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R. Suárez-Parra d, R. Luna Paz a, Patricia Santiago e, Luis Rendón e,
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Abstract Sonochemical synthesis of monodisperse nickel nanoparticles (Ni-NPs) by reduction of

Ni acetylacetonate in the presence of polyvinylpyrrolidone stabilizer is reported. The Ni-NPs size is

readily controlled to 5 nanometer diameter with a standard deviation of less than 5%. The as-

prepared Ni-NPs sample was dispersed in acetone, for 4 weeks. For structural analysis was not

applied to a magnetic field or heat treatment as key methods to direct the assembly. The transition

from separate Ni-NPs into self-organization of three dimensions (3D) superstructures was studied

by electron microscopy. Experimental analysis suggests that the translation and rotation movement

of the Ni-NPs are governed by magnetic frustration which promotes the formation of different geo-

metric arrangements in two dimensions (2D). The formation of 3D superstructures is confirmed

from scanning electron microscopy revealing a layered domain that consists of staking of several
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monolayers having multiple well-defined supercrystalline domains, enabling their use for optical,

electronic and sensor applications.

� 2016 King Saud University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The organization and self-assembly of nanostructured materi-

als with controlled size and composition are fundamental with
a technological interest over recent years. These kinds of mate-
rials provide the critical building blocks for nanoscience and
nanotechnology exhibiting new and enhanced properties com-

pared to bulk materials. The effort to understand the physical
properties of ever smaller structures has been paralleled by
attempts to exploit their beneficial properties. Indeed, in the

field of magnetic particles, physical parameters defined as con-
stants in descriptions of bulk materials properties, become size
dependent [1]. In other words, changing the size and shape of

nanoscale materials produces new materials. Furthermore, the
self-assembly of magnetic nanoparticles can lead to superstruc-
tures with important collective properties such as data store
device [2], spin-dependent electron transport [3], photonic crys-

tals [4], tandem catalysis [5], and a rich variety of novel phe-
nomena derived from their collective interactions.

In this context, the self-assembly of Ni-NPs into three

dimensional (3D) superstructures arouse intensive interests
from the perspective of both fundamental research and appli-
cation purpose. Reports on the preparation of Ni nanoparti-

cles self-assembly are not common compared to numerous
reports on the preparation of 3D superstructures such as CdSe
[6,7], Au [8–10], Ag [11–13], and Co [14,15]. Also, the develop-

ment of synthetic routes has been employed to synthesize Ni
nanoparticles in both organic and aqueous media [16–18]
and surfactants are generally used to synthesize monodispersed
Ni-NPs [19–22]. However, very limited information is avail-

able on the transition from separate Ni-NPs to self-
organization in aggregates at a microscopic scale. Therefore,
the present study focuses on the synthesis of Ni-NPs with tun-

able sizes using a simple sonochemistry synthesis in the pres-
ence of polyvinylpyrrolidone (PVP) stabilizer. The as-
prepared sample was dispersed in acetone and the interplay

between crystallographic ordering and its dynamics were dis-
cussed herein.

2. Experimental

2.1. Reagents and materials

All chemicals used in this experiment were of reagent grade. Ni
(OCOCH3)2 � 4H2O (P98%, Aldrich) was used as nickel
source, acetone (P99.9%, Aldrich), isopropyl alcohol

(P99.7%, Aldrich) and Poly(vinyl pyrrolidone, PVP,
Mw = 40,000) were used as received without further purifica-
tion. The water used throughout this work was deionized water.

