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a b s t r a c t

In Huang (2010) [8], a test of conditional independence based on maximal nonlinear
conditional correlation is proposed and the asymptotic distribution for the test statistic
under conditional independence is established for IID data. In this paper, we derive the
asymptotic distribution for the test statistic under conditional independence for α-mixing
data. The results of simulation show that the test performs reasonably well for dependent
data. We also apply the test to stock index data to test Granger noncausality between
returns and trading volume.
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1. Introduction

The testing of conditional independence is important in statistics; one interesting application of such testing is variable
selection. For instance, consider the following regression problem:

Y = f (Z, X)+ ϵ, (1)

where ϵ is independent of (Z, X) and f is a real-valued function. If Y andX are conditionally independent given Z , the variable
X can be excluded from the model in (1).

Suppose that X, Y and Z are continuous random vectors of dimensions d1, d2 and d respectively. For testing whether
X and Y are conditionally independent given Z , most tests in the literature deal with the case where the observations for
(X, Y , Z) are IID. See, for example, [11,3,9,8], etc.

When the observations for (X, Y , Z) areweakly dependent, fewer tests are available in the literature. Su andWhite [14,15]
developed nonparametric tests based on a weighted Hellinger distance between conditional densities or the difference
between conditional characteristic functions. Bouezmarni et al. [1] also proposed a nonparametric test based on the
Hellinger distance of copula densities.

In [14,15,1], one motivation for constructing conditional independence tests for dependent data is to test Granger
noncausality, which, according to Florens and Mouchart [5] and Florens and Fougere [4], is a form of conditional
independence. Specifically, a series {Ut} does not Granger cause series {Vt} if

Vt ⊥ (Ut−1,Ut−2, . . . ,Ut−p)|(Vt−1, Vt−2, . . . , Vt−p) for every p ≥ 1,

where ⊥ denotes an independent relationship.
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In this paper, we consider Huang’s test statistic and derive its asymptotic distribution for α-mixing data. In order to
measure the conditional association between X and Y given Z , Huang [8] uses a measure called the maximal nonlinear
conditional correlation, which is defined as

sup
f ,g∈S∗

0

Corr( f (X, Z), g(Y , Z)|Z), (2)

where S∗

0 is the collection of ( f , g)’s such that E( f 2(X, Z)) < ∞ and E(g2(Y , Z)) < ∞. Huang’s test statistic is an estimator
for aweighted average of estimators ofmaximal nonlinear conditional correlation at different evaluation points for the given
variable Z . The test statistic also involves certain basis functions used to approximate the f and g in (2). We show that the
asymptotic distribution of Huang’s test statistic for α-mixing data is the same as that for IID data if the number of evaluation
points and the number of basis functions are held constant.

This paper is organized as follows. In Section 2, we review the definition of maximal nonlinear conditional correlation
and certain approximation results given in [8], and state the asymptotic properties of the test statistic that we derive under
α-mixing condition. Some simulation results and an application are in Section 3. Proofs are given in Section 4.

2. Review and main results

In this section, we review the definition of the maximal nonlinear conditional correlation ρ1(X, Y |Z), the approximation
of ρ1(X, Y |Z) and the proposed estimator for ρ1(X, Y |Z = z) in [8]. Then, we consider Huang’s test statistic for testing
H0 : ρ1(X, Y |Z) = 0 and present its asymptotic properties that we derive under α-mixing condition.

2.1. Definition, approximation, and estimation for maximal nonlinear conditional correlation

The maximal nonlinear conditional correlation ρ1(X, Y |Z) is essentially the maximum of E( f (X, Z)g(Y , Z)|Z) over S0,
where S0 is the collection of ( f , g)’s that satisfy the following conditions:

E( f 2(X, Z)|Z)I(0,∞)(E( f 2(X, Z)|Z)) = I(0,∞)(E( f 2(X, Z)|Z))

E(g2(Y , Z)|Z)I(0,∞)(E(g2(Y , Z)|Z)) = I(0,∞)(E(g2(Y , Z)|Z))
(3)

and

E( f (X, Z)|Z) = E(g(Y , Z)|Z) = 0. (4)

To avoid dealing with the existence of the maximum and the measurability of ρ1(X, Y |Z), in [8], ρ1(X, Y |Z) is defined as

sup
( f ,g)∈S0

E( f (X, Z)g(Y , Z)|Z),

where the supremum is defined as

lim
n→∞

E(αn(X, Z)βn(Y , Z)|Z),

where {(αn, βn)} is a sequence in S0 that satisfies the following conditions.

(i) The sequence {E(αn(X, Z)βn(Y , Z)|Z)} is non-decreasing.
(ii) For every ( f , g) ∈ S0,

E( f (X, Z)g(Y , Z)|Z) ≤ lim
n→∞

E(αn(X, Z)βn(Y , Z)|Z).

To approximate

ρ1(X, Y |Z) = sup
( f ,g)∈S0

E( f (X, Z)g(Y , Z)|Z),

we consider S0,p,q: the collection of all ( f , g)’s in S0 such that f and g are in the spans of {φp,j : 1 ≤ j ≤ p} and
{ψq,k : 1 ≤ k ≤ q} respectively, when Z is given. That is,

f (X, Z) =

p
j=1

ap,j(Z)φp,j(X) for some ap,j(Z)’s

and

g(Y , Z) =

q
k=1

bq,k(Z)ψq,k(Y ) for some bq,k(Z)’s.
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Suppose that the basis functions φp,i’s and ψq,j’s are selected so that there exists basis functions θr,k’s such that

lim
p,r→∞

inf
a(i,k)

E


α(X, Z)−


1≤i≤p,1≤k≤r

a(i, k)φp,i(X)θr,k(Z)

2

= 0 (5)

and

lim
q,r→∞

inf
b( j,k)

E


β(Y , Z)−


1≤j≤q,1≤k≤r

b( j, k)ψq,j(Y )θr,k(Z)

2

= 0 (6)

for every α and β such that E(α2(X, Z)) and E(β2(Y , Z)) are finite. Let X,Y and Z be the ranges of X, Y and Z respectively.
Suppose that for each (p, q), there exist coefficients ap,0,i’s and bq,0,j’s such that

1≤i≤p

ap,0,iφp,i(x) = 1 =


1≤j≤q

bq,0,jψq,j( y) (7)

for every x in X and every y in Y. Let

ρp,q(Z) = max
( f ,g)∈S0,p,q

E( f (X, Z)g(Y , Z)|Z).

Then, by Fact 2 in [8], ρ1(X, Y |Z) can be reasonably approximated by ρp,q(Z) if p and q are large. The statement of the fact is
given below.

Fact 1 (Fact 2 in [8]). Suppose that (5)–(7) hold and {pn} and {qn} are sequences of positive integers that tend to ∞ as n → ∞.
Then

lim
n→∞

E(|ρ1(X, Y |Z)− ρpn,qn(Z)|) = 0.

A remark follows.

• It is not difficult to find basis functions that satisfy (5)–(7). If X,Y and Z are bounded regions in Rd1 , Rd2 and Rd

respectively and the Lebesgue densities for (X, Z) and (Y , Z) are bounded, then φp,i’s and ψq,j’s can be taken as B-spline
basis functions on multidimensional intervals containing X and Y respectively, where the θr,k’s can be taken as B-spline
basis functions on a multidimensional interval containing Z.

ρp,q(Z) can be found as follows. First, we look for vectors a1 = (a1,1(Z), . . . , a1,p(Z))T and b1 = (b1,1(Z), . . . , b1,q(Z))T

such that (a1, b1) is the pair (a, b) that maximizes aTΣφ,ψ,p,q(Z)b subject to

aTΣφ,p(Z)a = 1 = bTΣψ,p(Z)b,

where

Σφ,p(Z) = (E(φp,i(X)φp,j(X)|Z)− E(φp,i(X)|Z)E(φp,j(X)|Z))p×p,

Σψ,q(Z) = (E(ψq,i(Y )ψq,j(Y )|Z)− E(ψq,i(Y )|Z)E(ψq,j(Y )|Z))q×q,

and

Σφ,ψ,p,q(Z) = (E(φp,i(X)ψq,j(Y )|Z)− E(φp,i(X)|Z)E(ψq,j(Y )|Z))p×q.

