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Non-splitting Abelian (4t, 2, 4t, 2t) Relative Difference Sets and
Hadamard Cocycles

G. HUGHES

Using cohomology we show that in studying the existence of an abelian non-splitirgy 4t, 2t)
relative difference setD, we can assume the groups in question have a certain simple form. We
obtain an explicit constructive equivalence between generalized perfect binary arrays and cocycles
that define Hadamard matrices and thereby show directly that the existeBceanfesponds to that
of a symmetric Hadamard matrix of a certain form. This extends the well-known equivalence in the
case of splitting relative difference sets.
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1. INTRODUCTION

Thework of several authors has been concerned with linking cocycles with varigasts
of combinatorial interest such as difference sets, auto-correlated arrays and Hadamard ma-
trices (see, for example, [1, 2, 7]). The case of a splittiig 2, 4t, 2t) relative difference set
(RDS) in an abelian groupM, relative to an order 2 subgrou,, is well understood. Such
an RDS corresponds to a perfect binary array (PBA), an orthogonal coboundary cocycle and
a group invariant Hadamard matrix. We wish to examine this correspondence in the case of
non-splitting RDSs D, with the same parameters M relative toN. In Section2 we in-
troduce the necessary notation from cohomology theory and, in S&tidefine a cocycle
corresponding to a particular abelian extension of an abelian group by a group of order 2.
In Sectiond we review the concepts of generalized PBA (GPBA), relatiifference set and
Hadamard group and show that we may as well assMna@dN are of a certain simple form.
In particular, we may takd&l to be a Cartesian subgroup (that is, a subgroup of a direct fac-
tor of M). In Section5 we present an explicit constructive equivalence between GPBAs and
cocycles that determine symmetric Hadamard matrices. This equivalence aidashow
that D exists if and only if a symmetric Hadamard matrix afoarticular form exists. The
form is that of a group invariant matrix multiplied (elementwise) by certain ‘extended’ back
nega-cyclic matrices.

We introduce some notation that will hold throughout this palberis a vector we will use
u;j to denote theéth component and theeightof the vectoru will be the number of non-zero
components ofl. Let A = {+1} be a multiplicative group of order 2. W is any group and
a sequencéa,, : w € W} of elements ofd has an equal number gfls and—1s we write
> wew aw = 0. Finally, any empty product is assumed to take the value 1.

2. SOME COHOMOLOGY

We summarize the results we need on cocycles with trivial action (for proofs sEbf-
ter 2]).

For groupsW andV, with V abelian, we call the map : W x W — V a cocycleif
a(1,1) = 1 andvx, y, z € W it satisfies the equatioi(x, y)a(xy, 2) = a(y, 2)a(X, y2). A
consequence of this equation is thiat € W we havex(x, 1) = a(1,x) = 1. The abelian
group of all such cocycles under the multiplicati@’) (X, y) = a(X, y)a'(X, y) is denoted
Z2(W, V). If B € ZZ(W, V) is of the formB(x, y) = t(X)T(y)(t(Xy))"1¥x,y € W for
sometr : W — V with (1) = 1, theng is called acoboundaryand we write = dr.
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If o,a’ € Z%(W,V) anda = o7 for somer we saya anda’ are cohomologousand
write o ~ o’. This is an equivalence relation and the group of equivalence (cohomology)
classesy is denotedH2(W, V). We will call « € Z2(W, V) symmetridf Vx,y € W we
havea (X, y) = a(y, x). If W andV are abelian, all coboundaries are symmetric, and the set
Ext(W, V) = {@ € H3(W, V) : « symmetri¢ is a subgroup oH2(W, V).

Lets= (s1,...,S) be avector of integers greater than one andjlet Zs, x --- x Zs,,
whereZ, denotes the cyclic group of integ€l® 1, ... ,n— 1} under addition mod. Define
Yn i Zn X Zn — ADby

1 ifl +m<n

I, m) = )
vad, M) -1 ifl+m>n.