2.2. Synthesis of nickel nanoparticles

Nickel nanoparticles were synthesized as follows: 1 g of Ni

(OCOCH3)2 � 4H2O was dissolved in a mixture of 10 mL of
acetone and 10 mL of Isopropyl alcohol. The reaction mixture
was exposed to ultrasound irradiation (20 Khz) for 20 min. At
this time, 0.05 g of PVP was added to the mix and the ultra-

sonic treatment extended until 50 min [23] was completed.
The reaction formed a black solid, which was separated by
centrifugation and washed several times with acetone and iso-

propyl alcohol and dried at room temperature. The as-
prepared sample was redispersed in 15 mL of acetone. The sus-
pension of Ni-NPs was preserved inside a vertically positioned

glass vial for a maximum time of 4 weeks. After this time, five
samples were obtained and they are identified by its week num-
ber (as-prepared, W1, W2, W3 and W4) along this paper. It is
important to remark that no heat treatment was implemented

after the sonochemical synthesis of Ni-NPs in order to preserve
the crystalline structure and the crystal size of the as-prepared
sample.

2.3. Characterization

X-ray diffraction (XRD) patterns were carried out with a Bru-

ker X-ray diffractometer D8 Focus (k = 1.5406 Å) with 35 kV
and 25 mA. High resolution transmission electron microscopy
(HRTEM) and a scanning transmission electron microscope

(STEM) operated in the mode in which the scattered electrons
are collected by means of a high-angle annular dark-field
(HAADF) detector to provide the critical experimental input
needed to determine the full-structure evolution of the assem-

bled Ni-NPs. Therefore, the morphology and structure were
characterized on a Tecnai F30 (Cs = 1.2 nm) operated at an
accelerating voltage at 300 kV having a point-to-point resolu-

tion of 0.20 nm and lattice resolution of 0.14 nm. Samples for
HRTEM and STEM crystallographic analyses were prepared
by evaporation of one drop of Ni-NPs solution on carbon-

coated copper grids (300 mesh) and then dried under air. Mor-
phological evolution analysis was conducted on a scanning
electron microscopy (SEM, FEI-Nova 200 Nanolab) operated
at 10 kV.

3. Results and discussion

The corresponding XRD spectrum for the as-prepared sample

(Fig. 1) clearly shows the presence of a single face-centered
cubic (FCC) crystal phase of Ni NPs with only three reflec-
tions, (2h= 44.6�, 51.84� and 76.48�), corresponding to Miller

indices (111), (200) and (220) respectively (JCPDS 04-0850).
No peaks of nickel oxide were detected within the XRD anal-
ysis limit, indicating that pure FCC nickel was obtained under

such experimental conditions. The nanometric crystallite size
can easily be detected by the broadening of the (111) reflec-
tion, due to that the XRD reflections are usually inversely cor-

related with the crystallite diameter of the particles. The size of
coherently diffracting domains was calculated by considering
the size broadening contribution only and to determine the
grain size based on the (111) reflection the Debye-Scherrer
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Figure 1 XRD pattern of the as-prepared Ni-NPs.
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equation was used: D= 0.9k/bcosh, where D is the average

diameter of the calculated particles, k is the wave length char-
acteristic in Å (in this particular case k= 1.5405 Å), b is the
full width at half maximum and h is Bragg´s angle [24]. There-

fore, the crystalline grain size calculated from the XRD pattern
according to the Debye–Scherrer formula was 5.3 nm.

Low-magnification TEM image reveals that the resulting
as-prepared Ni-NPs have a monodisperse size distribution

with a standard deviation of less than 5%, and is nearly spher-
ical in shape, Fig. 2A. This result suggests that large isotropic
van der Waals interactions induce the formation of spherical

and isotropic aggregates [25] in the absence of dipolar interac-
tions. Likewise, faceting morphology can be seen in some par-
ticles. Therefore, both shapes, spherical and cubes, correspond

to thermodynamically stable geometries. In Fig. 2b, it is con-
firmed that the particles are single crystals showing the (111)
lattice plane of Ni-FCC with the fringe spacing of 2.07 Å.
These results indicate that the shape of Ni-NPs can be con-

trolled in the presence of PVP, which is adsorbed on the Ni-
NPs surface and prevents the grain growth. From our struc-
tural analysis, the HRTEM images of other particles also show

a single-crystal structure.
Figure 2 TEM image of (a) as-prepared sample. (b) HRTEM ima
As it was already mentioned, the samples were labeled as
W1, W2, W3, and W4, where W represents the time (in weeks)
when the sample was analyzed after the sonochemical synthe-

sis. Representative HAADF image of Ni-NPs corresponding
to W1, is shown in Fig. 3a. An arrangement of flexible chains
and closed like-rings are observed in a suspension aged for W1.