Take

f1(X, Z) =

p
j=1

a1,j(Z)(φp,j(X)− E(φp,j(X)|Z))

and

g1(Y , Z) =

q
k=1

b1,k(Z)(ψq,j(X)− E(ψq,j(Y )|Z)).

Then, E( f1(X, Z)g1(Y , Z)|Z) = ρp,q(Z).
For z ∈ Z, let Σ̂φ,ψ,p,q(z), Σ̂φ,p(z) and Σ̂ψ,q(z) be the kernel estimators ofΣφ,ψ,p,q(z),Σφ,p(z) andΣψ,q(z) respectively;

in other words, every element E(g(X, Y )|Z = z) inΣφ,ψ,p,q(z),Σφ,p(z) andΣψ,q(z) is estimated by

Ê(g(X, Y )|Z = z) =

n
t=1

g(Xt , Yt)k0((Zt − z)/h)

n
t=1

k0((Zt − z)/h)
(8)
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in Σ̂φ,ψ,p,q(z), Σ̂φ,p(z) and Σ̂ψ,q(z), where k0 is a kernel function defined on Rd and h > 0. Then, we use ρ̂p,q(z) =

maxa,b aT Σ̂φ,ψ,p,q(z)b for estimating ρp,q(z), where all pairs (a, b) satisfy

aT Σ̂φ,p(z)a = 1 = bT Σ̂ψ,q(z)b.

Henceforth, the estimator ρ̂p,q(z)will be abbreviated as ρ̂(z) for each z in Z.

2.2. A test for conditional independence and relative asymptotic properties

The conditional independence test that we use in this paper is based on ρ̂2(z) at different z’s. Since each ρ̂(z) is
determined by the kernel estimators of certain conditional expectations, we first derive their joint asymptotic distribution.
Then, we use

k
i=1 f̂Z (zi)ρ̂

2(zi)’s as our test statistic and establish its consistency and asymptotic distribution. Here the zi’s
are selected points in Z and

f̂Z (·) =

n
t=1

k0((Zt − ·)/h)

nhd

is the kernel density estimator of fZ : the Lebesgue pdf of Z . In order to avoid dealingwith the boundary bias problem in kernel
estimation, we consider a set Z0 that is contained in the interior of Z so that points in Z0 are away from the boundary of Z,
and choose the zi’s from Z0.

Our first result is with regard to the joint asymptotic distribution of kernel estimators of some conditional expectations.
In order to describe the assumptions, we first review the definition forα-mixing coefficients. For a strictly stationary process
{Ut}, let F b

a denote the σ -algebra generated by (Ua, . . . ,Ub). Then, the α-mixing coefficient at lag s for {Ut} is

sup

|P(A ∩ B)− P(A)P(B)| : −∞ < t < ∞, A ∈ F t

−∞
, B ∈ F ∞

t+s


.

{Ut} is considered to be α-mixing if its α-mixing coefficient at lag s tends to 0 as s tends to ∞. Let α(s) denote the α-mixing
coefficient at lag s for the process {(Xt , Yt , Zt)}. Our assumptions are provided below.

(S0) The basis functionsφp,1, . . . , φp,p andψq,1, . . . , ψq,q are bounded and (5)–(7) hold. For the sake of brevity,φp,1, . . . , φp,p
and ψq,1, . . . , ψq,q will be abbreviated as φ1, . . . , φp and ψ1, . . . , ψq respectively hereafter.

(S1) {(Xt , Yt , Zt) ∈ Rd1+d2+d, t ≥ 0} is a strictly stationary α-mixing process that satisfies α(τ) = O(τ−(1+ϵ)), where
ϵ > max(1, d/2), d1, d2 and d denote the dimensions of Xt , Yt and Zt respectively.

(S2) Suppose that there exist Z0: an open subset of the interior ofZ andµ: σ -finite measure such that for every z ∈ Z0, the
conditional distribution of (X, Y ) given Z = z has a pdf f (·|z) with respect to µ. Further, f (x, y|z) and fZ (z) are twice
differentiable with respect to z on Z0.

(S3) There exists a function h on X × Y such that

sup
z∈Z0

max


|f (x, y|z)|, max
1≤i≤d

 ∂∂zi f (x, y|z)
 , max

1≤i,j≤d

 ∂2

∂zi∂zj
f (x, y|z)

 ≤ h(x, y)

and

h(x, y)dµ(x, y) < ∞.

(S4) There exist constants c0 and c1 such that

sup
z∈Z0

max


|fZ (z)|, max
1≤i≤d

 ∂∂zi fZ (z)
 , max

1≤i,j≤d

 ∂2

∂zi∂zj
fZ (z)

 ≤ c0

and 1/fZ (z) ≤ c1 for z ∈ Z0.
(S5) k∗ is a kernel function defined on R1, and k0 is a product kernel on Rd that satisfies

k0(v1, v2, . . . , vd) = k∗(v1)k∗(v2) · · · k∗(vd),

k∗
≥ 0, supv k∗(v) < ∞,


k∗(v)dv = 1,


vk∗(v)dv = 0,


v(k∗(v))2dv = 0 and κ2 =


v2k∗(v)dv < ∞.

(S6) As n → ∞, the bandwidth h → 0, nhd
→ ∞ and nhd+4

→ 0.

Under the above conditions, the joint asymptotic distribution of kernel estimators of conditional expectations can be
established, as stated in Lemma 1. The proof for Lemma 1 is provided in Section 4.1.

Lemma 1. Suppose that conditions (S1)–(S6) hold. Suppose that g1, g2, . . . , gm are bounded functions defined onX×Y. Suppose
z1, . . . , zk are distinct points in Z0. For i = 1, . . . , k, let

ĝj(zi) =

n
t=1

gj(Xt , Yt)k0((Zt − zi)/h)

n
t=1

k0((Zt − zi)/h)
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be the kernel estimator of g∗

j (zi) ≡ E(gj(X, Y )|Z = zi). Further, let

Bs,j(zi) =
κ2

2
( fZ (zi)g∗

j,ss(zi)+ 2fs(zi)g∗

j,s(zi)) (9)

and

Wj,n(zi) =

√

nhd


ĝj(zi)− g∗

j (zi)− h2
d

s=1

Bs,j(zi)/fZ (zi)


for 1 ≤ i ≤ k and 1 ≤ j ≤ m, where g∗

j,s and g∗

j,ss denote the first and the second partial derivatives of g∗

j with respect to the s-th
component respectively and fs denotes the first partial derivative of fZ with respect to the s-th component. Let

uj,t = gj(Xt , Yt)− g∗

j (Zt),
cjj∗(zi) = E(uj,1uj∗,1|Z1 = zi),

σ 2
j (zi) = E(u2

j,1|Z1 = zi),

and

Wn = (W1,n(z1), . . . ,W1,n(zk), . . . ,Wm,n(z1), . . . ,Wm,n(zk))T .

Then,Wn converges in distribution to a random vector

(Z∗

1,1, . . . , Z
∗

k,1, . . . , Z
∗

1,m, . . . , Z
∗

k,m)
T

≡ Z∗,

where Z∗ is multivariate normal with mean 0 and for 1 ≤ i, i∗ ≤ k and 1 ≤ j, j∗ ≤ m,

Cov(Z∗

i,j, Z
∗

i∗,j∗) =

κ
dσ 2

j (zi)/fZ (zi) if i = i∗ and j = j∗;
κdcjj∗(zi)/fZ (zi) if i = i∗ and j ≠ j∗;
0 if i ≠ i∗,

where κ =

(k∗(v))2dv.

