View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Available at

www.MATHEMATICSwWEB.ORG

Cﬂ Multivariate
POWERED BY SCIENOECDIHECT' Analysis

ACADEMIC
PRESS Journal of Multivariate Analysis 92 (2005) 97-115

http://www.elsevier.com/locate/jmva

Rao distances

Charles A. Micchelli*! and Lyle Noakes®™*

& Department of Mathematics and Statistics, State University of New York at Albany, Albany,
New York 12222, USA
b School of Mathematics and Statistics, The University of Western Australia, Nedlands, WA 6907, Australia

Received 14 March 2003

This paper is dedicated to Boris Korenblum with friendship and esteem on the occasion of his 80th birthday.

Abstract

We determine Riemannian distances between a large class of multivariate probability
densities with the same mean, where the Riemannian metric is induced by a weighted Fisher
information matrix. We reduce the evaluation of distances to quadrature and in some cases
give closed form expressions.
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1. Introduction

The problem of measuring the distance between probability densities is pervasive
in applied sciences. Among other applications it comes up in applied statistics,
speech recognition and image analysis. There are a number of approaches to this
problem, but the one which is our focus of study here is the method introduced by
Rao [12]. Generally speaking, the Rao method puts a Riemannian structure on the
parameter space which determines the family of probability densities under
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consideration and then the distance between two probability densities is measured by
the distance between their corresponding parametric realizations. Needless to say
these distances are difficult to identify. There are a few cases for which they have
been obtained. For example, the Riemannian distance induced by the Fisher
information matrix between two multivariate normal densities with the same mean
was identified in [2] as well as the distance between any two univariate normals.
Other cases for which distances have been computed are multivariate normals with a
non-Rao Riemannian metric [8], and elliptical densities with the same mean and the
Rao Riemannian metric [3]. Other sources of interest in this connection are
[1,6,11,13].

Recently one of us extended some results in [2] to a certain family of
weighted Fisher information matrices as proposed in [4]. Our purpose here
is to give improvements of this result in two directions. First, we consider a
wide class of elliptical densities which include as a special case normal densities
and secondly measure their Riemannian distances by a weighted Fisher in-
formation matrix which includes all the cases considered in [9]. In this
generality, we shall demonstrate here that the computation of the Riemannian
distance reduces to quadrature, that is, the computation of univariate integrals, and
in many cases of interest can be obtained explicitly. In this regard, we exploit the
invariance of the elliptical densities as reflected in the Riemannian structure on the
parameter space.

Let us begin by establishing necessary terminology and notation. For any integer
m=1, let M be a C* manifold of dimension m. We choose a e M, a real number
aeR and a C* function w: R— M satistying the equation w(a) = 6. The velocity
v = @ (a) of the curve at time « is said to be tangent to M at 0 and the set of all such
velocities is a real vector space of dimension m called the tangent space TMy of M at
0. Evidently, TM, is independent of the choice of ae R. A Riemannian metric on M is
a C™ assignment of an inner product on 7'My for each e M,

OeM— <-,-|0>

and with this metric is associated a Riemannian norm || - |0|| defined for ve TM, by
the equation ||v |0|]* = (v,v|0>. For any nonempty finite interval I := (a,b) of the
real numbers R, the Riemannian length of w restricted to I is defined as the integral

lox ) = / (1) eo(1)

and the Riemannian distance between 0, 0; € M is then defined to be
d(0o,01) = inf{l(w;1): 0eC*(00,0,,1, M)}, (1)

where C*(0y,01,1, M) is the space of all C* curves w:[l— M satisfying the
equations w(a) = 0y and w(b) = 0,. Notice that the distance d(6, 0;) is independent
of the choice of I which we often take to be [0, 1] and the distance d is said to be
induced by the Riemannian metric on M. In this case, we simply write C* (0, 01, M)
for C*(0y,01,[0,1], M) and I/(w) for I(w;[0,1]). The manifold M is said to be
complete with respect to the Riemannian metric whenever, for every 6y, 0, € M and
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every finite interval I there exists a curve ye C* (6, 0,,1, M) such that d(6y,60,) =
I(y;I). In such a case there is no loss of generality in supposing y parameterised
proportionally to arc-length, namely ||}|| constant, since lengths are unaffected by
reparameterisations. Then y minimises the energy

£G) = [ Il d
among all curves in C* (0, 0;,1, M), as well as minimising length.

Definition 1. A curve ye C* (0o, 0;, M) parameterised proportionally to arc-length is
called a geodesic whenever for any cel there exists a subinterval J = (¢_,¢;) of I
containing ¢ such that

d(y(c-),v(ey)) = Uy J).

So a geodesic minimises the distance between sufficiently nearby points. In
particular, given 6,0, M, any ye C*(0y,0,, M) parameterised proportionally to
arc-length and satisfying d(0o,0;) = [(y) is a geodesic. On the other hand, not all
geodesics minimise length, and unless M is complete there might be no length-
minimising curve joining given points in M.

