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Non-splitting Abelian (4t, 2, 4t,2t) Relative Difference Sets and
Hadamard Cocycles

G. HUGHES

Using cohomology we show that in studying the existence of an abelian non-splitting(4t, 2, 4t,2t)
relative difference set,D, we can assume the groups in question have a certain simple form. We
obtain an explicit constructive equivalence between generalized perfect binary arrays and cocycles
that define Hadamard matrices and thereby show directly that the existence ofD corresponds to that
of a symmetric Hadamard matrix of a certain form. This extends the well-known equivalence in the
case of splitting relative difference sets.
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1. INTRODUCTION

Thework of several authors has been concerned with linking cocycles with variousobjects
of combinatorial interest such as difference sets, auto-correlated arrays and Hadamard ma-
trices (see, for example, [1, 2, 7]). The case of a splitting(4t, 2,4t, 2t) relative difference set
(RDS) in an abelian group,M , relative to an order 2 subgroup,N, is well understood. Such
an RDS corresponds to a perfect binary array (PBA), an orthogonal coboundary cocycle and
a group invariant Hadamard matrix. We wish to examine this correspondence in the case of
non-splitting RDSs,D, with the same parameters inM relative to N. In Section2 we in-
troduce the necessary notation from cohomology theory and, in Section3, define a cocycle
corresponding to a particular abelian extension of an abelian group by a group of order 2.
In Section4 we review the concepts of generalized PBA (GPBA), relativedifference set and
Hadamard group and show that we may as well assumeM andN are of a certain simple form.
In particular, we may takeN to be a Cartesian subgroup (that is, a subgroup of a direct fac-
tor of M). In Section5 we present an explicit constructive equivalence between GPBAs and
cocycles that determine symmetric Hadamard matrices. This equivalence allowsus to show
that D exists if and only if a symmetric Hadamard matrix ofa particular form exists. The
form is that of a group invariant matrix multiplied (elementwise) by certain ‘extended’ back
nega-cyclic matrices.

We introduce some notation that will hold throughout this paper. If u is a vector we will use
ui to denote thei th component and theweightof the vectoru will be the number of non-zero
components ofu. LetA = {±1} be a multiplicative group of order 2. IfW is any group and
a sequence{aw : w ∈ W} of elements ofA has an equal number of+1s and−1s we write∑
w∈W aw = 0. Finally, any empty product is assumed to take the value 1.

2. SOME COHOMOLOGY

We summarize the results we need on cocycles with trivial action (for proofs see [6, Chap-
ter 2]).

For groupsW and V , with V abelian, we call the mapα : W × W → V a cocycleif
α(1,1) = 1 and∀x, y, z ∈ W it satisfies the equationα(x, y)α(xy, z) = α(y, z)α(x, yz). A
consequence of this equation is that∀x ∈ W we haveα(x, 1) = α(1,x) = 1. The abelian
group of all such cocycles under the multiplication(αα′)(x, y) = α(x, y)α′(x, y) is denoted
Z2(W,V). If β ∈ Z2(W,V) is of the formβ(x, y) = τ(x)τ (y)(τ (xy))−1

∀x, y ∈ W for
someτ : W → V with τ(1) = 1, thenβ is called acoboundaryand we writeβ = ∂τ .
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If α, α′ ∈ Z2(W,V) andα = α′∂τ for someτ we sayα andα′ are cohomologousand
write α ∼ α′. This is an equivalence relation and the group of equivalence (cohomology)
classesα is denotedH2(W,V). We will call α ∈ Z2(W,V) symmetricif ∀x, y ∈ W we
haveα(x, y) = α(y, x). If W andV are abelian, all coboundaries are symmetric, and the set
Ext(W,V) = {α ∈ H2(W,V) : α symmetric} is a subgroup ofH2(W,V).

Let s= (s1, . . . , sr ) be a vector of integers greater than one and letG = Zs1 × · · · × Zsr ,
whereZn denotes the cyclic group of integers{0,1, . . . ,n−1} under addition modn. Define
γn : Zn × Zn→ A by

γn(l ,m) =

{
1 if l +m< n

−1 if l +m ≥ n.