In this definition the additionl, + m, is ordinary integer addition. So, when indexed in the
obvious wayy, gives a matrix with 1 on and above the diagonal, aridbelow the diagonal
(we term this éack nega-cyclic matrjx We have the following facts:

(i) any non-identity cocycley € Z2(G, A) is of order 2;
(i) yn is a symmetric cocycle and a coboundary if and only ifi is odd. Whem is odd,
Yn = dvn wherevp : Zn — Ais given byv (1) = (=1)';
(i) Ext(G, A) = Ext(Zs,, A) x --- x Ext(Zs , A);
(iv) if nis odd, ExtZn, A) = {1}, while if nis even, ExtZn, A) = {1, 7n}.

So we sed Ext(G, A) |= 2/El whereE = {i : s ever. In fact, because of the above, it is
easy to describe all the representatives for the cohomology classegdh Bxt

LEMMA 2.1. Let E={i : 5 even}. Th@'El cocyclesyy : G x G — AforU C E defined
by

au 6, y) = [ ] vs 6. %)

ieU

are representatives for the cohomology classesxtig, A).

PROOF wy is certainly a symmetric cocycle so we show no two such cocycles can be
cohomologous.

LetU,U’ € E with U # U’. Without loss of generality lek € U andk ¢ U’. Let
Xx=(@,...,0,%,0,...,00andy = (0,...,0,¥,0,...,0). Now supposexy = ay:adt
for somer : G — A. Using yn(0,0) = 1 for all n we obtainys, (Xk, Yk) = (37k) (X, Yk),
wheret(ck) = 7(0,...,0,¢c,0,...,0). However,ys, cannotbe a coboundaripecauses
is even. O

Finally, we extend the definition gk, to G x G by y5 (X, ¥) = y5 (X, Yk) forx,y € G. This
extended function is a symmetric cocycle and will be a coboundary preciselyylieg, yi)
is. We will call the matrix[ys, (X, y)] indexed by elements of (in some fixed order) an
extendedack nega-cyclic matrix.

3. JEDWAB GROUPS ANDCOCYCLES

The notation introduced in this section will be used in the rest of this paper. The groups
described here were used by Jedwab (see [5]) to connect generalized perfect binary arrays
and relative difference sets. We will examine this connection in Sedtion
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Letz=(z1,...,z)wherezi = 0 or 1. We callz atype vectorLet

G =Zaz+ns X - X Lz +1ys -

Thus, the arithmetic in thith coordinate ofG is mod 2s or mods according to whether
zi = 1 orz = 0. Further define the following subgroups®f

H={heG:h;=0ifz =0; hy =0o0rs if z =1},
K = {k € H : k has even weight

We may write anyg € G uniquely in the formrg = £ + h wheret € G andh € H by taking
£ = gmods = (g1 mods, ..., g mods) andh = g — €. Here,g; mods refers to the
unique residue in the range 0, . .5 ,— 1.

Takez # 0 for the moment. SdH/K = {K, £* + K}, where£* is any fixed vector irH
of odd weight (for examplé* = (0, ...,0,5,0,...,0) wherez, = 1). Consider the map
B : G/K — G definedby (g + K) = gmods. This is a well defined onto homomorphism
with kernelH /K.

We now consider the following short exact sequence:

1-A456/KEGgSo, @

wheret is the homomorphism(—1) = £*+K (so«(A4) = H/K) andg is the homomorphism
above. The function : G — G/K defined byr(£) = £+ K is a set theoretic section gf(that

is B(L(£)) = £ andA(0) = K or, equivalentlyr(G) is a complete transversal for the cosets
of 1((4) = H/K in G/K). We now use the sectionto define a cocycld; : G x G — A
(see B, Chapter 2]). We call this th#edwab cocycle correspondingd¢@ndz. Let