The example described in the next section is central to our investigation. To
prepare for it, we let {ej, ea, ..., e,} be the standard basis of R", GL(n) be the group
of invertible n x n real matrices, SL(n) the subgroup of matrices of determinant I,
O(n) denote the subgroup of orthogonal matrices and [ the identity n X n matrix. We
use R for the positive orthant (all vectors with positive coordinates) in R" and
C*®(M,N) for all C* functions from the manifold M to a manifold N and when
M = N we simply write C* (M) for C* (M, M).

2. Riemannian metrics

Let P, be the space of n x n real symmetric positive definite matrices. The tangent
space for any point (u, A) on the manifold M = R" x P, is R, ® S, where S, is the
vector space of all nxn real symmetric matrices. We consider a family of
Riemannian norms induced by three functions a, b, c in C* (R, R). Specifically, at
any point (u,A) in M and any point (y,I') in the tangent space we define

1, T)I(1, A)|? 10 be
a(det A)yT Ay + b(det A)(Tr(A~'T))* + ¢(det A)Tr((A7'T)%). 2

The choice of this norm comes from Statistics and will be explained in detail in the
next section. For later use, we shall first discuss here some properties of this
quadratic form.

A necessary and sufficient condition to ensure that this is indeed a norm on the
tangent space for all points (u,A4) of M is that for all reR,, there holds
the inequalities a(?)>0, ¢(¢#)>0 and nb(¢) + c(t)>0. The necessity of this
condition follows from simple choices of (u, A) and (y,I'). The sufficiency of this
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assertion requires
Tr C2 — n~'(Tr C)*>0, (3)

valid for any square matrix C, with strict equality if and only if C is a multiple of /.
This follows from Cauchy—Schwarz.

We have two comments to make about the Riemannian norm (2). First,
the distance of any two points in M with the same second coordinate,
that is, d((ugy,Ao),(u;,A0)) is the Euclidean distance between the vectors

a((det Ao)%)/l%),uo and a((det /10)%) %yl. The second comment concerns the
computation of the distance between two points in M with the same first
coordinate, that is, d((ty, 40), (49, 41)). Since the first components are the same,
we see that this distance is the same as the Riemannian distance between Ay, A;
relative to the norm

IT|Q])* = b(det A)(Tr(A™'T))* + c(det A)Tr((A'T)%) (4)

on the tangent space S, of A as an element of the manifold P,. By our previous
comment for the metric (2), we see that (4) is a norm for all A€ P, and I'e S, if and
only if for all e R, there holds the inequalities ¢(¢)>0 and b(t)> — n~'c(t). When
the pair of functions (b, ¢) satisfy these conditions we say they are acceptable. Unless
otherwise stated (b, ¢) will always be assumed to be acceptable.

There are important observations to be made about the computation of the
Riemannian distances d(Ay, ;) induced by norm (4). These observations take
the form of reductions which terminate at a calculation of Riemannian length in the
plane R?. Let us explain in detail what we have in mind. Every Qe SL(n) determines
an automorphism on P, given by A— A = Q7 AQ for A€ P, which takes the metric
(4) into itself.

1 1

Now, let us explain how to choose Q. We consider the matrix I' == A, A¢A,*€ P,
and choose Ue O(n) such that 4 = UTT'U is a diagonal matrix. In this case, the
diagonal elements of 4, are the eigenvalues /i, ..., A, of the matrix A, 'A;. With this

choice of U we set Q == (det AO)I/ZA(;%U so that Ay = (det Ag)I and A; = (det A¢)4;
and we conclude that d(Ag, A;) = d(Ag, A;), that is, it suffices to compute the
distance between a scalar multiple of the identity matrix and a diagonal matrix.

Next, we restrict the Riemannian metric (4) to the manifold D, of all diagonal
matrices in P, and let d be the corresponding distance in the submanifold D,. Since
the distance d is calculated as the infimum of lengths of curves in D, we have for all
Ay, Ay €D, that d(Ay, Ay)<d(Ag, A;). We shall show that indeed

d(4o,41) = d(4o, 41). (5)

Since P, is not necessarily complete we do not prove this result by using geodesics.
Instead, for e>0 and we C* (4y, 41, P,) we choose
deC™® (4,41, Py), so that

1) <I() + ¢
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and the eigenvalues of & (t) € P, are distinct for all te T where T == [0, I]\T for some
finite subset 7' of (0,1). From the definition of distance it is enough to find
we C*(Ay, 41, Dy, T) with [(d) <I(d). To this end, using continuity of the spectrum
of w(z) as a set-valued function of ¢ we write &(¢) in the form

a(1) = U a(n)U(),
where Ue C*(T,0(n)) and &eC™(4g,Ay,D,, T) is C*, see [7]. For t¢int(T),
UT(£)U(t) is skew-symmetric and it follows that

Tr(o ' (H)a(1)) = Tr(a ' ()d(1)).
Therefore, after some calculation we conclude that

Tr((6™ (1d(1)*) = Tr((@ ™ () (1))°) +4Tr((4B)),

where 4 = &~'(¢) and B is the symmetric part of UT&(t)U. We recall Eq. (3) to

obtain Tr((4B)*)=0 and conclude that /(&) </(c). This completes the proof of
Eq. (5). The argument demonstrates that geodesics in D,, are also geodesics in P,,.