It was understood that due to the magnetic dipolar interac-
tions, one self-assembly is rather typical for magnetic nanopar-
ticles. Such nanoparticles with a magnetic dipole moment

should be able to minimize the magnetostatic energy via self-
assembly into flexible chains. Close examination of Fig. 3a
reveals the organization of Ni-NPs consisting of hexagonally
close-packed structures, highlighted with a circle. In order to

elucidate this behavior a HRTEM image was analyzed,
Fig. 3b. In the central HRTEM image it can be observed that
a 5 nm Nickel nanocrystal is surrounded with a hexagon

formed by other Ni-NPs, with approximately the same size,
5 nm. The Fast Fourier Transform (FFT) of each particle,

enumerated from 1 to 6, shows (200) (0�20) and (0�22) reflections
corresponding only to the FCC Ni phase. Certainly, it is pos-
sible to consider that the orientation for a magnetic single-
domain is linked to the zone axis and that the magnetic orien-
tation is not the same and also has a certain precession of the

magnetic moment.
This magnetic condition allows Ni-NPs to form a meta-

stable arrangement, since there is not a preferential orientation

of the axes or zone magnetic moments of the Ni-NPs and
apparently the precession of the magnetic moment is given
about the same crystallographic plane. This phenomenon is

known as magnetic frustration. Magnetic frustration governs
movement dynamics of this system particles and promotes
the formation of different geometric arrangements of Ni-NPs

in 2D [26–33].
Furthermore, a strong tendency and oriented aggregation

that self-assembly in fine arrays is clearly observed in Fig. 3a.
Therefore, unpaired dipoles present at the ends of a linear

chain of nanoparticles can be paired, yielding closed rings, as
in the sample W1, shown in Fig. 3a–b. Also, a strong tendency
to oriented aggregation in fine self-assembled arrays (as can see
ge showing a single crystal structure corresponding to Ni-FCC.



Figure 3 (a) HAADF image corresponding to W1 sample. (b) HRTEM image of hexagonally close-packed structures and FTT analysis

of each Ni-NPs.

Figure 4 Magnetic anisotropy of nickel nanoparticles as a function of the crystal directions.
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in Fig. 3b.) was clearly observed This behavior could be attrib-
uted to isotropic van der Waals forces and anisotropic dipole–

dipole interactions [34].
In addition, when nanoparticles of magnetic materials are

out of the influence of an external field, their crystal relative

orientations depend on an unexpected spontaneous magnetiza-
tion, which is called magnetic anisotropy [35]. Specifically, in
the case of Nickel it is known that difficult magnetization axes

are parallel to [100] and the easy magnetization axes are par-
allel to [111]. Therefore, is clear to assume that most magneti-
zation is reached in directions parallel to [111] while the
minimum magnetization directions are parallel to [100].

In a nanoparticles, where the crystal anisotropy is presented
about an axis, the energy ua management function is repre-
sented by the angle h orientation as follows:

ua ¼
X

n

Kunsen
2nh

where Kun are the energies where the maximum magnetization
occurs depending on the direction [35].
In nanometric structures, considered as uniaxial domains,
only the terms n = 1 and n = 2 are used, so that magnetiza-

tion energy is:

U ¼ K1sen
2hþ K2Sen

4h

In the case of nickel, experimentally was found that
K1 = �4.5 � 103 J/m3 and K2 = �2.3 � 103 J/m3. Thus, the
magnetic anisotropy of nickel shows the variations depicted
in the Fig. 4.

In Fig. 4, the Ua shows some maxima and minima as a func-
tion of the crystal directions [111] and [100] and its multiples.
The directions of nickel nanostructures in the samples observed

by electron microscopy, Fig. 3b, also indicate the directions
[020] and [022]. Moreover, the calculated angle for the direc-
tion [200] was located near to 170�, although its energy level

does not corresponds, in this case, to the maximum. This fact
confirms that Ni-NPs have unstable equilibrium.