((fy(€, m)) = A(€) + A(M) — A(£ + m)
=+ m— £+ m) mods)+ K. (2)
Sowe sedf3(£, m) = 1 or —1 according to whethek = £+m—(£+m) modse K or ¢ K.
Now we will write fj in terms of the cocyclegs from Section2. If z = 0, thenA; = 0,
and whenz; = 1 we haveA; = 0ors according to whethelk + m; < 5 or > 5. So,

recalling the definition ofys, we seeA has even weight if and only if an even number of
z = 1 haveys (Ii, mj) = —1, or equivalently, if and only if [, _; ys (Ii, mi) = 1. Therefore,

face,my =] vs (i, m). 3
zi=1

Sometimes we do not wish to distinguish between the case® andz # 0. We will call
a short exact sequence

1-A45rFL g0 @)

aJedwab sequenamder the following circumstances:

(i) if z # 0, sequence {4will denote sequence (1) above;

(ii) if z = 0, sequenced) will denote the split sequence3 A S GxA LY Gg— 0,
wheret(a) = (0,a) andg{, a) = L.
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The extension groug, in (4), we will call theJedwab group corresponding toandz. The
subgroup (A) we will call the correspondindedwab subgroup. In the split sequence in (ii)
we use the section(¢) = (¢, 1) to determine the identity cocycle 1@@) = 1, which we
may call, consistently with (3), a Jedwab cocycle.

In the following lemma, the first assertion summarizes the discussion above, and the second
follows easily from Lemma&.1.

LEMMA 3.1. For givensand type vectoe:
(i) the Jedwab cocycleyfe Z%(G, A) corresponding tsandz is

fae,my =] »s i, m),
zi=1

where the product is tan to bel whenz = O;
(i) fjis symmetric,
f.] ~ 1_[ Vs

zi=1,5 even

and, consequently,;fis a coboundary ifand only if there are no i's withjz= 1 and
S even.

The form of the Jedwab cocycle means that any cohomology class (6,E4}f can be rep-
resented by a Jedwab cocycle and, consequently, any abelian group is a Jedwab group by
an isomorphism preserving thelevant order 2 subgroups. This is proved in the following
results.

THEOREM3.2. Givens, lety € Z2(G, A) be a symmetricocycle. There exists gpe
vectorz such thatys is cohomologous to jf the Jedwab cocycle correspondingsand z.
For this z, if 5 is odd, then z= 0, andz = 0 if and only ify is a coboundary.

PrROOF Lemma2.1givesyr ~ [];oy ¥s forauniqueU < {i : s every. Now definez by
z = 1 or 0 according to whethére U ori ¢ U. Thenf; =[],y vs- O

The following corollary will be used in the study of relative difference sets (see Settion

COROLLARY 3.3. Let M be an abelian group with a subgroup N (n*) of order2 and
write, for some s> 1, M/N = Zg, x --- X Zs = G. Then there exists a type vectorsuch
that M is isomorphic to the Jedwab group correspondingandz by an isomorphism taking
N to the corresponding Jedwab subgroup.

PrROOE Letu : M/N — G be an isomorphisnand consider the shoexact sequence

1> A5 M3 G — 0, where//(-1) = n* andz(m) = w(m + N). This will define

a symmetric cocycley € Z2(G, A) which, by TheorenB.2, will be cohomologous to a
Jedwab cocyclef; = ]'[Zi _1Ys, for somez. Therefore, by$, Chapter 2], the sequence above
will be equivalent to the corresponding Jedwab sequef)ces0, there isan isomorphism

I : M — F which makes the following diagram commute:

’

1 A—> M -T5g 0
1Al rl lgl
1 At Fr_t.g 0.

Consequentlyi’(N) = I'(//(A)) = «(A), whichis the corresponding Jedwab subgrouprof
O
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4. GPBAS AND NON-SPLITTING RDSs

In this section we review the equivalence of various combinatorial objects: generalized per-
fect binary arrays (GPBAS), relative difference sets (RDSs) and Hadamard groups. We show
that in establishing the existence of & 2, e, €/2)-RDS in an abelian group of ordee2
wheree is even, we can assume that the group and forbidden subgroup have a certain form.