Identify R" with D, by x = (x1,X, ..., x,)" —diag(e™, e, ..., e), where diag
means diagonal matrix. Let e be the vector (1,1,...,1)eR". Then (logdet Ag)e
corresponds to Ay, and we suppose x' € R" corresponds to A;. Define functions b, ¢
by b(e") = b(t),c(e') = &(t) for te R. For a path x(¢) in R" the Riemannian norm of
x(¢), induced by the norm on D,, is

Bl + X2 4 - 4 Xp) (X1 4+ X2+ -+ %)7 + (X1 + X2+ -+ x)
X (X + 43+ -+ X).
Let H e O(n) rotate e to y/nej, and suppose also that H rotates x' into the plane

spanned by e, e;. Let y = \/nHx and similarly y' = \/nHx'. Then the Riemannian
norm is

(B1) +n~ eyt +n e (3 + - +53)- (6)
This proves most of a theorem, whose statement requires the following definition.

Definition 2. Let ye C* (R, R;) be continuous. The associated y-Riemannian metric
<, >, on R is defined by ||z|z|* = y(z2))(£} + 23). O

Theorem 1. Given functions b,ce C* (R, R) satisfying nb(t) + ¢(t) >0, for all te R,
there is ye C* (R, R.) such that, for every Ay, Ay € P, there are 2°,z' € R* with
d(Ag, Ay) = d,(2°,2").
Moreover, z° = (logdet Ao)(1, 1) and z' = n(m, c) where
1 & , 1 ,
m:Z;Piv o= - (p; —m)”,

p; =logh; for i=1,2,...,n and the J; are the eigenvalues oanlAl.
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Proof. Define ¢:R"—>R" by ¢(v) = (q1(v),q2(v), ..., qn(v)), where ¢;(v) =v; for
2<i<n, and

m@=£ﬂu+§gw,

where the integral exists by hypothesis, and v = (v, 02, ..., 0,) € R". Let z! = ¢(y")
where y! is defined in the discussion preceding Definition 2. For a curve z(¢
corresponding to x(¢), expression (6) reduces to

)
wE)E+5+ - +2),

where y(q1(v)) = n~'¢(v;). Because y' € R* x {0}, it follows that z' € R> x {0}. So the
Riemannian distance d(0,y') in R", corresponding to the norm in (6), is achieved as
an infimum of paths entirely contained in R* x {0}. O

The computation of d, is complex and the subject of Section 5. We raise, in
passing, the following question. Given Fe C(R?, R,), when is F(det Ag,m,0) a
distance on P,? Next we turn to the statistical motivation for the Riemannian metric
studied in Section 2.

3. Rao metrics

For us here a probability density on R" is a measurable function p: R"—> R,
such that [, p(x)dx=1. Let M be a C* manifold of dimension m,
and P(0,-),0e M be a family of probability densities parameterised by M,
that is, P: M x R"— R with P(0,-)e C*(R"),0e M. The associated log-likelihood
L:MxR'—-R is given by L:=logP. For functions y"eC*(R,,R) and
weC®(R, M), we write w(0) = 0y, ®(0) = ve TMy, and define the (weighted) Fisher
information of v as

/(ﬂ“ﬁ”WMYW%L%m»w, 7

whenever the integral exists. For some families P and function  the Fisher
information defines a norm on the vector space T'My, for every choice of 0pe M. To
elaborate on this point, we let U be an open neighbourhood of 6y in M, and
@:U—R" a chart diffeomorphism satisfying ¢(6y) =0. In chart coordinates
0e M ,v and L are represented respectively by

3 __ d(e(o(1)))

0= (p(@), U= TL:O’
and L(0,x) = L(0,x) for all e M and xeR". We conclude that the Fisher
information of the v is the quadratic form 7 g(0y) where g(6) is the matrix whose
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entries are given by

81:(0_0, x) 8L(éo,x)
gii(6o) 1:/ = =
/ . 00; 90;

lp”(—i(eo,x)) dx, le = 17 .oy M.