Now, suppose that the basis functions φl’s and ψm∗ ’s are linearly independent. For the sake of convenience, for
z ∈ {z1, . . . , zk}, we apply certain linear transformations to φl’s and ψm∗ ’s to obtain new basis functions φ∗

l ’s and
ψ∗

m∗ ’s (the ρ̂(z) remains unchanged under such transformations). Take g1(X, Y ), . . . , gm(X, Y ) to be the functions
φ∗

l (X)φ
∗

l′ (X), φ
∗

l (X)ψ
∗

m∗(Y ) and ψ∗

m∗(Y )ψ∗

m′(Y ), where 1 ≤ l ≤ l′ ≤ p and 1 ≤ m∗
≤ m′

≤ q. Then, the consistency of
ρ̂(z) can be established and we have Theorem 1. The proof for Theorem 1 is provided in Section 4.2.

Theorem 1. Suppose that conditions (S0)–(S6) hold and the basis functions φl’s and ψm∗ ’s are linearly independent. Suppose
z1, . . . , zk are distinct points in Z0. Then,

k
i=1


ρ̂2(zi)− ρ2

p,q(zi)
2

= Op


1

nhd
+ h4


and 

k
i=1

f̂Z (zi)ρ̂2(zi)−

k
i=1

fZ (zi)ρ2
p,q(zi)

2

= Op


1

nhd
+ h4


.

The following theorem states the approximate distribution of the statistic
k

i=1 f̂Z (zi)ρ̂
2(zi)when X and Y are conditionally

independent given Z .

Theorem 2. Suppose that the conditions in Theorem 1 hold and X and Y are conditionally independent given Z. Then,

nhd

κd

k
i=1

f̂Z (zi)ρ̂2(zi) converges in distribution to
k

i=1

λi

as n tends to ∞, where the λi’s are IID and have the same distribution as the largest eigenvalue of a matrix CCT , where C is a
(p − 1)× (q − 1)matrix whose elements are IID N(0, 1).

The proof of Theorem 2 is provided in Section 4.3. Theorem 2 is similar to Theorem 3.2 given in [8]. The main difference
between the two is that Theorem 2 can be applied to α-mixing data. In addition, p and q are held fixed in Theorem 2, while
they are allowed to depend on n and tend to ∞ as n tends to ∞ in Theorem 3.2 in [8].
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According to Theorem 2, a test that rejects H0 if

nhd

κd

k
i=1

f̂ (zi)ρ̂2(zi) ≥ F∗

1−α (10)

is of approximate level α, where F∗ is the distribution function of
k

i=1 λi and F∗

1−α is the 1 − α quantile of F∗. Theorem 3
states that the test with rejection region in (10) is consistent if ρp,q(zi) > 0 for some selected zi. The proof for this theorem
is provided in Section 4.4.

Theorem 3. Suppose that the conditions in Theorem 1 hold and ρp,q(zi) > 0 for some i ∈ {1, . . . , k}. Then, for 0 < α < 1, the
probability that (10) holds tends to 1 as n → ∞.

3. Simulation studies and application to S&P500 index data

3.1. Simulation studies

In this section, we conduct several simulation studies for illustrating the performance of our test. The data generating
processes, labeled Data1–Data13, are described below. In order to make our simulation results comparable with those of
the test proposed by Su and White [15], some of our data generating processes (Data1–Data10) are the same as theirs.
Throughout the description for Data1–Data10, (ϵ1,t , ϵ2,t , ϵ3,t) are IID N(0, I3).

Data1: (Xt , Yt , Zt) = (ϵ1,t , ϵ2,t , ϵ3,t).
Data2: Xt = 0.5Xt−1 + ϵ1,t , Yt = 0.5Yt−1 + ϵ2,t and Zt = Xt−1.

Date3: Xt = ϵ1,t


0.01 + 0.5X2

t−1, Yt = 0.5Yt−1 + ϵ2,t and Zt = Xt−1.

Data4: Xt = ϵ1,t

h1,t , Yt = ϵ2,t


h2,t , Zt = Xt−1, h1,t = 0.01 + 0.9h1,t−1 + 0.05X2

t−1 and h2,t = 0.01 + 0.9h2,t−1 +

0.05Y 2
t−1.

Data5: Xt = 0.5Xt−1 + 0.5Yt + ϵ1,t , Yt = 0.5Yt−1 + ϵ2,t and Zt = Xt−1.
Data6: Xt = 0.5Xt−1 + 0.5Y 2

t + ϵ1,t , Yt = 0.5Yt−1 + ϵ2,t and Zt = Xt−1.
Data7: Xt = 0.5Xt−1Yt + ϵ1,t , Yt = 0.5Yt−1 + ϵ2,t and Zt = Xt−1.
Data8: Xt = 0.5Xt−1 + 0.5Ytϵ1,t , Yt = 0.5Yt−1 + ϵ2,t and Zt = Xt−1.

Data9: Xt = ϵ1,t


0.01 + 0.5X2

t−1 + 0.25Y 2
t , Yt = 0.5Yt−1 + ϵ2,t and Zt = Xt−1.

Data10: Xt = ϵ1,t

h1,t , Yt = ϵ2,t


h2,t , Zt = Xt−1, h1,t = 0.01 + 0.1h1,t−1 + 0.4X2

t−1 + 0.5Y 2
t and h2,t =

0.01 + 0.9h2,t−1 + 0.5Y 2
t .

Data11: (Xt , Yt , Zt) = (ϵ1,t , ϵ2,t , ϵ3,t), where (ϵ1,t , ϵ2,t , ϵ3,t) are IID LN(0, I3).
Data12: Xt = ϵ1,tϵ1,t−1, Yt = ϵ2,tϵ2,t−1 and Zt = Xt−1, where (ϵ1,t , ϵ2,t) are IID LN(0, I2).
Data13: Xt = ϵ1,tϵ2,t−1, Yt = ϵ21,tϵ2,t−1 and Zt = ϵ2,t−1, where (ϵ1,t , ϵ2,t) are IID LN(0, I2).

Here, Data1–Data4, Data11 and Data12 are used for examining the level of the test, and Data5–Data10 and Data13 are used
for checking the power.

3.1.1. Simulation studies based on asymptotic distribution of the test statistic
We first apply our test using the asymptotic distribution of the test statistic.
Parameter set-up: in order to apply our test, certain parameters need to be specified, including the kernel function k∗, the

kernel bandwidth h and the basis functions. For the sake of simplicity, in all the simulation experiments, we take the kernel
bandwidth h to be cn−0.25, where n is the sample size and c ∈ {0.5, 1, 1.5, 2}; we use the following kernel function:

k∗(x) =


1 − x if 0 ≤ x ≤ 1;
x + 1 if − 1 ≤ x < 0.