In this definition the addition,l + m, is ordinary integer addition. So, when indexed in the
obvious way,γn gives a matrix with 1 on and above the diagonal, and−1 below the diagonal
(we term this aback nega-cyclic matrix). We have the following facts:

(i) any non-identity cocycleψ ∈ Z2(G,A) is of order 2;
(ii) γn is a symmetric cocycle andis a coboundary if and only ifn is odd. Whenn is odd,

γn = ∂vn wherevn : Zn→ A is given byvn(l ) = (−1)l ;
(iii) Ext (G,A) ∼= Ext(Zs1,A)× · · · × Ext(Zsr ,A);
(iv) if n is odd, Ext(Zn,A) = {1}, while if n is even, Ext(Zn,A) = {1,γn}.

So we see| Ext(G,A) |= 2|E| whereE = {i : si even}. In fact, because of the above, it is
easy to describe all the representatives for the cohomology classes in Ext(G,A).

LEMMA 2.1. Let E= {i : si even}. The2|E| cocyclesαU : G×G → A for U ⊆ E defined
by

αU (x, y) =
∏
i∈U

γsi (xi , yi )

are representatives for the cohomology classes inExt(G,A).

PROOF. αU is certainly a symmetric cocycle so we show no two such cocycles can be
cohomologous.

Let U,U ′ ⊆ E with U 6= U ′. Without loss of generality letk ∈ U and k /∈ U ′. Let
x = (0, . . . ,0,xk,0, . . . ,0) andy = (0, . . . ,0, yk, 0, . . . , 0). Now supposeαU = αU ′∂τ

for someτ : G → A. Usingγn(0,0) = 1 for all n we obtainγsk(xk, yk) = (∂τk)(xk, yk),
whereτk(ck) = τ(0, . . . ,0,ck,0, . . . ,0). However,γsk cannotbe a coboundarybecausesk

is even. 2

Finally, we extend the definition ofγsk toG×G by γsk(x, y) = γsk(xk, yk) for x, y ∈ G. This
extended function is a symmetric cocycle and will be a coboundary precisely whenγsk(xk, yk)

is. We will call the matrix[γsk(x, y)] indexed by elements ofG (in some fixed order) an
extendedback nega-cyclic matrix.

3. JEDWAB GROUPS ANDCOCYCLES

The notation introduced in this section will be used in the rest of this paper. The groups
described here were used by Jedwab (see [5]) to connect generalized perfect binary arrays
and relative difference sets. We will examine this connection in Section4.
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Let z= (z1, . . . , zr ) wherezi = 0 or 1. We callz a type vector. Let

G = Z(z1+1)s1 × · · · × Z(zr+1)sr .

Thus, the arithmetic in thei th coordinate ofG is mod 2si or modsi according to whether
zi = 1 or zi = 0. Further define the following subgroups ofG,

H = {h ∈ G : hi = 0 if zi = 0; hi = 0 orsi if zi = 1},

K = {k ∈ H : k has even weight}.

We may write anyg ∈ G uniquely in the formg = ` + h where` ∈ G andh ∈ H by taking
` = g mods = (g1 mods1, . . . , gr modsr ) andh = g− `. Here,gi modsi refers to the
unique residue in the range 0, . . . ,si − 1.

Takez 6= 0 for the moment. SoH/K = {K , `∗ + K }, where`∗ is any fixed vector inH
of odd weight (for examplè∗ = (0, . . . ,0,si , 0, . . . ,0) wherezi = 1). Consider the map
β : G/K → G definedby β(g+ K ) = g mods. This is a well defined onto homomorphism
with kernelH/K .

We now consider the following short exact sequence:

1→ A ι
→ G/K

β
→ G → 0, (1)

whereι is the homomorphismι(−1)= `∗+K (soι(A) = H/K ) andβ is the homomorphism
above. The functionλ : G → G/K defined byλ(`) = `+K is a set theoretic section ofβ (that
is β(λ(`)) = ` andλ(0) = K or, equivalently,λ(G) is a complete transversal for the cosets
of ι(A) = H/K in G/K ). We now use the sectionλ to define a cocyclefJ : G × G → A
(see [6, Chapter 2]). We call this theJedwab cocycle corresponding tos andz. Let

ι( fJ(`,m)) = λ(`)+ λ(m)− λ(`+m)

= (`+m− (`+m) mods)+ K . (2)

