p-1+1,
(p p plog p p

and we conjecture that

m log m n
2log?2

is actually an upper bound for the labels on an m-sided die for all m. Obviously,
this bound, if correct, would be the best possible.

5. Results on game-size and the number of selution dice

For a fixed dice-size m, it would be nice to be able to predict, or at least bound,
the game-size of a solution die and the number of solution dice as a function of m.
In this section, we will give several results of this nature.

Theorem 7. If the largest label on a die is L. then the game-size of the die is less
than 1.

Proof. Write the polynomial P(x) corresponding to the die as

P(x)=x n Ag(x)
i

and let n denote the game-size of P(x). Since deg A, = @(d),

1+ Y @(d)- e, =deg P(x)=L
dim
d#1

where @(d) is the Euler phi function of d. Thus,

Y d(d)e,<L. (1

dim
d#1

We wish to compare the sum given in (1) to the game-size n. Recallizig that

(x4 —1) ,
(x4 =1y« (x¥1 1)

(xPPa— gy« (xa9: - 1)

: (xd/n.ngm_ 1) PPN (xa/q,qqu__ 1) T (2)

}\d(x) — n (xd/e _ ])u(e) -
eld
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where p is the Mobius function and the p’s and the q’s are the distinct primes
dividing d and letting w(d) denote the number of distinct primes dividing d, we
see that the number of terms in the numerator of (2) is

1+(w(2d))+ (w‘(id))_'_ v e ___%[(1+1)m(d)+(1 _ 1)00(1‘,)]:2(»((1)—1‘

Therefore, if P(x)=x[]A.(x)™ is expanded using (2), the number of factors in
the numerator is ¥ e, + 2°'~!, But the proof of Theorsm 1 shows that if

P(x)= xn ( 'J])

then the game-size n of P(x) is at most s. It follows then that

n= z zmidl I é Z 2mldie“. (3)

dlim dim
d=1 d#1

Now, for any positive integer d,

=Tl 2=2[] (p-1= 2np “( 1)

pld pld pld P

/ (4)
<24 T 5\1—-5) ~20(d)

pld

Putting together (1), (3). and (4), we have

n<i Y 2vbe, < Y @(de, <L.
dlm d|m
d#1 d+*1

This completes the proof.

Theorems 6 and 7 together yield a bound on the game-size as a function of the
dice-size.

Corollary 1. A die with m labels has game-size at most m?--m.
Corollary 2. There are only a finite number of solution dice with m sides.

Proof. Theorems 1 and 7 show that any polynomial corresponding to an m-sided
solution die must be a divisor o

(xm _ l)m?—m
X r—1 .
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The bound given in Corollary 1 of Theorem 7 is not at all sharp. For m = 30, it
says that the game-size of any solution die with 30 labels is at most 870. However,
we coniecture that the maximum game-size for dice with 30 labels is actually 4.
The next result gives a much sharper result fur a certain large class of scolution
dice.

Theorem 8. If a solution die P(x) may be written

P(x)=x - 'ﬁl (xk'l' — 1)

xt =1

for some sets of integers {k;} and {l}, then the game-size of P(x) is at most n.
Moreover, if P(x) can be written in the above form and if the prime-power
decomposition of m = P(1) is m=p{p% - p), then n<Y e, giving an absolute
bound on the game-size, knowing the dice size.

Proof. It suffices to produce n—1 polynomials satisfying the conditions of
Theorem 1, such that the product of these polynomials and P(x) is x"(x™ —1)"/
(x —1)". We shall do this as in the proof of Theorem 1.

Since P(x) is a solution die, we have from Theorem 1 that each k,/; divides m.
So, we define the polynomial

m __ ‘ n m_ -
SRR R | (LN

Repeatedly using the identity

.".'"'-—l_x""—-l .xrs__l
=1 x"-1 x'-1°

we e o yrite this as
n | xh—1 L]
0w =x" "] P *)

with cach p, prime.
Evaluating (*) at x =1 gives Q(D) =[] p. On the other hand,

Pih- O - 1% &'—)
x=1

at x - Lis m", so O()=ri"/P()=m" ',

Thas, [1p, - m" ', so that for each fixed prime p, the number of times p, =p in
() is

(= 1)+ (number of times p divides m).
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Therefore, we may partition the set of subscripts into n — 1 subsets S;, Sz, . - - Sp-1

such that [];cs, p: =m for each j, (This partition is unique only if S =S;; i.e., if no
partition is actuzily made!)