In addition, the basis functions φ∗

1 , . . . , φ
∗
p and ψ∗

1 , . . . , ψ
∗
q are selected in the following manner. For i = 1, . . . , p and

j = 1, . . . , q, let

φi(x) =

1 if
i − 1
p

≤ x <
i
p
;

0 otherwise
(11)

and

ψj( y) =

1 if
j − 1
q

≤ y <
j
q
;

0 otherwise,
(12)
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Table 1
Power results for different c ’s when n = 500 and n = 1000.

n = 500 n = 1000
c = 0.5 c = 1 c = 1.5 c = 2 c = 0.5 c = 1 c = 1.5 c = 2

Data1 0.030 0.039 0.053 0.071 0.043 0.048 0.057 0.074
Data2 0.030 0.041 0.058 0.074 0.033 0.048 0.060 0.069
Data3 0.032 0.042 0.055 0.080 0.038 0.049 0.055 0.070
Data4 0.038 0.044 0.057 0.075 0.042 0.048 0.057 0.066
Data5 0.951 1 1 1 1 1 1 1
Data6 0.898 1 1 1 0.997 1 1 1
Data7 0.918 1 1 1 0.985 1 1 1
Data8 0.995 1 1 1 1 1 1 1
Data9 0.725 0.991 1 1 0.993 1 1 1
Data10 0.374 0.817 0.959 0.986 0.819 0.996 1 1
Data11 0.036 0.050 0.062 0.079 0.035 0.042 0.049 0.059
Data12 0.036 0.051 0.055 0.072 0.041 0.041 0.053 0.065
Data13 1 1 1 1 1 1 1 1

Fig. 1. Exact distribution (solid line) versus asymptotic distribution (dashed line) of the test statistic with different bandwidth choices (h = cn−1/4).

where p = q = 4. Since the basis functions are defined on [0, 1], we transform the data (Xt , Yt , Zt)nt=1 into
(F1(Xt), F2(Yt), F3(Zt))nt=1 before using the test, where F1, F2 and F3 denote the empirical CDF’s of {Xt}

n
t=1, {Yt}

n
t=1 and {Zt}nt=1

respectively. For the choice of the evaluation points, we take z1 = 0.78n−0.25
≡ h0 and zi = zi−1 + 2h0 if i ≥ 2 and

zi ≤ 1 − h0.
Table 1 shows that the levels of the test are less than 0.05 for c = 0.5 and c = 1 and the powers of the test are larger for

larger c ’s. It seems that when c = 1, the levels of the test are close to 0.05 and the power performance is fine.

3.1.2. Simulation studies based on local bootstrap
The test based on asymptotic distribution of the test statistic does not work well for small sample sizes. Fig. 1 shows

that the distribution of the test statistic and the asymptotic distribution are quite different for Data11 when n = 100.
For Data1–Data4 and Data12, we find similar patterns. When n = 200, the difference between the distribution of the test
statistic and the asymptotic distribution become smaller but is still visible.

To apply our test for small sample sizes, we consider the local bootstrap procedure proposed by Paparoditis and
Politis [13]. The local bootstrap procedure is described below. For a given sample {(Xt , Yt , Zt)}nt=1, a local bootstrap sample
{(X∗

t , Y
∗
t , Z

∗
t )}

n
t=1 is generated according to the following steps.

(a) Draw a random sample (Z∗

1 , Z
∗

2 , . . . , Z
∗
n ) from the empirical cumulative distribution function F̂Z , where

F̂Z (z) =
1
n

n
t=1

I(−∞,Zt ](z).
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Table 2
Power comparison between Tests 1 and 2 when n = 100.

Data1 Data2 Data3 Data4 Data5 Data6 Data7

Test 2, c∗
= 1 0.096 0.060 0.048 0.072 0.668 0.756 0.388

Test 2, c∗
= 2 0.072 0.036 0.072 0.048 0.952 0.944 0.576

Test 1, c = 0.5 0.045 0.061 0.046 0.062 0.525 0.479 0.265
Test 1, c = 1 0.046 0.050 0.050 0.047 0.746 0.717 0.400
Test 1, c = 1.5 0.040 0.052 0.056 0.055 0.814 0.779 0.329
Test 1, c = 2 0.041 0.050 0.053 0.062 0.852 0.793 0.218

Data8 Data9 Data10 Data11 Data12 Data13

Test 2, c∗
= 1 0.860 0.828 0.680 0.034 0.043 0.589

Test 2, c∗
= 2 0.940 0.988 0.912 0.022 0.022 0.859

Test 1, c = 0.5 0.692 0.357 0.195 0.058 0.050 1
Test 1, c = 1 0.873 0.566 0.320 0.049 0.048 1
Test 1, c = 1.5 0.889 0.618 0.341 0.049 0.041 1
Test 1, c = 2 0.860 0.631 0.348 0.046 0.045 1

(b) For 1 ≤ t ≤ n, we draw X∗
t and Y ∗

t independently from the empirical cumulative distribution functions F̂X |Z=Z∗
t
and

F̂Y |Z=Z∗
t
respectively, where

F̂X |Z=Z∗
t
(x) =

n
t=1

k∗((Z∗
t − Zt)/b)I(−∞,Xt ](x)

n
t=1

k∗((Z∗
t − Zt)/b)

and

F̂Y |Z=Z∗
t
( y) =

n
t=1

k∗((Z∗
t − Zt)/b)I(−∞,Yt ]( y)

n
t=1

k∗((Z∗
t − Zt)/b)

.

Here, the bandwidth b is taken to be n−0.2 and the kernel function k∗ is the probability density function for N(0, 1).

In order to determine the rejection region for a given sample, we repeat the above procedure to obtain bootstrap
resamples and compute the test statistic nhdκ−dk

i=1 f̂ (zi)ρ̂
2(zi) for the original sample and each local bootstrap resample.

For a given level α, if the test statistic based on the given sample is larger than the (1 − α) quantile of the test statistics
that are computed based on the local bootstrap resamples, we reject the conditional independence hypothesis at level α.
The purpose of using the local bootstrap procedure is to generate a resample {(X∗

t , Y
∗
t , Z

∗
t )}

n
t=1 such that the distribution of

Z∗, the conditional distributions of X∗ given Z∗
= z and Y ∗ given Z∗

= z are close to the distribution of Z , the conditional
distributions of X given Z = z and Y given Z = z respectively. In addition, since X∗

t and Y ∗
t are generated independently

given Z∗
t = z, they are conditionally independent given Z∗

t = z, irrespective of whether or not X and Y are conditionally
independent given Z .

In these simulation studies, we choose the basis functions in (11) and (12) with p = q = 5. The evaluation points are
{0.2, 0.4, 0.6, 0.8}, and the kernel bandwidth h to be cn−0.25, where n is the sample size and c ∈ {0.5, 1, 1.5, 2}.

Finally, we present a few experimental results of our test (Test 1) and Su andWhite’s test (Test 2). For Test 2, we run the
simulations for Data11–Data13 with the bandwidth hn = c∗n−1/8.5, where c∗

= 1 or 2. Each power estimate is based on
3000 repetitions, where 1000 local bootstrap resamples are used in each repetition. For the sake of comparison, we also list
some power estimates for Test 2 for Data1–Data10, which are taken directly from [15]. They use 250 repetitions with 200
local bootstrap resamples for each repetition.

Tables 2 and 3 indicate the level and power estimates for Test 1 and Test 2 at significance level 5% when the sample sizes
are 100 and 200 respectively.

3.2. Application to S&P500 index data

In this section, we apply the linear Granger causality test (hereafter denoted by Test LIN) and our conditional
independence test (Test 1) in order to check the interaction between returns and volume for S&P500 index data at one
day lag. There are 2514 observations for daily index returns and trading volume from January 2000 to December 2009,
taken from Yahoo Finance. Here, the return for day t is defined as

Rt = 100 log


Pt
Pt−1


,
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Table 3
Power comparison between Tests 1 and 2 when n = 200.

Data1 Data2 Data3 Data4 Data5 Data6 Data7

Test 2, c∗
= 1 0.064 0.052 0.080 0.080 0.900 0.960 0.596

Test 2, c∗
= 2 0.044 0.060 0.056 0.048 1 1 0.864

Test 1, c = 0.5 0.040 0.061 0.036 0.055 0.827 0.830 0.488
Test 1, c = 1 0.049 0.051 0.057 0.054 0.982 0.983 0.831
Test 1, c = 1.5 0.046 0.048 0.049 0.053 0.995 0.989 0.827
Test 1, c = 2 0.045 0.045 0.047 0.057 0.997 0.995 0.735

Data8 Data9 Data10 Data11 Data12 Data13

Test 2, c∗
= 1 0.992 0.968 0.880 0.031 0.036 0.347

Test 2, c∗
= 2 1 1 0.996 0.025 0.032 0.872

Test 1, c = 0.5 0.988 0.730 0.392 0.062 0.062 1
Test 1, c = 1 1 0.947 0.679 0.048 0.047 1
Test 1, c = 1.5 1 0.968 0.738 0.051 0.043 1
Test 1, c = 2 1 0.971 0.745 0.058 0.037 1

Table 4
p-values for Test LIN and Test 1 for testing the relationship between returns
and volume changes.