Let M be an additively written abelian group, = {0, n*} a subgroup of order 2, aredan
even integer. A subsét of M is called an(e, 2, e, e/2) relative difference sefRDS) in M
relative toN if | M |=2¢/| T |=eand form e M, u, U’ € T, the equatiou — U’ = m has
no solutions ifm = n* ande/2 solutions ifm ¢ N. Such aT is a complete transversal for
the cosets o\ in M andN is called theforbiddensubgroup. If such & exists, Ito [4] calls
M aHadamard groupwith Hadamard subset &nd shows in [4, Proposition 2] that= 2 or
e = 4t for integralt. This can also be proved by usifigto construct a Hadamard matrix of
sidee (see [8, p. 204]). We will look at these constructions from a cocyclic perspective in the
next sectionT is called asplitting RDS in M relative toN if M is a split extension oN (that
isM = N x P for some subgrou® of M).

We use the following fundamental property of such an RDSso often it is worth men-
tioning it explicitly. The proof is clear.

LEMMA 4.1. Form e M we have me T ifand only ifm+n* ¢ T.

In [5, p. 24] Jedwab introduces generalized perfect binary arrays (GPBsproceed to
define these in terms of the grouBs H andK of Section3.

Leta: G — A be any set function. As we saw in Secti®nanyg € G can be written as
g=4{L+hfor& = gmods € G andh € H. Theexpansion of a with respect to(which
Jedwab denotes(a; z) ) is the functiona’ : G — A defined by

a'(g) = {a“) !f hek (5)
—a({) ifhe¢K.

We calla aGPBA(s)of typezif g € G — H implies

Y ad(a@+j =0.

j€G
If z= 0the above definition reduces @3~ £ € G implies

Y a(a+j) =0. (6)
i€eg

An a with this property is called perfect binary array, and is denoted by PB#\(
Jedwab gies the following connection between an abelian relative difference set and a
GPBA.

THEOREM4.2([5, THEOREM 3.2]). Takez # Oand| G |= e, an even inger. For given
a:G— AletD = {g+ K :@(g) = 1}. Then, a is a GPBA{of typez if and only if D is
an (e, 2,e,e/2)-RDS in GK relative to H/K.

We should note that in fact Jedwab Has= {g + K : &'(g) = —1} but this is irrelevant since

a is a GPBA if and only if—a is a GPBA. In view of this theorem and the remarks at the
start of the section, a GPBA of non-zdggpe can exist only whehG |= 2 or 4 for somet
(see alsd5, Theorem 8.1(i)]). Further, BBA can only exist whenG |= 4t for somet (see
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[5, Theorem 3.1]). Also note thdd in the previous theorem is defined in terms of a given
a: G — A but that this is not necessary.IIf is any (e, 2, e, €/2)-RDS inG/K relative to
H/K, then we can define a GPBA(Sftypezbya(®) = 1ifand only if¢ + K € D.

We now use the equivalence in the above theorem and our cohomological results to show
that existence questions for non-splittitg 2, e, €/2)-RDSs in abelian groups may be an-
swered by assuming the groups in question have a ‘canonical’ form. In particular we may
assume the forbidden subgroup is carteihat is, a subgroup of a direcdtor).

THEOREM4.3. Let M be an abelian group of ord@t, let N be a subgroup of ord@and
write, for someis> 1, M/N = Zg, x --- x Zs = G. Put§g = 23¢; for t; odd and lez be
the type vector given by Corolla.3. Suppose M has né, factor in its primary invariant
decomposition. Then, there exists a non-splittiig 2, 4t, 2t)-RDS in M relative to N if and
only if there exists &4t, 2, 4t, 2t)-RDS iNZg; x - -+ X Zg, ; X Zpgs X Lgu,q X - X Lg
relativetoOx --- x Ox < §+ > x0x ---x0,wherefissuchthag« =l1anda« >a > 1
forall z; = 1.