When ¢(0y) € P, for all 0ye P, and  is strictly convex the Fisher information is a
norm. When this is the case we set

[v]0])* = 5" g(0)5, veR™, 0eM. (8)
OL(fo,) :
8—(:)?’ i=1,..
all 0e M then g(0y) € P,. Alternatively, integrating by parts we may express the
elements of the matrix g(6) in the form

0? ~ 0*L(0, x
9ii(00) = 820,x)

90,00, i L(0,x)) dx + RHW(*E(@X)) 90,00,

Note that when the functions .,m are linearly independent on R" for

dx 9)

whenever the boundary terms are zero, and the right-hand side is evaluated at 0 = 0.
When (1) =e ',teR, the weighted Fisher information is the usual Fisher
information given by

I
gii(0) = — /” P(H_, x)aalé_gigg)dx. (10)

Let SA(n) be the subgroup of invertible affine transformations of R” whose linear
parts have determinant + 1, acting on the left of R” in the standard way, and acting
on the right of M.

Definition 3. We say L is ample when for all he SA(n), e M and xe R" we have that
L(0h,x) = L(0, hx).

If L is ample then every he SA(n) defines a diffeomorphism R(%): M — M by the
equation R(%)(0) .= 0h,0e M. We let

dR(h)gO TMy— TMR<;1)0

be its derivative at 0. For any e SA(n), 0 € M and ve TM,, we conclude from (7) and
the change of variables formula for integration that

10161 = [ldR(h)y(v) 011" (11)

Let us now give a concrete example of an ample family of probability densities.

Definition 4. Let M = R" x P,. For all (y,A)e M and xeR" the family P of
probability densities parameterised by M is ellzptzcal when

log P((1,4),x) = /(det 4,3 (x — 1)  A(x ~ ) (12)

and f: R>—>R,.
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Since the function P((u, A),-) has integral 1 for all (u, A)e M Eq. (12) constrains
f. In particular, we have for all 7e R that

/) 1 gy — 18y, (13)
R

where s, is the (n — 1)-dimensional area of the unit sphere $"~! in R", namely

27.571/2
" T(n2)

Here we use the formula

[ o(3er ="t -0 ) x = st a)y | + g(j) dr, (14

where g : R, — R has the property that the integral on the right of (14) is absolutely
convergent.

When P((u,2),-) is elliptical the mean is u. However, A~! is not always the
covariance (although it is for the normal density). Every elliptical family P is ample
with right action of S4(n) on M = R" x P, given by (u, A)h = (h™'u, h" AR). We
also have that

dR(h) (7, T) = (h~'y, A" Th),
where /i€ SL(n) is the linear part of he SA(n). Consequently, Eq. (11) says that
1, D) (s )| = [ (B9, ATTR)|(h e, AT AR (15)

Theorem 2. The Rao Riemannian metric of an ample family has form (2).

The proof of this theorem turns on (15) and is given following the next two
lemmas.

Lemma 1. There exists a function ae C* (R, R.) such that for all e R, A€ P, and
v, we R, we have that ||(y,0)|(u, A)||* = a(det A)yT Ay.

Proof. Given any (u, 4) € R" x P, we choose Ue O(n) such that 4 .= UT AU is in D,
and set Q = det A'/2UA~/2. Therefore, we conclude that

Q@ H'Q ' = (deta)'4 (16)
and

QT AQ = det AL (17)
We now apply (15) with 2 = Q and use (17) to obtain that

1G5 0) (1, D)IIP = 12719, 0)[(2 ", det AT .
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For any (u,r)eR" x Ry let Q(u,r)€ P, be such that for all y,ue R" we have that
17, 0)|(w, rD)||* = yTO(u, r)y. Consequently, we obtain that

1G5 0) [, DIP =" (@7) 0@ ', det )27 1. (18)

Taking he O(n) in (15), Q(u,r) = hQ(u,r)hT. So Q(u,r) = ao(u,r)I where ag>0.
Taking / to be translation by u in (15), ag(u,r) = ao(0,r). Then from (18), (16)

1, 0) (1, AP = 77(Q 71T QR ', det )@~y = a(det A)y" Ay, (19)
where a(1) = 2 "'ap(0,7). O
Lemma 2. There exist functions b,ce C* (R, R) such that for all ve R", Ae P, and
I'eS, it follows that

110, 1) (1, A)|[* = b(det A)(Tr(A™'T))* + e(det A)Tr((A7'T)?).

Proof. As in the proof of Lemma 1, we observe for any ¥ € O(n) that
100, D)l (. DI* = 11(0, 27 TR(Q ", det AD)?
= 1|(0,Q"TQ)|(0,det A)||* = [|(0, ¥TQ"TQV)|(0, det AI)||’.