H0 Rt−1 ⇏ V ∗
t V ∗

t−1 ⇏ Rt

Test LIN 0.000 0.804
Test 1 0.001 0.032

where Pt is the index value for day t . Moreover, the trading volume for day t (in dollars), denoted by Vt , is transformed into

V ∗

t = log


Vt

Vt−1


.

The above transformations are commonly used in the analysis for financial data; for example, see [7,1]. The augmented
Dickey–Fuller test reveals that the series {Rt} and {V ∗

t } are stationary.
In order to examine whether {Rt} is useful for predicting {V ∗

t }, we consider the effects up to lag 1. Specifically, we test

H0 : V ∗

t ⊥ Rt−1|V ∗

t−1 (13)

using Test 1. For Test LIN, it is assumed that

E(V ∗

t |Rt−1, V ∗

t−1) = a1Rt−1 + b1V ∗

t−1

and the null hypothesis is

H0 : a1 = 0. (14)

We use the notation Rt−1 ⇏ V ∗
t to denote the relation expressed in (13) or (14). The notation V ∗

t−1 ⇏ Rt is defined
analogously.

The p-values for Test LIN andTest 1 are provided in Table 4. For Test 1,weuse the sameparameter set-up as in Section3.1.1
and find both the return-to-volume and volume-to-return relationships are significant at the 5% level. However, for Test LIN,
the volume-to-return relationship is not significant. These findings are consistent with the results obtained in [7,1].

To illustrate the implementation of our test for the d > 1 case, we also apply the test to test

H0 : V ∗

t ⊥ (Rt−1, Rt−2)|(V ∗

t−1, V
∗

t−2) (15)

and

H0 : Rt ⊥ (V ∗

t−1, V
∗

t−2)|(Rt−1, Rt−2). (16)

The empirical CDF transforms are applied component-wisely. For instance, we transform (V ∗

t−1, V
∗

t−2, )
n
t=4 into

(F1(V ∗

t−1), F2(V
∗

t−2))
n
t=4, where n = 2512 and Fi is the empirical CDF of V ∗

t−i for i = 1, 2. For the basis functions, we use
4 basis functions on [0, 1]: φ1, . . . , φ4 and 4 basis functions ψ1, . . . , ψ4 on [0, 1]2, where φ1, . . . , φ4 are given in (11) with
p = 4, ψ1( y1, y2) = I[0,0.5)( y1)I[0,0.5)( y2), ψ2( y1, y2) = I[0,0.5)( y1)I[0.5,1)( y2), ψ3( y1, y2) = I[0.5,1)( y1)I[0,0.5)( y2) and
ψ4 = 1−ψ1 −ψ2 −ψ3. Here IA(·) denotes the indicator function on A. In addition, the kernel bandwidth is cn−1/(d+δ) with
c = 1.4 and δ = 2.4. The evaluation points are all the points in S2h0 , where Sh0 = {(2k−1)h0 : k is an integer }∩ [h0, 1−h0]

and h0 = 0.78n−1/(d+δ). Here c and δ are selected from certain candidate values so that the levels of the test are close to
0.05 when the data are IID U(0, 1). The p-values for (15) and (16) are 0.017 and 0.370 respectively.

It has been brought to our attention by an anonymous referee that our test rejected

H0 : Rt ⊥ V ∗

t−1|Rt−1,
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but not the H0 in (16). A possible explanation for this result is that the impact of V ∗

t−1 on Rt given Rt−1 can be explained by
Rt−2. To check on this conjecture, we apply our test to test

H0 : Rt ⊥ V ∗

t−1|(Rt−1, Rt−2) (17)

and the test does not reject the H0 in (17), which supports our conjecture.
Some remarks on the implementation of the test.

• It is recommended to choose evaluation points so that two evaluation points, zi and zj, are at least 2h away ( for each
component) when a compact kernel supported on [−1, 1]d is used. In such case, the ρ̂(zi) and ρ̂(zj) are independent for
IID data, whichmakes the distribution of the test statistic close to the derived asymptotic distribution. Since nhd

→ ∞, h
cannot be too small, which implies that the number of evaluation points cannot be too large.

• We apply empirical CDF transforms to our data so that the distribution of each component of X, Y and Z is supported on
[0, 1]. The transforms are data dependent and it is not clear whether the transformed data can be treated as if they were
transformed by the true underlying CDF. The simulation results are fine, but further investigation is needed.

4. Proofs

In this section, we give proofs for Theorems 1–3 and Lemma 1. Before giving the proofs, we first define and recall some
notations. Recall that k∗ is a kernel on R1 and k0 is a product kernel on Rd defined by

k0(v1, v2, . . . , vd) = k∗(v1)k∗(v2) · · · k∗(vd),

κ =


(k∗(v))2dv

and κ2 =

v2k∗(v)dv.

For a (p + q) × (p + q) matrix V0, let g1,1(V0), g1,2(V0), g2,1(V0) and g2,2(V0) denote the matrices of dimensions
p × p, p × q, q × p, q × q respectively such that

V0 =


g1,1(V0) g1,2(V0)
g2,1(V0) g2,2(V0)


.

4.1. Proof of Lemma 1

For simplicity, we prove the lemma only for the case where m = 2 and k = 2. For t = 1, 2, . . . , n, i = 1, 2 and j = 1, 2,
let

η̂j,1(zi) = (nhd)−1
n

t=1

(g∗

j (Zt)− g∗

j (zi))k0


Zt − zi

h


,

η̂j,2(zi) = (nhd)−1
n

t=1

uj,tk0


Zt − zi

h


and η̂j(zi) = η̂j,1(zi) + η̂j,2(zi). Then, ĝj(zi) − g∗

j (zi) = η̂j(zi)/f̂Z (zi), where f̂Z (zi) = (1/(nhd))
n

t=1 k0((Zt − zi)/h). We can
complete the proof using the following results (A1)–(A3).

(A1) Suppose that the conditions in Lemma 1 hold. Then, for 1 ≤ i, j ≤ 2,

η̂j,1(zi) = h2
d

s=1

Bs,j(zi)+ op

h3

+ (nhd)−1/2 .
(A2) Suppose that the conditions in Lemma 1 hold. Then,

Z∗

n ≡

√

nhd

η̂1,2(z1)η̂2,2(z1)
η̂1,2(z2)
η̂2,2(z2)

 D
→ Z,

where the distribution of Z is N(0,Σ) andΣ is
κdσ 2

1 (z1)fZ (z1) κdc12(z1)fZ (z1) 0 0
κdc12(z1)fZ (z1) κdσ 2

2 (z1)fZ (z1) 0 0
0 0 κdσ 2

1 (z2)fZ (z2) κdc12(z2)fZ (z2)
0 0 κdc12(z2)fZ (z2) κdσ 2

2 (z2)fZ (z2)

 .
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(A3) Suppose that (Xn1, Xn2, . . . , Xnk)
T D

→ (Y1, Y2, . . . , Yk)
T and (Zn1, Zn2 . . . , Znk)T

D
→ (c1, c2, . . . , ck)T , where c1,

c2, . . . , ck are constants. Then,

(Xn1Zn1, Xn2Zn2, . . . , XnkZnk)T
D

→ (c1Y1, c2Y2, . . . , ckYk)
T .