Define
_ x*—1
Qi(X) - ile-l, (x“t -1 ).
Then
oM=[lp=m,
ie§.

O,'(X) =- n (l +x% 4+ ... +x(l""l)a‘)

€S

is monic and has positive integral coefficients, and the roots of Q;(x) satisfy

ap,

x“"—1 for some i, and, hence, x™ — 1. So we may use Theorem 1 to conclude that
eact Q;(x) actually corresponds to a die.

Moreover,

C -0y - 'O,,.-P::Q.p=xn(x::ll)", o

so that this set of dice actually constitutes an (n-dice) game; that is, the game-size
of P is at most n.

The “moreover” part in the statement of the theorem fcllows from

p _ " kuln-—l "
Mor=m=p=e- T (=), -Mln

so n=# factors |, <# prime factors p, =) e,

We remark that for certain m, for example p* or pg, all solution dice may be
written in the above form. However, among the 44 solution dice of size 30, there
are four that can not be so written, Morceover, one of these has game-size 4, which
is greater than Y e, =3,

Note that for any m, if each of the ki, divides m=P(1)=[]k. then by

Theorem 1, the above polynomial does in fact give a solution die. This gives a
method to generate many dice for each m.

The next theorem shows that there are dice with arbitrarily large game-size.

Theorem 9. For any n, there are solutions dice of an n-dice game that are not

solutions to any game with fewer than n dice. These dice can be chosen to have size
')n’
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Proof. For cvery isn, let P'x)=x(A,(x)" for any prime p. Now A, (x) has
positive coeflicients so P,(x) does, and P,(1)=p" since A, (1)=p. Let m = P,(1).
Then

Pyx)Py(x) «» P(x)=x"(A,(x)A,(x) <+ * Apu(x))"
== x'l(xm - l)"
x—1
so that P, P,.....P, taken together form an n-dice game, However, each P, has -

roots ¢f multiplicity n and so is not a factor of (x™ —1)*/(x — 1)* for any k < n; that
is, these dice are not solutions to a k-dice game for k <n,

Another general problem of interest is to find a formula for the number of
solution dice of size m as a function of m or, more specifically, the prime-power
decomposition of . Again, this has already been done for m = p, 2p, pq, p*. The
next result handles the case where m = p*,

Theorem 10, There are exactly (3¢ ') solution dice of size p* for all positive integers
k and all primes p.

Proof. Consider any polynomial of the form

Pxy-x [1 a0
Veiteh
By Theorem 1, P(x) is the solution of a k-dice game if P(1) = p*. Since A,.(1) = p,
we therefore have a one-to-one correspondence between the set of all solution
polynomials Plx) and the set of all n-tuples (e.....e,) such that Y ¢ = k. But,
the numb.r of such k-tuples is the same as the number of ways of putting k
indistinguishable objects into i distinguishable boxes with i = k, This number is

Ik H~~I):(2k—l)
Lk k-1)

Since the binomial coeflicients are obviously unbounded, we have the following
consequence of Theorem 10,

Corollary, There exist integers m so that the number of dice of size m is arbitrarily
large.

The results obtained above for m =p" and m = pq seem to suggest that the
number of solution dice of size m may be a function of the prime-power structure
of m alone and not the particular values of the primes themselves. We believe
that t:is is true for the case m = p?q as well, tut not true for the case m = pqr
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(p. q, and r are distinct primes). For m = p?q, we have shown that there always are
at least 22 solution dice, and we conjecture that there are no more. On the other
hand, we know there are at least 44 solution dice when m = 30 or 42; but for the
general pqr case, we have only been able to establish the existence of 40. In fact,
we conjecture that there are only 40 solution dice of size 1085.

We conclude with a variation, which arose in a conversation with Roger
Coleman, on the problem considered above. Given n and m, find n dice—not
necessarily of size m or even the same size—so that these n dice yield the same
probabilities as n standard dice of size m. For example, Coleman found that one
die labelled 1, 1, 4, 4 and another labelled 1, 2,2, 3, 3,3, 4,4,4,5,5, 5,6, 6, 6,
7. 7. 8 yield the same probabilities as an ordinary pair of cubes labelled 1 through
6.
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