1st International Conference Green Cities 2014 – Green Logistics for Greener Cities

How the URBeLOG project will enable a new governance model for city logistics in Italian metropolitan areas

Massimo Marciania*, Paola Cossub

aLuiss University MBA, Via Pola 5, Rome 00198, Italy
bFIT Consulting srl, Via Lavinio 15, Rome 00183, Italy

Abstract

The edge of innovation in the field of urban logistic is represented in Italy by the URBeLOG project, that aims to develop and validate a virtuous goods' transport system that will streamline, make more efficient and eco-sustainable and cut the costs of last mile services, also allowing for the development of B2B type, advanced, real-time e-services, for stakeholders to use in an urban fabric. This paper describes the current status of the project as well as the expected valuable outcomes.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of the scientific committee of Green Cities 2014

Keywords: urban freight logistics; smart cities; ITS; mobility management; new governance model; inclusion; recognition scheme;

1. Introduction

The URBeLOG project aims to develop a virtual platform for overseeing the delivery of high added value services, interfaces transactions for the use of logistic resources and safe, dynamic tariff-based payments, facilitates use of the most advanced forms of trading and enables use with certification and accreditation systems for the urban transport of goods. The project started in September 2013 and is expected to be completed in June 2015. URBeLOG integrates main functions allowing for the development of processes, services and applications for City Logistics of the future. The main URBeLOG project's pilot sites are Genoa, Milan and Turin along with a number of different follower sites in Italy (i.e. Bologna, Rome, Naples and Messina). With their characteristics, the three pilot cities

* Corresponding author. Tel.: +39-06-77591430; fax: +39-06-77250649.
E-mail address: marciani@fitconsulting.it
represent different application and process case studies that will allow for significant testing of project results and possible application to many other national scenarios. The final objective of the URBeLOG project is to develop and trial a distributed, innovative ICT environment along with innovative governance model which consists of an innovative, open, dynamic and participated computerized platform of services and applications for last mile urban logistics that can aggregate the ecosystem of stakeholders and manage distribution processes, from production to delivery, in real time.

The key relevance of the URBeLOG project is particularly focused on Directive 2010/40/EU being enacted in Italy by Decree Law no. 179 of 18 October 2012, amended by law no. 221 of 17 December 2012, "Further Urgent Measures for the Growth of the Country", under article 8 – "Measures for the innovation of transport systems". The Italian government, authorized by Parliament, adopted Ministerial Decree of 1 February 2013, on the "Dissemination of Intelligent Transport Systems (ITS) in Italy", which contains the methodology and operating fundamentals of the National Action Plan, of which priority is highly applicable to the URBeLOG project. From the sustainability side the project is also compliant with either the 2011 White paper Roadmap to a single European transport area in achieving essentially CO2 free city logistics in major urban centres by 2030 and the 2013 Communication from Commission to European Parliament, the Council, the European economic and social Committee and the Committee of Regions in management of urban logistics at the national and primary local level, development of co-operation and agreement and relevant ITS development.

In this framework the URBeLOG project integrates main functions allowing for the development of processes, services and applications for City Logistics of the future, to enable a last mile logistics process which are efficient, cost-effective and eco-sustainable. The development of this project will not necessarily replace all ICT platforms used by various parties to manage the logistics process and/or mobility at a city level because the new governance model calls for a synergy of different system integrated in a single platform (by mean of appropriate middleware development) rather than a compulsory standard to be applied in every ITS. Starting from available systems in use, the project will identify elements necessary to establish a suite of logistic processes that are more efficient, cost-effective and eco-sustainable and to design and trial ICT solutions in the field, that can integrate and interface with available used resources, to effectively meet the needs of the local public administration and of industry operators. The project aims to develop and trial a virtuous goods' transport system that will streamline, make efficient and eco-sustainable and cut the costs of last mile services, allowing for the development of B2B type, advanced, real-time e-services, for stakeholders to use in an urban fabric. In particular the project:

(i) redefines the business model to consolidate loads and share assets, by introducing smart satellite units for pick-up and delivery, and
(ii) creates innovative middleware for the integration of data from heterogeneous sources and the provision of ICT services to implement planning, optimization and real-time management of a dynamic routing service for fleets of distribution vehicles based on data supplied in real time from the local area (environmental conditions, traffic, transit constraints, public policies, events, etc.); integrates the development of predictive, trading and decision-making systems that can make pick-up, delivery and trade more effective,
(iii) enables services and applications for testing and applying public policies and for managing a measurement and accreditation system for the environmental sustainability of parties operating in the urban logistics distribution system,
(iv) tests low cost, low environmental impact roadside networks for distributed traffic measurements in real time (e.g. vehicle flows and average speeds), and resource availability (e.g. access and parking), integrated in middleware, and
(v) tests low environmental impact electric and hybrid vehicles, which can make the process sustainable and create operating conditions that promote the use of innovative vehicles.
2. State of the art of city logistics in Italy

2.1. Urban Freight Transport

Urbanization in OECD nations has increased considerably: from 50% of the total population in 1950 to 77% in 2008, up to recent forecasts of 85% in 2020. As a result, 70% of the EU's population now lives in cities, which produce 85% of overall GDP. Therefore, if goods transport is a driver of economic and social development on different geographical scales, it is even more important in urban areas. In fact it is also the element that allows businesses to procure goods and distribute their products to end customers in metropolitan areas. In this regard, goods transport is strategic for the economic growth of cities and urban areas, and for relations between production sectors, and between regions and states. In evidence of the above, the urban transport of goods by private individuals and third parties ranks first in road transport, in terms of tons transported (ISTAT – Italian National Statistics Institute – 2012; OECD, 2003). However, goods traffic flows in cities disturb residents and businesses for different reasons and in different ways. Transport is increasingly significant as a source of CO₂ emissions, with effects on atmospheric pollution at local and regional level and on the global climate, as it is the main source of emissions of PM₁₀ and PM₂.₅ – particulate matter – which is one of the main pollutants that are extremely harmful to health.