From (A1), (A2) and the assumption that nhd+4
→ 0, we have

√

nhd



η̂1(z1)− h2
d

s=1

Bs,1(z1)

η̂2(z1)− h2
d

s=1

Bs,2(z1)

η̂1(z2)− h2
d

s=1

Bs,1(z2)

η̂2(z2)− h2
d

s=1

Bs,2(z2)


∼ Z + (nhd)1/2op


h3

+
1

√
nhd


D

→ Z,

where A ∼ Bmeans that the distributions of A and B are the same. Apply (A3) and we have Lemma 1.
The proofs of (A1)–(A3) are given below.

• Proof of (A1). Note that

E

η̂j,1(zi)


=

1
hd

 
g∗

j (zt)− g∗

j (zi)

k0


zt − zi

h


fZ (zt)dzt

=

 
g∗

j (zi + hν)− g∗

j (zi)

k0(ν)fZ (zi + hν)dν

ν=(ν1,...,νd)
=


h

d
s=1

g∗

j,s(zi)νsfZ (zi)k0(ν)dν +


h2


d

s=1

g∗

j,s(zi)νs


d

s=1

fs(zi)νs


k0(ν)dν

+
1
2


h2fZ (zi)

d
s=1

d
s∗=1

g∗

j,ss∗(zi)νsνs∗k0(ν)dν + O(h3)

= h2 κ2

2

d
s=1


fZ (zi)g∗

j,ss(zi)+ 2fs(zi)g∗

j,s(zi)

+ O(h3)

= h2
d

s=1

Bs,j(zi)+ O(h3).

Let Ki,j,t = h−d

g∗

j (Zt)− g∗

j (zi)

k0((Zt − zi)/h). Then, we have

Var

η̂j,1(zi)


=

1
n2


n

t=1

Var(Ki,j,t)+

n
t=1

n
s=1,s≠t

Cov(Ki,j,t , Ki,j,s)


.

Since

Var(Ki,j,t) = E

K 2
i,j,t


−

E(Ki,j,t)

2
=

1
hd

 
g∗

j (zi + hν)− g∗

j (zi)
2
(k0(ν))2 fZ (zi + hν)dν

−


fZ (zi)h

 d
s=1

g∗

j,s(zi)νsk0(ν)dν + O(h2)

2

=
1
hd

O(h2)− O(h4),

n
t=1 Var(Ki,j,t) = O(nh2−d). Note that from Corollary A.2 in [6] and the fact that for 2 < β < 2(2 + d)/d, E(

Kβi,j,t ) =

O(h2+d−βd), we have
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s≠t

Cov(Ki,j,t , Ki,j,s)

 =

2 n
t=1

n
s>t

Cov(Ki,j,t , Ki,j,s)


≤ 2n

∞
s=1

Cov(Ki,j,1, Ki,j,1+s)


≤ 16nO(h2(2+d−βd)/β)

∞
s=1

α(β−2)/β(s).

Therefore,

Var

η̂j,1(zi)


= O


h2

nhd


+ O


h2(2+d−βd)/β

n


= o


1

nhd


.

From the above results, η̂j,1(zi) = h2d
s=1 Bs,j(zi)+ op(h3

+ (nhd)(−1/2)).
• Proof of (A2). By the Cramér–Wold Theorem, it is sufficient to prove that cTZ∗

n converges in distribution to cTZ for any
c = (c1, c2, c3, c4)T in R4. We use ‘‘big–small block’’ arguments in [2,12] to complete the proof. Assume that there exist
positive integers p = p(n), q = q(n) and k = k(n) = [n/(p + q)] (the integer part of n/(p + q)) such that as n → ∞,

p → ∞, q → ∞, p = o(n), q = o(p), p = o

(nhd)1/2


,

np−1α(q) = o(1), phd
= o(1), pϵhd

→ ∞.

Let

Zn,t =
1

√
hd


c1u1,tk0


Zt − z1

h


+ c2u2,tk0


Zt − z1

h


+ c3u1,tk0


Zt − z2

h


+ c4u2,tk0


Zt − z2

h


.

Then, we have cTZ∗
n =

1
√
n

n
t=1 Zn,t ≡

1
√
nWn. Let ξj =

( j+1)p+jq
t=j(p+q)+1 Zn,t and ζj =

( j+1)(p+q)
t=( j+1)p+jq+1 Zn,t for j =

0, 1, . . . , k − 1, and ζk =
n

t=k(p+q)+1 Zn,t . Then, Wn =

k−1
j=0

ξj  
Wn1

+

k−1
j=0

ζj  
Wn2

+ζk. In order to prove this lemma, it suffices

to show that as n → ∞,
(1)

E(exp(itWn1))−
k−1

j=0 E(exp(itξj))
 → 0,

(2) 1
√
nWn2

p
→ 0 and 1

√
nζk

p
→ 0,

(3) σ 2
n ≡

k−1
j=0 E(ξ 2j ) = n(σ 2

+ o(1)),
(4) 1

σ 2
n

k−1
j=0 E(ξ 2j I(|ξj| > ε


σ 2
n )) → 0 for any ε > 0,

where

σ 2
= c21κ

dfZ (z1)σ 2
1 (z1)+ c22κ

dfZ (z1)σ 2
2 (z1)+ c23κ

dfZ (z2)σ 2
1 (z2)+ c24κ

dfZ (z2)σ 2
2 (z2)

+ 2c1c2κdfZ (z1)c12(z1)+ 2c3c4κdfZ (z2)c12(z2).

The verification of the above expression for σ 2
n is given in Section 4.5.

We now prove these results respectively. From Lemma 18.2 in [10], which is due to Volkonskii and Rozanov [16],E(exp(itWn1))−

k−1
j=0

E(exp(itξj))

 ≤ 16kα(q) = O

n
p
α(q)


= o(1),

we obtain (1). In order to prove (2), we first considerWn2. Note that

E(W 2
n2) = Var


k−1
j=0

ζj


= kVar(ζ0)  

(P1)

+

k−1
i=0

k−1
j=0,j≠i

Cov(ζi, ζj)  
(P2)

.

Computation of (P1). Note that from

Var(ζ0) =

q
i=1

Var(Zn,i)+ 2
q

i=1

q
j>i

Cov(Zn,i, Zn,j),

q
i=1

Var(Zn,i) = qσ 2
+ O(qh2),
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and the fact that

2
q

i=1

q
j>i

Cov(Zn,i, Zn,j) = 2q
q

j=1


1 −

j
q


Cov(Zn,1, Zn,1+j) = O(q2hd),

we have that

Var(ζ0) = qσ 2
+ O(q2hd)+ O(qh2) = qσ 2(1 + o(1)).

Therefore,

(P1) = kqσ 2(1 + o(1)) = O(kq) = o(n).

Computation of (P2). Note that from Theorem A.5 in [6],

|(P2)| =

2 k−1
i=0

k−1
j>i

Cov(ζi, ζj)


≤ 2

n−p
i=1

n
j=i+p

Cov(Zn,i, Zn,j) ≤ 2n
∞
j=p

Cov(Zn,1, Zn,1+j)


≤ 2n
∞
j=p

4C1nC2nα( j) ≤ C∗
n
hd

∞
j=p

α( j) = o(n),

where Cin = 4max |ck| sup |us,1| sup |k0|/
√
hd for i = 1, 2. Then, we have E(W 2

n2)/n = o(1). Similarly, Var(ζk) =

O(p + q) = o(n), so (2) holds.
By stationarity and the same arguments in (1), we have Var(ξ0) = pσ 2(1 + o(1)). Thus

k−1
j=0 E(ξ 2j )/n = kpσ 2(1 +

o(1))/n → σ 2. Finally, since
Zn,t  ≤ C/

√
hd, for every ϵ > 0, the set {|ξj| ≥ ϵ


σ 2
n } is an empty set when n is large.