So we seefJ(`,m) = 1 or−1 according to whether1 = `+m−(`+m) mods∈ K or /∈ K .
Now we will write fJ in terms of the cocyclesγsi from Section2. If zi = 0, then1i = 0,

and whenzi = 1 we have1i = 0 orsi according to whetherl i + mi < si or ≥ si . So,
recalling the definition ofγsi , we see1 has even weight if and only if an even number of
zi = 1 haveγsi (l i ,mi ) = −1, or equivalently, if and only if

∏
zi=1 γsi (l i ,mi ) = 1. Therefore,

fJ(`,m) =
∏
zi=1

γsi (l i ,mi ). (3)

Sometimes we do not wish to distinguish between the casesz = 0 andz 6= 0. We will call
a short exact sequence

1→ A ι
→ F β

→ G → 0, (4)

aJedwab sequenceunder the following circumstances:

(i) if z 6= 0, sequence (4) will denote sequence (1) above;

(ii) if z = 0, sequence (4) will denote the split sequence 1→ A ι
→ G × A β

→ G → 0,
whereι(a) = (0,a) andβ(`,a) = `.
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The extension groupF , in (4), we will call theJedwab group corresponding tos andz. The
subgroupι(A) we will call the correspondingJedwab subgroup. In the split sequence in (ii)
we use the sectionλ(`) = (`, 1) to determine the identity cocycle 1(`,m) = 1, which we
may call, consistently with (3), a Jedwab cocycle.

In the following lemma, the first assertion summarizes the discussion above, and the second
follows easily from Lemma2.1.

LEMMA 3.1. For givens and type vectorz:

(i) the Jedwab cocycle fJ ∈ Z2(G,A) corresponding tos andz is

fJ(`,m) =
∏
zi=1

γsi (l i ,mi ),

where the product is taken to be1 whenz= 0;
(ii) fJ is symmetric,

fJ ∼
∏

zi=1,si even

γsi ,

and, consequently, fJ is a coboundary ifand only if there are no i ’s with zi = 1 and
si even.

The form of the Jedwab cocycle means that any cohomology class in Ext(G,A) can be rep-
resented by a Jedwab cocycle and, consequently, any abelian group is a Jedwab group by
an isomorphism preserving therelevant order 2 subgroups. This is proved in the following
results.

THEOREM 3.2. Givens, letψ ∈ Z2(G,A) be a symmetriccocycle. There exists atype
vectorz such thatψ is cohomologous to fJ , the Jedwab cocycle corresponding tos and z.
For this z, if si is odd, then zi = 0, andz= 0 if and only ifψ is a coboundary.

PROOF. Lemma2.1givesψ ∼
∏

i∈U γsi for a uniqueU ⊆ {i : si even}. Now definez by
zi = 1 or 0 according to whetheri ∈ U or i /∈ U . Then fJ =

∏
i∈U γsi . 2

The following corollary will be used in the study of relative difference sets (see Section4).

COROLLARY 3.3. Let M be an abelian group with a subgroup N= 〈n∗〉 of order2 and
write, for some si > 1, M/N ∼= Zs1 × · · · × Zsr = G. Then there exists a type vector,z, such
that M is isomorphic to the Jedwab group corresponding tosandz by an isomorphism taking
N to the corresponding Jedwab subgroup.

PROOF. Let µ : M/N → G be an isomorphismand consider the shortexact sequence

1 → A ι′

→ M
π
→ G → 0, whereι′(−1) = n∗ andπ(m) = µ(m+ N). This will define

a symmetric cocycleψ ∈ Z2(G,A) which, by Theorem3.2, will be cohomologous to a
Jedwab cocycle,fJ =

∏
zi=1 γsi , for somez. Therefore, by [6, Chapter 2], the sequence above

will be equivalent to the corresponding Jedwab sequence (4). So, there isan isomorphism
0 : M → F which makes the following diagram commute:

1 −−−−→ A ι′

−−−−→ M
π

−−−−→ G −−−−→ 0

1A

y 0

y 1G

y
1 −−−−→ A ι

−−−−→ F β
−−−−→ G −−−−→ 0.

Consequently,0(N) = 0(ι′(A)) = ι(A), which is the corresponding Jedwab subgroup ofF .
2
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4. GPBAS AND NON-SPLITTING RDSS

In this section we review the equivalence of various combinatorial objects: generalized per-
fect binary arrays (GPBAs), relative difference sets (RDSs) and Hadamard groups. We show
that in establishing the existence of an(e, 2,e, e/2)-RDS in an abelian group of order 2e,
wheree is even, we can assume that the group and forbidden subgroup have a certain form.