We choose U e O(n) so that UTQTIQU is a diagonal matrix which we denote by 4
and observe that

10, 1) (1, II* = 1/(0, )|(0, det AL |, (20)

Moreover, the diagonal entries of A are the eigenvalues of the matrix Q7 I'Q. Under
conjugating by UA~'/2, this matrix is transformed to A~ ' I". Therefore, we see that its

eigenvalues 1,, 1, ..., 1, are the eigenvalues of A~'T". The /; could occur in any order
along the diagonal, depending on the choice of U. So the right-hand side of (20) is
independent of the order, and quadratic in the /;, namely

100, 1) (1, A)|I* = b(det A)(Tr(4))* + c(det A)Tr(4),

where b,ce C* (R, R). Now Tr(j):Tr(QQTr) det ATr(A™'T), by (16). Simi-
larly Tr(4%) = det A>Tr((A~'T)?). This proves the lemma. [

Proof of Theorem 2. Because of Lemmas 1 and 2 we need only show that

10, D)k, AP = (1=, D) A

As in the proofs of Lemmas 1 and 2, it suffices to take u = 0. Then apply (15) with
h=-1. O

Invariance (15) can also be used to help determine the functions a, b, ¢ for the
elliptical family P. We consider this next.
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4. Riemannian norm for elliptical families

In this section we demonstrate how to compute the functions a, b, ¢ appearing in
the Riemannian metric (2) generated by a Rao metric corresponding to an elliptical
family of probability densities. Our main result in this connection is the following

theorem.

Theorem 3. For n an integer greater than 1, the Rao Riemannian metric of an elliptical
family has form (2) with

@) a(t) = snt’l/z-/ Pl (fL + }sz) ' dr,
Ry

R OEal N ‘(””ww AR+ f
R.

)] (n+2)f“'”>

4
(iii) c(t) :snfl/z/R r”l(‘g+2n( )fuzp>

where \ and its derivatives are evaluated at —f'. Also [ and its partials are evaluated at
(t,%), and te R, .

The proof of this result is a difficult computation which requires some
preparation. We need two distinct types of formulas. The first type concerns
derivatives of det A for A€ P, as a function of the elements A; = A; parameterising
positive definite symmetric matrices A. of the matrix A.

Lemma 3. For every A = (Ay);;_,  ,€Pu, we have that
odet A

= — 0jj -1 ..
oA, =(2-9;)4 )l]det/l (21)
and
azdet A . (2 — 5,/)(2 — 51{1)
DAdA, p Pdet 4,
where
¥ = (247 (A = (AT = (A7) (A7h),). (22)

Proof. The proof of (21) is by Cramer’s rule for the inverse of A and Laplace’s
expansion by minors for det A. One first differentiates in nontangent directions,



C. A. Micchelli, L. Noakes | Journal of Multivariate Analysis 92 (2005) 97-115 107

permitting A to move freely in the space of all n x n matrices, and giving (21) without
the factor (2 — J;). When A is constrained to P, a second term appears (equal to the
first since matrices in P, are symmetric) except when i = j. This explains the factor
(2 — 9;;). Differentiating both sides of (21) and simplification gives (22). The second
type of computation reduces integrals of certain spherically symmetric functions on
R" to integrals over R,.. [

Lemma 4.

2
@) / xlg <% xTx) dx = S;" g <%> " dr,
u R‘

1 Sn ”\
(iii) /R” xix3g (5 xTx> dx = W 12) /R+ g <5> 3 dr,

where g: R, — R is of rapid decrease.

Proof. For the proof of (i) we use

1 2
r/”g<§(rzﬁ+x5+x§+ +X5)>dX=sn/R g(%)r”‘ dr,

where 1€ R, obtained from (14) with ¢ =0 and A = diag(t, 1,1, ...,1). Differ-
entiate both sides with respect to 7, set t = 1, and simplify to obtain

leTd*f hﬁrﬂ’ld
’ lg 2xx X = Sn R 2 r,

where A(f) = — f,% g(s)ds, te R,. Integration by parts on the right completes the
proof of (i). To prove (iii) reinsert the scale 7 into (i), namely

1 5 2
13/ X%g <§(12X% + x% + x% + e+ xi))dx — ﬁ/ g<§> rn+1 dr,
n R+

and, as before, we obtain (iii). Formula (ii) is obtained in a similar fashion, but
scaling x; instead of x;. [

More general formulae might of course be derived, and by other means, but these
are all we need. This completes the preliminaries needed for the proof of Theorem 3.

Proof of Theorem 3. To compute a use Lemma 1 with y:(l,O,O,...,O)T,
,u:(O,(),...7O)T and A =o¢l, where oeR,. Consequently, we have that



108 C. A. Micchelli, L. Noakes | Journal of Multivariate Analysis 92 (2005) 97-115

oa(t) = ||(y,0)|(u, A)||* where 6" = . By (9), it follows that

°H
oa(t)=——=+o | fof/dx+o’ / X3 foo dx, (23)
a,ul ): 4 R"
where
H= [ y(—f(logdet A,%xr/lx)) dx. (24)
RI‘I

The integrals on the right of (23) are evaluated by Lemma 4, proving (i). We now
discuss the computation of b and ¢. For 1 <i<j<n, let 5;€ S, have entries 1 in row i
and column j, 1 in row j and column 7, and zeroes elsewhere. Then {Z;;: 1 <i<j<n}
is a basis for S,. From (9), we have that