PROOFE We havez #£ 0 sinceM is not asplit extension oN. So, using Corollarg.3 there
is an isomorphisml’, such thatf" (M) andI"(N) are the Jedwab groufs/K, and subgroup,
H/K, corresponding te andz. By Theorem4.2the existence of &t, 2, 4t, 2t)-RDS inM
relative to N is equivalent to that of a GPBAY of type z. Using [5, Corollary 7.2] this, is
in turn, equivalent to the existence of a GPBAof type 00"=D 1.0,...,0). The result
follows from another application of Theoref2. O

Instead of using the equivalence of GPBAS, the result above may also be proved by observing
thatthere isan isomorphism betwedd/K andZs, x - - - X Zg._; X Zogu X Lgs 4 X -+ X Lg

which mapsH /K to the specified subgroup (this technique is use®]jrtq prove the case

r = 2). We should contrast the situationthe above theorem with that where the forbidden
subgroup,N, has order larger than 2. Here it may be impossiblenap N to a selected
Cartesian subgroup, and the existence question cannot be simplified as shown here. Finally
we note that, by taking in primary invariant form, we can assume tlsatis a power of 2 in

the above theorem.

5. GPBAs AND HADAMARD COCYCLES

In this section we show that a GPBA (of any type) is equivalerst Hadamard matrix of a
certain form.

If W is any finite group, a cocycl¢g € Z?(W, A) is calledorthogonalby Baliga and
Horadam in [] if the matrix [y (w, w’)], indexed by the elements & in some fixed order,
is a Hadamard matrix (so for such a cocycle to exist we n&&d= 2 or 4t). Because of the
defining equation of a cocycle, orthogonality amounts to the matrix having an equal number of
+1s and—1s in each row and column not indexed by the identity\bfThat is, the following
result holds.

LEMMA 5.1 ([1, LEMMA 2.6]). A cocycley € Z%(W, A) is orthogonal if and only if:

(i) foreachl # v e W we have) .\ ¥ (u, v) =0, or equivalently;
(i) foreachl# ue W wehave)_, ., ¥(u,v) =0.

We will call an orthogonal cocycle ldadamardcocycle to emphasize that it defines a Hada-
mard matrix. Specializing t&®W = G we obtain our first connection between cocycles and
binary arrays. This is an explicit version of an equivalence first discussed in [3] (se&Jalso [
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LEMMA 5.2. Lett : G — A be any set function. Thefiz is a Hadamard cocycle if and
only if T is a PBA(S).

PROOF LetO # £ € G. We have

D0t O =) tHTOEE+)) T =1® Y t(HrE+]).
jeg jeg ieg

The result now follows from the previous lemma and the definition of a PBA in (6). O

A coboundarydt corresponds to a group-invariant matrix (see [7]), and it is possible,
whetherdt is a Hadamard matrix or not, when it is multiplied (elementwise) by certain ex-
tended back nega-cyclic matrices we will obtain a Hadamard mathis is precisely the
situation that corresponds to a GPBA. We prove this by using reisitiely establishedy
Flannery [2] and extended by Perera and Horadam [7], which construct canonical relative
difference sets from Hadamard cocycles, and vice versa.

THEOREMS.3. Lets be any vector of integers greater thdrand letG = Zg, x -+ x
Zs . Letz be any type vector of length r, and le§ &= [[,_; 5 be theJedwab cocycle
corresponding teandz. Thent : G — Ais a GPBA(s)f typezif and only ifyy = fj07 €
Z%(G, A) is Hadamard.