Let M be an additively written abelian group,N = {0,n∗} a subgroup of order 2, ande an
even integer. A subsetT of M is called an(e, 2,e, e/2) relative difference set(RDS) in M
relative toN if | M |= 2e, | T |= e and form ∈ M, u, u′ ∈ T , the equationu− u′ = m has
no solutions ifm = n∗ ande/2 solutions ifm /∈ N. Such aT is a complete transversal for
the cosets ofN in M andN is called theforbiddensubgroup. If such aT exists, Ito [4] calls
M aHadamard groupwith Hadamard subset Tand shows in [4, Proposition 2] thate= 2 or
e = 4t for integralt . This can also be proved by usingT to construct a Hadamard matrix of
sidee (see [8, p. 204]). We will look at these constructions from a cocyclic perspective in the
next section.T is called asplittingRDS inM relative toN if M is a split extension ofN (that
is M ∼= N × P for some subgroupP of M).

We use the following fundamental property of such an RDS,T , so often it is worth men-
tioning it explicitly. The proof is clear.

LEMMA 4.1. For m ∈ M we have m∈ T if and only ifm+ n∗ /∈ T .

In [5, p. 24] Jedwab introduces generalized perfect binary arrays (GPBAs).We proceed to
define these in terms of the groupsG, H andK of Section3.

Let a : G → A be any set function. As we saw in Section3, anyg ∈ G can be written as
g = ` + h for ` = g mods ∈ G andh ∈ H . Theexpansion of a with respect toz (which
Jedwab denotesε(a; z) ) is the functiona′ : G→ A defined by

a′(g)=

{
a(`) if h ∈ K

−a(`) if h /∈ K .
(5)

We calla aGPBA(s)of typez if g ∈ G− H implies∑
j∈G

a′(j)a′(g+ j) = 0.

If z= 0 the above definition reduces to:0 6= ` ∈ G implies∑
j∈G

a(j)a(`+ j) = 0. (6)

An a with this property is called aperfect binary array, and is denoted by PBA(s).
Jedwab gives the following connection between an abelian relative difference set and a

GPBA.

THEOREM 4.2 ([5, THEOREM 3.2]). Takez 6= 0 and | G |= e, an even integer. For given
a : G → A let D = {g+ K : a′(g) = 1}. Then, a is a GPBA(s) of typez if and only if D is
an (e, 2,e, e/2)-RDS in G/K relative to H/K.

We should note that in fact Jedwab hasD = {g+ K : a′(g)= −1} but this is irrelevant since
a is a GPBA if and only if−a is a GPBA. In view of this theorem and the remarks at the
start of the section, a GPBA of non-zerotype can exist only when| G |= 2 or 4t for somet
(see also[5, Theorem 8.1(i)]). Further, aPBA can only exist when| G |= 4t2 for somet (see
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[5, Theorem 3.1]). Also note thatD in the previous theorem is defined in terms of a given
a : G → A but that this is not necessary. IfD is any(e,2,e,e/2)-RDS inG/K relative to
H/K , then we can define a GPBA(s)of typez by a(`) = 1 if and only if`+ K ∈ D.

We now use the equivalence in the above theorem and our cohomological results to show
that existence questions for non-splitting(e,2,e,e/2)-RDSs in abelian groups may be an-
swered by assuming the groups in question have a ‘canonical’ form. In particular we may
assume the forbidden subgroup is cartesian(that is, a subgroup of a direct factor).

THEOREM 4.3. Let M be an abelian group of order8t , let N be a subgroup of order2 and
write, for some si > 1, M/N ∼= Zs1 × · · · × Zsr = G. Put si = 2ai ti for ti odd and letz be
the type vector given by Corollary3.3. Suppose M has noZ2 factor in its primary invariant
decomposition. Then, there exists a non-splitting(4t, 2,4t, 2t)-RDS in M relative to N if and
only if there exists a(4t, 2,4t, 2t)-RDS inZs1 × · · · × Zsi∗−1 × Z2si∗ × Zsi∗+1 × · · · × Zsr

relative to0×· · ·×0×< si ∗ > ×0×· · ·×0, where i∗ is such thatzi ∗ = 1 and ai ∗ ≥ ai ≥ 1
for all zi = 1.