O*H
2

8/1”

+ / (850" o — 2(1 = 05)0™ o+ 850" fruwxix;
R)’l
1

4 (=30, dx 25)

10, E)I(0,0D)|* =

where , /' are evaluated at —f. Also f and its partials are evaluated at (l,%xT ).
By Lemma 2

o*[1(0, Z5)|(0,a1)|* = b(1)5; + e(1)(2 = 8), (26)

where ¢t = ¢". We specialize this to i=j=1 and to i=1,j =2, obtaining two
equations for b, ¢ yielding

5O 0_2<82H 1 0°H

2

o
_ - g ¢ o + 10 X2 + — fonXT
or, 28%) +/"(fu+ o + 10 X7 + 4fo1

o’ 2.2\ ./
—Efwxlx2 Y dx,

2 2y 2
d + (—tfu + %fvb«x%xi) V' dx.

o(t) =—
2043, Jre

Now we reduce these expressions to integrals over R,. For A€ P, set 1 = det A.
Then, from (14) we have

H= rl/zsn/ w(#(aé))rnl dr.
Ry

Therefore, we have that

OH 04 / n—1 (1 1—3/2 —1/2 /)
S r —A + 1 " dr
o4y 0N Jr, 2+ v
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and

OH 92 1
= s —— n=1{_)~ /2 —|—ﬂ.71/2 u /)d
oAz~ Vo /Rf (2 s ) dr

a1\’ 3
+ 8, (aA > / rn—l <Z}~5/21// +)~73/2ful//l +/171/2 uZwl/ —)»1/2f;,ml///>dr.
i Ry

On the right  and its derivatives are evaluated at —f, and f and its partials are
evaluated at (A,%)

We use these formulas for the derivatives of H to evaluate the right-hand side of
the expressions for b(¢) and c¢(¢) at A4 = g, proving the theorem. [

Corollary 1. Let f(u,v) = 1logu — o — Bv” where $>0,7>0, and

n n n n
o= Elog(2n) — 2—ylog p—logy —log F(E) + log F<2_y)’

(so that (13) is satisfied), and for any 3, te R, define y(t) = e~°'. Then, for all te R,
(a(t), (1), e(1)) = (O,

where we R® depends on n, B,y,5. Moreover, there exist p,qe R such that y(t) = pe?
where te R. For normal distributions and 6 = 1, we have that (a,b,c) = (1,0,%). O

5. Computing distances

Given a C* function y: R— (0, o0 ), we refer to geodesics of <, >, as y-geodesics
(note that <, >, is conformal to the Euclidean inner product). The associated
distance function d, is called the y-distance. Corollary 1 reduces calculation of Rao
distances to y-distances. The next result reduces computation of d, to finding
1-geodesics, and calculating their lengths with respect to <, >,.

Theorem 4. Let x,yeR>. Then d,(x,y) is either the length of a shortest y-geodesic
from x to y, or

([ Yo o ([ i

whichever is smallest.

Proof. Define £:R— R, by &(f) =+/x(t). Consider first the case where ¢
is not bounded uniformly away from O on the whole of R. Then either
liminf,., o &(#) =0 or liminf,,_ &(¢) =0. If liminf, ., £(f) =0, choose an

increasing sequence {t;: i =1,2, ...}, where lim;, ., t; = co, lim,_, 5, &(;) =0 and
ty>1/3. Define a sequence Q, = {w®: i>1} of piecewise-C' curves w@ :[0,1] - R?
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from x to y by

(x1 4+ 3¢(t; — x), x2) (0<t<;>,
(i) 1 2
o (1) = (i x2 + (Bt = D2 —x))  (3<1<3),

2
(3t =2)y1 +3(1 — t)t5,12) <§<t<1).
The length )Lx(cog)) of ) with respect to the Riemannian metric <, >, is
ti 1
/ E(t)dt + E(t)|y2 — xa| + f(z) dt.

Therefore, and because lim,_, o, &(;) =0,

d,(5.3) < lim 7, (0 (/ /)

Similarly d,(x,y) < f“ + f}' 1)dt when liminf,,_ . &(z) =0. Tt follows,
whether ¢ is bounded away from 0 or not, that

dy(x,y)<0 = min{ (/YIOC +[lw>é(1) dt, (/1 +/y;)§(t) dt}.

This proves the theorem, except when d,(x,y) <9.
In such a case set ¢ = 1(6 — d,(x,»)). Then ¢>0. Let o: [0, 1]—> R? be a piecewise-
C' curve from x to y, and let 7 €[0, 1]. If @ (#y) >max{x;,y;} then

/Cwl Ny (2)| dt = (/ /) w1 (2))]o (2)] dt
><l?mfgmvaw@

Similarly, if o (f) <min{xi,yi} then i,(w)=>([]

ml(m)—k w)é(y) dy. Using these
facts, choose M so large that, for any piecewise-C! curve o : [0, 1]— R? from x to y,
and any Riemannian metric <, >; which agrees with <, >, over [-M, M] x R,

either
- w[0,1]e[-M, M] x R, or
- (0)=d,(x,) + .