Therefore, (4) holds. This completes the proof.
• Proof of (A3). It is sufficient to prove that (Xn1, . . . , Xnk, Zn1, . . . , Znk)T

D
→ (Y1, . . . , Yk, c1, . . . , ck). Let Xn =

(Xn1, . . . , Xnk)
T , Zn = (Zn1, . . . , Znk)T , Y = (Y1, . . . , Yk)

T and c = (c1, . . . , ck)T . Then,

E(ei(t
T Xn+sT Zn)) = E(ei(t

T Xn+sT c)ei(s
T (Zn−c)))

= E(ei(t
T Xn+sT c)(ei(s

T (Zn−c))
− 1))  

I

+ E(ei(t
T Xn+sT c))  
II

.

Note that II → E(ei(t
T Y+sT c)) and I → 0 by Lebesgue’s dominated convergence theorem. Apply the continuous mapping

theorem and we have (A3).

4.2. Proof of Theorem 1

We adopt the proof in [8]. For z ∈ {z1, . . . , zk}, let φ∗

l : 1 ≤ l ≤ p and ψ∗

m∗ : 1 ≤ m∗
≤ q be the new basis functions

obtained by making linear transformations of φl’s andψm∗ ’s such that φ∗

1 = 1 = ψ∗

1 , (E(φ
∗

l (X)φ
∗

l′ (X)|Z = z) : 1 ≤ l, l′ ≤ p)
and (E(ψ∗

m∗(Y )ψ∗

m′(Y )|Z = z) : 1 ≤ m∗,m′
≤ q) are identity matrices, and E(φ∗

l (X)ψ
∗

m∗(Y )|Z = z) = 0 for l ≠ m∗.
Take g1(X, Y ), . . . , gm(X, Y ) to be the functions φ∗

l (X)φ
∗

l′ (X), φ
∗

l (X)ψ
∗

m∗(Y ) and ψ∗

m∗(Y )ψ∗

m′(Y ), where 1 ≤ l ≤ l′ ≤ p and
1 ≤ m∗

≤ m′
≤ q. Apply Lemma 1 and we have

√

nhd



ĝ1(z1)− g∗

1 (z1)
...

ĝ1(zk)− g∗

1 (zk)
...

ĝm(z1)− g∗

m(z1)
...

ĝm(zk)− g∗

m(zk)


−

√

nhd



h2
d

s=1

Bs,1(z1)/fZ (z1)

...

h2
d

s=1

Bs,1(zk)/fZ (zk)

...

h2
d

s=1

Bs,m(z1)/fZ (z1)

...

h2
d

s=1

Bs,m(zk)/fZ (zk)



D
→ Z∗. (18)
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Let

V ∗(z) =


V11(z) V12(z)
V21(z) V22(z)


,

where the (l, l′)-th element of V11(z) is E(φ∗

l (X)φ
∗

l′ (X)|Z = z) for 1 ≤ l, l′ ≤ p, the (l,m∗)-th element of V12(z) is
E(φ∗

l (X)ψ
∗

m∗(Y )|Z = z) for 1 ≤ l ≤ p, 1 ≤ m∗
≤ q, the (m∗,m′)-th element of V22(z) is E(ψ∗

m∗(Y )ψ∗

m′(Y )|Z = z) for
1 ≤ m∗,m′

≤ q, and V21(z) = (V12(z))T . Let V̂ ∗(z) be the estimator of V ∗(z) obtained by replacing each conditional
expectation in V ∗(z)with its kernel estimator defined in (8). Then, (18) gives

k
i=1

∥V̂ ∗(zi)− V ∗(zi)∥2
= Op


1

nhd


+ Op(h4) = Op


1

nhd
+ h4


.

For 1 ≤ i ≤ k, for a p × 1 vector a and a (p + q)× (p + q)matrix

U =


U11 U12
U21 U22


,

wherethe dimensions of U11,U12,U21 and U22 are p × p, p × q, q × p and q × q respectively, define

gr,s(U) = Urs (19)

for 1 ≤ r, s ≤ 2,

g∗

r,s(U) =


gr,s(U) if (r, s) = (1, 2) or (2, 1);
(gr,s(U))−1 if (r, s) = (1, 1) or (2, 2),

and

g(U, a) = U1,2U−1
2,2U2,1U−1

1,1 − U1,1aaT . (20)

Let α∗ be the p× 1 vector whose first element is 1 and the rest elements are 0’s. Then, ρ̂(z) and ρp,q(z) are the square roots
of the largest eigenvalues of the matrices g(V̂ ∗(z), α∗) and g(V ∗(z), α∗) respectively. Let

△r,s,i = g∗

r,s(V̂
∗(zi))− g∗

r,s(V
∗(zi)).

Then, we have

∥ g(V̂ ∗(zi), α∗)− g(V ∗(zi), α∗)∥ ≤

2
r=1

2
s=1

(∥g∗

r,s(V
∗(zi))∥ + ∥ △r,s,i ∥)−

2
r=1

2
s=1

∥g∗

r,s(V
∗(zi))∥

+ ∥g∗

1,1(V̂
∗(zi))− g∗

1,1(zi)∥ ∥α∗(α∗)T∥,

which gives that

k
i=1

∥g(V̂ ∗(zi), α∗)− g(V ∗(zi), α∗)∥2
= Op


1

nhd
+ h4


= Op


1

nhd


and

k
i=1


ρ̂2(zi)− ρ2

p,q(zi)
2

= Op


1

nhd
+ h4


(21)

since |ρ̂2(zi)− ρ2
p,q(zi)| ≤ ∥g(V̂ ∗(zi), α∗)− g(V ∗(zi), α∗)∥ for 1 ≤ i ≤ k. From (21) and the fact that

k
i=1

( f̂Z (zi)− fZ (zi))2 = Op


1

nhd
+ h4


,


k

i=1

f̂Z (zi)ρ̂2(zi)−

k
i=1

fZ (zi)ρ2
p,q(zi)

2

=


k

i=1

( f̂Z (zi)− fZ (zi))ρ̂2(zi)+

k
i=1

fZ (zi)(ρ̂2(zi)− ρ2
p,q(zi))

2

= Op


1

nhd
+ h4


.
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4.3. Proof of Theorem 2

We adopt the proof in [8]. For z ∈ {z1, . . . , zk}, let V̂ ∗(z), V ∗(z) and Bs,j be as defined in the proof of Theorem 1. Let Bi be
the (p + q)× (p + q)matrix whose elements are h2d

s=1 Bs,j(zi)/fZ (zi): 1 ≤ j ≤ m = (p + q)2. From Lemma 1, we have

nhdfZ (z1)/κd(V̂ ∗(z1)− V ∗(z1)− B1)

...
nhdfZ (zk)/κd(V̂ ∗(zk)− V ∗(zk)− Bk)

 D
→

N∗

1
...
N∗

k

 ≡ N∗,

where for 1 ≤ i ≤ k,N∗

i is a normal matrix of elements with mean 0 and variance 1. Apply the Skorohod’s theorem, for
1 ≤ i ≤ k, there exist random matrices Ti and W1,i such that Ti ∼ (nhdfZ (zi)/κd)1/2(V̂ ∗(zi) − V ∗(zi) − Bi),W1,i ∼ N∗

i and
Ti → W1,i almost surely. Therefore,

V̂ ∗(zi) ∼

√
κdTi

nhdfZ (zi)
+ V ∗(zi)+ Bi = V ∗(zi)+

√
κd

nhdfZ (zi)
(W1,i + W2,i),

whereW2,i = Ti − W1,i +

nhdfZ (zi)/κdBi. Note that Bi = O(h2). From (S6),

k
i=1 ∥W2,i∥ = op(1).

For 1 ≤ i ≤ k, let Ṽi = V ∗(zi) + (nhdfZ (zi)/κd)−1/2(W1,i + W2,i), A1(zi) = g(Ṽi, α
∗)g1,1(Ṽi) and ρ̃2

0 (zi) be the largest
eigenvalue of A1(zi)(g1,1(Ṽi))

−1. Here the functions g(·, ·) and g1,1 are defined in (20) and (19) respectively. Then, ρ̃0(zi) has
the same distribution as ρ̂(zi). Below we will show that the impact of W2,i is negligible in the derivation of the asymptotic
distribution of ρ̃0(zi).