PROOF. We havez 6= 0 sinceM is not asplit extension ofN. So, using Corollary3.3, there
is an isomorphism,0, such that0(M) and0(N) are the Jedwab group,G/K , and subgroup,
H/K , corresponding tos andz. By Theorem4.2 the existence of a(4t, 2,4t, 2t)-RDS in M
relative to N is equivalent to that of a GPBA(s) of type z. Using [5, Corollary 7.2] this, is
in turn, equivalent to the existence of a GPBA(s) of type (0(i

∗
−1), 1,0, . . . ,0). The result

follows from another application of Theorem4.2. 2

Instead of using the equivalence of GPBAs, the result above may also be proved by observing
thatthere isan isomorphism betweenG/K andZs1×· · ·×Zsi∗−1×Z2si∗ ×Zsi∗+1×· · ·×Zsr

which mapsH/K to the specified subgroup (this technique is used in [9] to prove the case
r = 2). We should contrast the situationin the above theorem with that where the forbidden
subgroup,N, has order larger than 2. Here it may be impossible tomap N to a selected
Cartesian subgroup, and the existence question cannot be simplified as shown here. Finally
we note that, by takingG in primary invariant form, we can assume thatsi ∗ is a power of 2 in
the above theorem.

5. GPBAS AND HADAMARD COCYCLES

In this section we show that a GPBA (of any type) is equivalentto a Hadamard matrix of a
certain form.

If W is any finite group, a cocycleψ ∈ Z2(W,A) is calledorthogonalby Baliga and
Horadam in [1] if the matrix [ψ(w,w′)], indexed by the elements ofW in some fixed order,
is a Hadamard matrix (so for such a cocycle to exist we need| W |= 2 or 4t). Because of the
defining equation of a cocycle, orthogonality amounts to the matrix having an equal number of
+1s and−1s in each row and column not indexed by the identity ofW. That is, the following
result holds.

LEMMA 5.1 ([1, LEMMA 2.6]). A cocycleψ ∈ Z2(W,A) is orthogonal if and only if:

(i) for each1 6= v ∈ W we have
∑

u∈W ψ(u, v) = 0, or equivalently;
(ii) for each1 6= u ∈ W wehave

∑
v∈W ψ(u, v) = 0.

We will call an orthogonal cocycle aHadamardcocycle to emphasize that it defines a Hada-
mard matrix. Specializing toW = G we obtain our first connection between cocycles and
binary arrays. This is an explicit version of an equivalence first discussed in [3] (see also [7]).
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LEMMA 5.2. Let τ : G → A be any set function. Then,∂τ is a Hadamard cocycle if and
only if τ is a PBA(s).

PROOF. Let 0 6= ` ∈ G. We have∑
j∈G

∂τ(j, `) =
∑
j∈G

τ(j)τ (` )(τ (`+ j))−1
= τ(`)

∑
j∈G

τ(j)τ (`+ j).

The result now follows from the previous lemma and the definition of a PBA in (6). 2

A coboundary∂τ corresponds to a group-invariant matrix (see [7]), and it is possible,
whether∂τ is a Hadamard matrix or not, when it is multiplied (elementwise) by certain ex-
tended back nega-cyclic matrices we will obtain a Hadamard matrix.This is precisely the
situation that corresponds to a GPBA. We prove this by using resultsinitially establishedby
Flannery [2] and extended by Perera and Horadam [7], which construct canonical relative
difference sets from Hadamard cocycles, and vice versa.

THEOREM 5.3. Let s be any vector of integers greater than1 and letG = Zs1 × · · · ×

Zsr . Let z be any type vector of length r, and let fJ =
∏

zi=1 γsi be theJedwab cocycle
corresponding tos andz. Thenτ : G → A is a GPBA(s)of typez if and only ifψ = fJ∂τ ∈

Z2(G,A) is Hadamard.

PROOF. We have done the proof whenz= 0, so we assume this is not the case. We will use
the results on the correspondence between short exact sequences and cocycles in [6, Chap-
ter 2]. Let E be the extension groupof G by A determined byψ . That is,E =

{
(`,a) :

` ∈ G,a ∈ A
}
, where the group operation is defined for all`,m ∈ G, a, b ∈ A by

(`,a)(m, b) = (` + m,abψ(`,m)). We notethatE is abelian becauseψ is symmetric. We
have the following short exact sequence

1→ A ι′

→ E β ′

→ G → 0,

whereι′(a) = (0,a) andβ ′(`,a) = `. Now, asψ ∼ fJ , the above sequence is equivalent to
the Jedwab sequence (1) corresponding tofJ . Thus there is an isomorphism that makes the
following diagram commute:

1 −−−−→ A ι′

−−−−→ E β ′

−−−−→ G −−−−→ 0

1A

y 0

y 1G

y
1 −−−−→ A ι

−−−−→ G/K
β

−−−−→ G −−−−→ 0.