Let Q be a sequence of piecewise-C' curves (/) :[0,1]—[~M, M] x R from x to y,
such that

lim (oY) = d,(x,y).

j—

Let 7: R— R be a C? extension of y|[—M, M] with the property that, for some
0<1<0, we have 1<j(f) <o for all te R. For vectors v whose norms are measured at
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ze R, 1Jv]|<[o] 7(1)
same way, namely

tllx =yl <dy(x,y) <ollx =yl (27)

<o||v||. Riemannian and Euclidean distances are related in the

By (27), and because R? is complete with respect to the Euclidean metric, R? is
complete with respect to d;. By the Hopf-Rinow Theorem [10] Theorem 10.9,
d;(x,y) = A;(®), where @: [0, 1] - R? is a j-geodesic from x to y. Because the ') are
curves in [-M, M] x R, and d; agrees with d, over [-M, M| x R, d,(x,y) = A;(®).

Because A;(0)<d,(x,y)+¢, @ is a curve in [-M,M] x R, and therefore a
y-geodesic with

Iy(@) = 24(®) = dy(x,y). O

Notice, in the statement of Theorem 4, that there might be no y-geodesic from x to
y. Also, either or both of the improper integrals might be infinite.

Corollary 2. If'y is bounded away from 0 on the whole of R, then d,(x,y) is the length
of a shortest y-geodesic joining x,y. [

This begs the question of how to find y-geodesics from x to y. Sometimes closed
form expressions can be found, but in general the problem reduces to calculations of
univariate integrals, as follows.

The form of the Riemannian metric < , ), can be used to simplify the Euler—
Lagrange equations for geodesics, for instance using Clairaut patches [5, 26.2].
Alternatively, we can proceed directly, as follows. The Lagrangian for y-geodesics
7:[0,1]> R? is L = z(x1)(x? + %3), and the Euler-Lagrange equations are

. . d .
271 = =7 (j{ —73) and 5 Qi) =0,

where y’ is the derivative of y, 7 is the derivative of y(¢) with respect to €0, 1], and
1, are evaluated at y,(#). These equations integrate to give

2
A47=C and 5 =2
X XL
where a,beR are constants of integration, and a>0 is the length /,(y) of y with
respect to the Riemannian metric { , ),. Set x = y(0), y = y(1) and suppose x#y.
Then a>0. When b = 0, y, is constant and the y-geodesic v is said to be horizontal.
Define ¢ = /7 : R— Ry. When y is horizontal, x» = y», [,(y) = | [} &(u)du|, and y,(z)
is given implicitly, by the equation

71(1)
/ E(u)du = tat.

So it remains only to calculate lengths of non-horizontal y-geodesics. We describe
how to do this in the simplest non-trivial case, where y’ is everywhere positive. Then
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the range R(y) of y is an open interval of positive numbers. Define F, G : R> x R— R by

/Ji—c /ﬁ

where the improper integrals converge because every ce R(y) is a regular value of .

F(ce,d,v) = du and G(c,d,v) =

Theorem 5. Suppose y'(v)>0 for all veR. Let y:[0,1]— R?> be a non-horizontal
y-geodesic from x to y, where y, > x,. Then, for some ce (0, min{y(x;), x(y1)}), either
(i) ceR, G(c,77'(¢),x1) + G(c, 1~ (), y1) =222, and vy has length

NG
|F(C’ Xﬁl(c)rxl) +F(Ca Xﬁl(c)7yl)|7

or
(i) |G(c,x1,01)] =25 ." and y has length |F(c, x1,1)|.

Proof. Call r€(0,1) a fold of y when y,(¢) = 0. Then y(y,(¢)) = 2—;. From the Euler—
Lagrange equations,
/!

2 O)10) = 17200 =BT
whose sign is that of y'. So 7,(¢)#0, with the same sign as y’. So the folds of y
comprise a discrete subset D of (0,1). We claim that D has cardinality at most 1.
Suppose, to the contrary, that D has more than one element. If ¢y, #; € D with 1y <t
and (f,1) "D = 0, then
b2

11 (1)) = — = 2(n (1))

and y'(7,(s))y1(s) = 0 for some se (1, ;). Because ' is nowhere-zero, s is a fold. The
contradiction proves our claim, and y has at most one fold.

Because the y-geodesic 7y is not horizontal, 7, has constant sign, and the coordinate
y, may be used to parameterise y. Call this the vertical parameterisation of y. With
respect to the vertical parameterisation

&_ + aZX(Vl) —b2.