For 1 ≤ r, s ≤ 2 and 1 ≤ i ≤ k, let △r,s,i = gr,s(Ṽi)− gr,s(V ∗(zi)). Then,

k
i=1

2
r=1

2
s=1

∥ △r,s,i ∥
2

= Op


1

nhd
+ h4


= Op


1

nhd


and

A1(zi) = g1,2(V ∗(zi))(g2,2(Ṽi))
−1g2,1(V ∗(zi))− g1,1(Ṽi)α

∗(α∗)Tg1,1(Ṽi)

+ g1,2(V ∗(zi))△2,1,i + △1,2,i g2,1(V
∗(zi))+ △1,2,i △2,1,i

− g1,2(V ∗(zi))△2,2,i △2,1,i − △1,2,i △2,2,i g2,1(V
∗(zi))+ R1,i,

where

R1,i = △1,2,i((g2,2(Ṽk))
−1

− Iq)△2,1,i +g1,2(V ∗(zi))((g2,2(Ṽi))
−1

− Iq + △2,2,i)△2,1,i

+ △1,2,i((g2,2(Ṽi))
−1

− Iq + △2,2,i)g2,1(V
∗(zi))

and Iq denotes the q × q identity matrix. Note that g2,2(Ṽi) can be expressed as

g2,2(Ṽi) =


1 BT

i
Bi Di


for some matrices Bi and Di, so A1(zi) becomes

BT
i ((Di − BiBT

i )
−1

− Iq−1)BiJ + g1,2(V ∗(zi))(△2,2,i −J)2g2,1(V ∗(zi))
− △1,1,i g1,2(V

∗(zi))g2,1(V ∗(zi))△1,1,i + △1,2,i △2,1,i

− g1,2(V ∗(zi))△2,2,i △2,1,i − △1,2,i △2,2,i g2,1(V
∗(zi))+ R1,i,

where J = α∗(α∗)T . Let

A2(zi) = g1,2(V ∗(zi))(g2,2(W1,i))
2g2,1(V ∗(zi))

− g1,1(W1,i)g1,2(V ∗(zi))g2,1(V ∗(zi))g1,1(W1,i)+ g1,2(W1,i)g2,1(W1,i)

− g1,2(V ∗(zi))g2,2(W1,i)g2,1(W1,i)− g1,2(W1,i)g2,2(W1,i)g2,1(V ∗(zi))

and

R2,i = BT
i ((Di − BiBT

i )
−1

− Iq−1)BiJ

− (nhdfZ (zi)/κd)−1A2(zi)+ g1,2(V ∗(zi))(△2,2,i −J)2g2,1(V ∗(zi))
− △1,1,i g1,2(V

∗(zi))g2,1(V ∗(zi))△1,1,i + △1,2,i △2,1,i

− g1,2(V ∗(zi))△2,2,i △2,1,i − △2,1,i △2,2,i g2,1(V
∗(zi)).
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Then,

A1(zi) =
A2(zi)κd

nhdfZ (zi)
+ R1,i + R2,i, (22)

where

k
i=1

(∥R1,i∥
2
+ ∥R2,i∥

2) = Op


1

(nhd)2


. (23)

Note that under conditional independence, for 1 ≤ i ≤ k, A2(zi) = CiCT
i , where Ci is the p × qmatrix obtained by replacing

elements in the first column and first row of g1,2(W1,i) with zero’s, and g1,2(W1,i) is a random matrix whose elements are
IID N(0, 1) expect that the (1, 1)-th element is 1. Therefore,

k
i=1 ∥A2(zi)∥2

= Op(1), which, together with (22) and (23),
implies that

k
i=1 ∥A1(zi)∥2

= Op(1/((nhd)2)) and

k
i=1

∥A1(zi)(g1,1(Ṽi))
−1

− A1(zi)∥2
= Op


1

(nhd)3


. (24)

For 1 ≤ i ≤ k, let λ0,i be the largest eigenvalue of A2(zi). By (22)–(24),

k
i=1

(nhdfZ (zi)ρ̃2
0 (zi)/κ

d
− λ0,i)

2
= op(1).

Let f̃i, ρ̃(zi) and λi : 1 ≤ i ≤ k be random variables such that the joint distribution of ( f̃i, ρ̃(zi)) : 1 ≤ i ≤ k is the same as
( f̂Z (zi), ρ̂(zi)) : 1 ≤ i ≤ k, and the joint distribution of (ρ̃(zi), λi) : 1 ≤ i ≤ k is the same as (ρ̃0(zi), λ0,i) : 1 ≤ i ≤ k. Note
that nhdk

i=1(ρ̂(zi))
2

= Op(1), so we have thatnhd

κd

k
i=1

f̂Z (zi)(ρ̂(zi))2 −
nhd

κd

k
i=1

fZ (zi)(ρ̂(zi))2
 ≤

nhd

κd


k

i=1

( f̂Z (zi)− fZ (zi))2
1/2 k

i=1

(ρ̂(zi))2

= Op(1)Op((nhd)−1/2) = Op((nhd)−1/2)

and nhd

κd

k
i=1

f̃i(ρ̃(zi))2 −

k
i=1

λi

 ≤ Op((nhd)−1/2)+ op(1) = op(1).

The proof of Theorem 2 is complete.

4.4. Proof of Theorem 3

Suppose that ρ(zi) > 0 for some zi. Then, we have
k

i=1 fZ (zi)ρ
2(zi) > 0. Choose ϵ such that 0 < ϵ <

k
i=1 fZ (zi)ρ

2(zi)
and we have

P


k

i=1

f̂Z (zi)ρ̂2(zi) ≥

k
i=1

fZ (zi)ρ2(zi)− ϵ


  

III

≤ P


k

i=1

f̂Z (zi)ρ̂2(zi) ≥
κdF∗

1−α

nhd



for large n. From Theorem 1,

III ≥ P

 k
i=1

f̂Z (zi)ρ̂2(zi)−

k
i=1

fZ (zi)ρ2(zi)

 ≤ ϵ


→ 1,

so

P


k

i=1

f̂Z (zi)ρ̂2(zi) ≥
κdF∗

1−α

nhd


→ 1.
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4.5. The verification of the expression for σ 2
n

The expression for σ 2
n involves some variance and covariance terms. Under the conditions in Theorem 1, the major parts

for those variance and covariance terms can be obtained. The results are as follows. For 1 ≤ i, i∗ ≤ k and 1 ≤ j, j∗ ≤ m, 1–4
hold.

1. Var

uj,tk0


Zt−zi

h


= hdκdσ 2

j (zi)fZ (zi)+ O(hd+2).

2. Cov

uj,tk0


Zt−zi

h


, uj∗,tk0


Zt−zi

h


= hdκdcjj∗(zi)fZ (zi)+ O(hd+2).

3. Cov

uj,tk0


Zt−zi

h


, uj,tk0


Zt−zi∗

h


= O(h2d).

4. Cov

uj,tk0


Zt−zi

h


, uj∗,tk0


Zt−zi∗

h


= O(h2d).

We will only give the proof for Case 1 since the proofs for other cases are similar. Since

Var

uj,tk0


Zt − zi

h


= E


E


u2
j,t


k0


Zt − zi

h

2

|Zt



=


σ 2
j (zt)


k0


zt − zi

h

2

fZ (zt)dzt

= hd

σ 2
j (zi + hν)(k0(ν))2fZ (zi + hν)dν

= hd

σ 2
j (zi)(k0(ν))

2


fZ (zi)+ h

d
s=1

fs(zi)νs + O(h2)


dν

= hdκdσ 2
j (zi)fZ (zi)+ O(hd+2),

we complete verification of the expression for σ 2
n .
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