We see that0(ι′(A)) = ι(A) = H/K = {K , `∗ + K }. The isomorphism is given explicitly
by

0(`,a) = ι(aτ(`))+ λ(`),

whereλ : G → G/K is the section ofβ given byλ(`) = `+ K in Section3.
Now letD =

{
(`, 1) : ` ∈ G

}
andD = {g+ K : τ ′(g)= 1}. Assume,for the moment, that

D = 0(D). By Theorem4.2,τ is a GPBA(s)of typez if and only if D is a(4t, 2, 4t, 2t)-RDS
in G/K relative toH/K . By the isomorphism,0, these are then equivalent toD = 0−1(D)
being a(4t, 2,4t,2t)-RDS in E = 0−1(G/K ) relative toι′(A) = 0 × A = 0−1(H/K ).
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Finally, [7, Theorem 4.1] tells us thatD is such an RDS if and only ifψ is a Hadamard
cocycle.

It only remains to prove thatD = 0(D). Recall the definition of the expansion,τ ′, in (5).
Suppose, firstly, thatτ ′(g) = 1, and writeg = ` + h for h ∈ H and` = g mods. Then
τ(`) = 1 if and only if h ∈ K , and sog+ K = ` + h + K = ι(τ (`)) + ` + K ∈ 0(D).
Conversely, let̀ ∈ G and writeτ(`) = (−1)ε , whereε = 0,1. Then0(`, 1)= ε`∗ + `+ K
andτ ′(ε`∗ + `) = (−1)ετ(`) = 1. 2

We now give an example to illustrate the construction of the orthogonal cocyclefJ∂τ from
τ in Theorem5.3.

EXAMPLE 5.4. Lets = (2,2) andz = (1,0). Order theelements ofG = Z2 × Z2 as
follows: 00, 10, 01, 11. Letτ : G → A be given byτ(00) = τ(10) = τ(01) = 1 and
τ(11) = −1. It is easily checked thatτ is a GPBA(2,2) of type (1,0). The corresponding
cocycleγs1∂τ = ψ is the component-wise product matrix

+ + + +

+ − + −

+ + + +

+ − + −



+ + + +

+ + − −

+ − + −

+ − − +

 =

+ + + +

+ − − +

+ − + −

+ + − −

 ,
which is, indeed, a Hadamard matrix. In this example we note that∂τ itself is Hadamard. This
is becauseτ is aPBA(2,2). However, there are many examples whereτ is a GPBA of non-zero
type but not a PBA (that is wherefJ∂τ is Hadamard but∂τ is not). For example,τ ≡ 1 is a
GPBA(2,2,. . . ,2) of type (1,1,. . . ,1) sinceψ = γ r

2 defines the Sylvester Hadamard matrix,(
+ +

+ −

)
⊗ · · · ⊗

(
+ +

+ −

)
,

where⊗ denotes the Kronecker, or tensor, product of matrices. Clearlyτ is not a PBA(2,2,
. . . ,2). 2

Now let M be any abelian group of order 8tand N any subgroup of order 2. The exis-
tence of a splitting(4t, 2,4t, 2t)-RDS in M relative toN is well known to be equivalent to
that of a PBA and, hence, to that of a Hadamard coboundary. In other words, such splitting
RDSs correspond to Hadamard matrices determined by the trivial cohomology class. For a
non-splitting RDS of the same parameters inM relative toN we can combine Theorem5.3
with Theorems4.2 and4.3 to obtain a generalization of this equivalence. It shows that these
non-splitting RDSs correspond to Hadamard matrices determined by non-trivial symmetric
cohomology classes inH2(M/N,A).

COROLLARY 5.5. LetG and i∗ be as in Theorem4.3. Then, there is a non-splitting(4t, 2,
4t, 2t)-RDS in M relative to N if and only if the cocycleγsi∗ ∂τ is Hadamard for someτ :
G → A.
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