= 2
dy, — b? (28)
For a non-empty open interval (sg,s1) =[0, 1] that does not contain folds, we have
———— = ga(s; — 5 29
/ . L~ alsy — ) (29)

2
/V'(m du__ _a(n(s1) — “/2(50))7 (30)
S0 b2 b
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where ¢ = +1 is the sign of y;(s;) —y;(s0). Set C:Z—Z, and consider first the
case where y has a fold se(0,1). Then s is a point of local minimum of y,, and
7(71(s)) = ¢. Applying (29), (30) along the interval (0,s),

F(c,y '(¢),x1) =as and G(c,y '(c),x1) = w\/;)@
Applying (29), (30) along the interval (s, 1) we similarly obtain
Fle,y " (e),y1) =a(l —s) and G(c,17'(c), 1) :}’2_\/_7’2(3).
c

Addition of the pairs of equations gives (i). Suppose next that y has no fold.
Applying (29), (30) along the interval (0, 1) gives (ii). The theorem is proved. [

To apply Theorem 5, in either of the cases (i), (ii), the first equation is solved for ¢,
and then c is substituted in the second equation to give the length of y. In connection
with Corollary 1, we have the following result, proved also in [9].

Corollary 3. Let y(t) = €*, for teR. Then for x,yeR?, the Riemannian distance
d,(x,y) is

\/ele + e —2exitricos(y, —xp) or €Y 4+,

according as |y, — x;|<m or not.

Proof. F(c,d,v) = Ve* —c—VeX — ¢, and
arccos(%) - arccos(g—f)
Ve

The conditions in Theorem 5(i), (ii) are then

c c
arccos <\/_> +arccos <\/_)
eX1 e

where the + sign is taken in case (i), and — for (ii). When 0<y; — x; <m, (31) has
solution

G(c,d,v) =

=2 — X2, (31)

AN isin (y; — x7)
€= , :
e 4 e — 2e¥itricos(yy — xp)

To tell whether to apply case (i) or (i) of Theorem 5, check the sign for which (31)
holds. Then, by Theorem 5, the length of the y-geodesic from x to y is

\/ele + e — 2e¥1Ht0 cos(yy — x2)

in either case. Applying Theorem 4 we obtain the corollary. [J
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Corollary 4. Let f(u,v) = logu — o« — pv’ where $>0,7>0, and

o= glog(2n) —%logﬁ —logy —log F(g) + log F(z%),
so that (13) is satisfied. For any d,te R, let y(f) = e, where te R,. Define j(t) =

e*. Then, for some factor ¢peR, depending on n,Pp,y,d, and vectors 2° 'e R?
computable from Ay, Ay, n, B,y,9, we have

d(Ag, A1) = dy(2°, 2Y).

Proof. A calculation shows that, for some we R?, depending on n, 8,7, 9,
(a(1),b(1),c(r)) = 9"V where reR,.
From Corollary 1,
b(1) = b(e') = wye'@ V2 and (1) = w3e!® /2,
So, in the proof of Theorem 1,
1(1) = o,
where ¢y = /1 +752, ¢, = n'wy and @5 = (6 —1)/(2¢,). Consider the affine
transformation given by Z = (¢5/2)z + (log(4¢,/¢3),0)/2, where z = (z1,2;) € R>.
Then d,(z°,z') = d;(2°,2"), and (1) (5> + %) = 7(z1) (23 + 23). O

6. Addendum

In Corollary 3 there is a simple formula for d,(x, y), but this is an exceptional case
and closed form expressions are usually not available. The case treated in Corollary 3
is also exceptional in another sense, namely the (sectional) curvature x : R*> > R is 0,
as can be calculated directly. Alternatively, define a local isometry from (R?, <, > 2)
onto a punctured cone C' = {(u,v,w) : u*> + 1> = w?, w>0} in Euclidean 3-space
R, by
(z1,22) |—>\e/—1§(cos V2z3,c08 V225, 1).

Of course C' is isometric to an open subset of R> but incomplete. An alternative
proof of Corollary 3 can be constructed based on these remarks.

Modulo affine transformations, the other exceptional cases that we know about,
where closed form expressions are available for d,, are

® y(1)= ﬁ, for which x is identically 1, and lengths of y-geodesics can be
calculated by comparison with the geometry of the unit sphere S? embedded in R?,
® y(1) = P with x identically —1, and Ry x R with the Riemannian metric <, >, is

isometric to the Poincaré upper half-plane [5,14]. Of course, in this case, the
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Riemannian metric <, >, is not defined over the whole of R?. For x,yeR, x R
with x, # s, set

1 X3 —y?
2 X2 — )2
Then d,(x,y) is [log(}})], or
Y1y (x2 = ) + 37 — |x2 — )
log ,
xi(y/ (2= ) + 32 = [y2 —cl)

according as x; = y, or not.

In these cases there are also comparisons to be made, using isometric immersions in
R3, between <, >, and the first fundamental forms of well-studied surfaces in R3.
This gives an alternative method of computing d,(x, ).
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