PrROOF We have done the proof when= 0, so we assume this is not the case. We will use
the results on the correspondence between short exact sequences and cocycles in [6, Chap-
ter 2]. Let& be the extension groupf G by A determined byy. That is,£ = {(l’,, a :
L € G,a € A}, where the group operation is defined for &llm < G, a,b € A by
(£,a)(m,b) = (£ + m, aby (£, m)). We notethat£ is abelian becausg is symmetric. We
have the following short exact sequence

1458 g0

wherel/(a) = (0,a) andB’ (¢, a) = £. Now, asyr ~ f;, the above sequence is equivalent to
the Jedwab sequence (1) correspondindtoThus there is an isomorphism that makes the
following diagram commute:

1 A £ G 0
1Al rl lgl
1 A—sgkK L.g 0.

We see thal'(i/(A4)) = 1«(A) = H/K = {K, £* + K}. The isomorphism is given explicitly
by

I, a) = @) + A1),

wherei : G — G/K is the section of8 given byi(£) = £ + K in Section3.

Now letD = {(¢,1): £ € G} andD = {g+ K : 7/(g) = 1}. Assumefor the momentthat
D =TI'(D). By Theoremd.2,t is a GPBA(s)Yf typezif and only if D is a(4t, 2, 4t, 2t)-RDS
in G/K relative toH /K. By the isomorphismI", these are then equivalent®= I'1(D)
being a(4t, 2,4t, 2t)-RDS in& = ' 1(G/K) relative to//(4) = 0 x A = I'"1(H/K).
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Finally, [7, Theorem 4.1] tells us thaP is such an RDS if and only if is a Hadamard
cocycle.

It only remains to prove thad = I'(D). Recall the definition of the expansiorl, in (5).
Suppose, firstly, that’(g) = 1, and writeg = £ + h for h € H and¢ = gmods. Then
(@) = 1lifandonly ifh € K,andsog+ K = £+ h+ K =«(t(®)) + £+ K € I'(D).
Conversely, let € G and writet (£) = (—1)¢, wheree = 0,1. ThenI'(¢, 1) = ¢£* + £ + K
andt/(e€* +€) = (-1)¢t(€) = 1. O

We now give an example to illustrate the construction of the orthogonal co€ygkefrom
7 in Theoremb.3.

EXAMPLE 5.4. Lets = (2,2) andz = (1,0). Order theelements ofg = 7Z» x Zp as
follows: 00, 10, 01, 11. Let : G — A be given byr(00) = (10) = t(01) = 1 and
t(11) = —1. It is easily checked that is a GPBA(2,2) of type (1,0). The corresponding
cocycleys, dt = y is the component-wise product matrix

+ + + +F\ [+ + + + + + + +
+ -+ |+ + - —-|_|+ - - +
+ + + ++ -+ - |+ -+ -
+ -+ -/ \+ - - + + + - -

which is, indeed, a Hadamard matrix. In this example we notedthiself is Hadamard. This
is because is aPBA(2,2). However, there are marnyamples where is a GPBA of non-zero
type but not a PBA (that is wherg;dt is Hadamard budt is not). For exampler = lisa
GPBA(2,2,... ,2) of type (1,1, .. ,1) sinceyr = y; defines the Sylvester Hadamard matrix,

(F D)oot 5)

where® denotes the Kronecker, or tensor, product of matrices. Cleaidynot a PBA(2,2,
ch2). O

Now let M be any abelian group of order &@nhd N any subgroup of order 2. The exis-
tence of a splitting4t, 2, 4t, 2t)-RDS in M relative toN is well known to be equivalent to
that of a PBA and, hence, to that of a Hadamard coboundary. In other words, such splitting
RDSs correspond to Hadamard matrices determined by the trivial cohomology class. For a
non-splitting RDS of the same parameterdMnrelative toN we can combine Theoref3
with Theorems4.2 and4.3to obtain a generalization of this equivalence. It shows that these
non-splitting RDSs correspond to Hadamard matrices determined by non-trivial symmetric
cohomology classes iH?(M/N, A).

COROLLARY 5.5. LetG and i* be as in Theorem.3. Then, there is a non-splittingit, 2,
4t, 2t)-RDS in M relative to N if and only if the cocycjg. dt is Hadamard for some :
G — A
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