In Fig. 5a, corresponding to W2, can be observed the pro-
gressive increase in the aggregates of Ni-NPs, forming



Figure 5 (a) HAADF image corresponding to W2 sample. Is possible observed the progressive increase in the aggregates of Ni-NPs, (b)

HAADF image corresponding to W3, Ni-NPs are arranged in a nearly 2D superstructure, and HRTEM reveals that Ni-NPs become more

faceted upper inside. (c) HRSEM image shows a layered domain that consists of stacking of several monolayers. (d) Typical overhead view

of the sample W4 shows a HRSEM image of a closed packed multilayer 3D. (e) HRSEM image shows the growth of terraces.
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branched chains, which can be explained as a cooperative
effect of the attractive magnetic interaction between Ni-NPs.
Also, these geometrical arrangements are only possible if the

particles are mobile enough and have time to find their lowest
energy sites. This effect cooperative is more evident in Fig. 5b,
corresponding to W3, where the Ni-NPs are arranged in a

nearly 2D superstructure, exhibiting long-range order and
the self-assembly increased gradually and the dispersity
becomes lower and 2D superstructure is formed. However,

HRTEM reveals that the particles become more faceted for
W3, displaying sharp edges, Fig. 5b upper inset. This morpho-
logical change can be attributed to digestive ripening, which

does not affect their size but promotes the intraparticular reor-
ganization of nickel atoms [36]. A two-dimensional superstruc-
ture preferably grows with facets reflecting the packing
symmetry inherent for the Ni-NPs. Moreover, the self-

assembly of 2D of Ni-NPs superstructure shows a layered
domain, 2D sheets, that consists of stacking of several mono-
layers are clearly observed in HRSEM image, Fig. 5d. In this

case, if the growth conditions are constant, the stacking of
monolayers remains the same for the successive formation of
new stacking layers.

When the suspension was aged 4 weeks, W4, the thickness
of the stacking of monolayers increased up to 0.7 lm, Fig. 5d.
Also it was noticed from Fig. 4e that the 3D superstructure is
well-faceted and low energy surface facets, such as the {111}
surface facet indicated in Fig. 5e inset, are distinguishable.

Three dimensional layer-by-layer growth of Ni-NPs has been
observed through the whole structural analysis. As can be seen
in the Fig. 5e, the grain growth follows a quasi-lateral isotropic

expansion of a terrace until one side reaches the crystal edge
and a preferential growth along the edge of the (111) top sur-
face. This sequence ends when the terraces have joined all six

edges of 3D superstructure.
On the basis of the above results and discussions, the for-

mation and evolution of Ni-NPs could be described as follows:

Primary nickel particles gradually were formed during sono-
chemical synthesis. In general Ni-NPs exhibit spherical shape,
but can be seen in some particles. The dipole–dipole coupling
and van der Walls attractions favor the self-organization in lin-

ear chain which can be curved due to Brownian motion. In the
absence of an external magnetic field, the Ni-NPs are free to
rotate and form a metastable arrangement, phenomenon

known as magnetic frustration. Furthermore, the slow forma-
tion of branched chains was elucidated as a cooperative effect
of the magnetic interaction between Ni-NPs. Finally, the self-

organization in 2D and 3D are formed due to stacking of
monolayers and grain growth of terraces.
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4. Conclusions

In summary, nickel nanoparticles with controllable size and
morphology can be easily obtained through a sonochemical

synthesis in a PVP-assisted reaction system. The Ni-NPs
evolve from a nanometric like-spherical morphology to 3D
superstructures. Specifically, the growth mechanism for, 2D

and 3D superstructure, involved the stacking and extension
of terraces. These results represent a straightforward pathway
for tuning the magnetic properties of nickel nanoparticles by
controlling the self-organization as a function of time.
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