On an urban level, local air pollution and the contribution to greenhouse gas are significant environmental external effects associated with logistics. Energy consumption and emissions of goods vehicles are affected by a wide range of factors – vehicle type and model, load capacity, traffic, roads, driver conduct and the number of times the vehicle stops and restarts – which is usually frequent in an urban context. Data from the European BESTUFS II project show that over a distance of 10 km, five stops increase fuel consumption by 140% (Schoemaker et al., 2006). Moreover, commercial vehicles are mainly diesel, with a particular impact in terms of emissions, and – as shown by analyses in different cities, including Italy – they are also old. For example, according to a study by ACI, the Italian Automobile Association (ACI, 2011), commercial vehicles transiting in Italy are unevenly distributed among Euro 0 to Euro 6 categories. In particular, statistics show that 47.04% of vehicles meet EURO 3 and 4 standards, while 22.16% of vehicles are EURO 0 – the category in which vehicles do not conform to any emissions standards. So the impact of the goods sector in terms of emissions in urban contexts is significant, despite commercial traffic only making up a fraction of total urban traffic. On average, in European cities, commercial traffic comprises 8% to 15% of urban traffic in terms of traffic flows, but accounts for 20-30% of total traffic emissions (MDS Transmodel, 2012). Over the last twenty years, European directives have "steered" construction specifications for engines and materials used in the production of vehicles, reducing emissions of marketed vehicles by over 90%. However, changing technologies have only partially helped reduce the impact of goods transport on emissions, as traffic volumes have progressively increased. This situation, particularly in Italy, connects pollution to traffic congestion, with significant economic effects. Traffic congestion is often related to peak passenger traffic times coinciding with peak goods traffic times (8.00 -11.00 and 15.00 - 18.00 hours). Congestion may also be made worse by private vehicles parked in reserved areas to load/unload goods, often because of a lack of appropriate spaces in urban areas, or by other vehicles (goods and passenger vehicles) parked in loading/unloading bays provided by local authorities (MDS Transmodel, 2012). Besides external factors due to pollution and road congestion, other relevant external factors associated with urban traffic exist for logistics, such as noise and potential conflict with other forms of transport, in particular "weaker" forms (passenger and cyclist mobility), in terms of accidents. All these aspects require specific policies at local level, aimed at regulating the use of urban spaces and at identifying a compromise between uses and interests.

Hence the need to develop new forms of access to town and city centres, with a particular focus on metropolitan areas and historic tourist cities, in order to optimize goods' transport in coordination with passenger transport, while also promoting the use of vehicles with high standards of eco-sustainability. This scenario means that in recent years there has been a growing awareness of the need to combine technological improvement with tools and methodologies that allow for integrated planning and an optimized use of existing transport resources, in order to reduce the undesired effects that lead to a deterioration in the quality of life without diminishing economic, social and cultural development. This has led to the notion of city logistics, which can be defined as a process for the global optimization of transport and logistics activities of public and private companies in urban areas, while also
considering environmental impact, traffic congestion, energy consumption and road safety. This holistic, multi-disciplinary approach to logistics not only takes into account distribution and transport costs, but also costs relating to the impact of these activities on the population and the environment. As indicated in most of the literature on city logistics, considerable gains on all fronts can be achieved by optimizing distribution, leading to a decrease in vehicles transiting in urban areas and a better use of those vehicles (Perboli et al., 2010). In addition, load consolidation requires operations to be coordinated in towns and cities, and this is key to achieving city logistics objectives. Lastly, the use of green vehicles and integration with public transport can improve system performance and further reduce vehicle transit and relative emissions (Benjelloun et al., 2010; Crainic et al., 2009).

2.2. Governance and Current Regulations

The state of the art, in terms of governance models, is rather diversified. The tools and studies on the urban distribution of goods developed by the European Commission in recent years have created an awareness among local administrations of the specific issue of commercial vehicles accessing residential areas. In particular, the Commission has promoted specific studies and research on:

(i) legislation, to issue regulations and directives with the aim of increasing service efficiency to the benefit of road networks in cities and environmental effects due to vehicle emissions, also attempting to mitigate or eliminate the effects of not harmonized legislation on urban congestion (European Commission, 2011),
(ii) direct and indirect financial support for businesses and local administrations, to enable implementation of actions, and
(iii) political focus, through discussion or debate.

However, initiatives taken by Italian local administrations have often been specific and targeted, and not even focused on a provincial or regional level. This has led to inefficiencies, above all for operators who have had to tackle different regulations, costs and operating issues. The efficient governance of a last mile logistics system must be able to manage and create a change in approach and, as regards methodology, conduct decision-making and operations, in order to improve end performance.

For this reason, on 27 September 2012, the Ministry for Infrastructure and Transport signed an "Agreement on the urban distribution of goods" with the City Councilor’s responsible for info mobility in Turin, Milan and Naples – as representatives of the network of Metropolitan Areas. The following guidelines were agreed by pilot municipalities in order to implement the project:

(i) prompt and structured involvement of categories concerned and the use of conventional and innovative tools,
(ii) the use of measurable objectives in the field of goods' distribution services in terms of efficiency and energy saving, greenhouse gas reduction and traffic congestion reduction in urban areas,
(iii) the non-mandatory and incentivized involvement of transport companies, accreditation criteria for vehicles and platforms, non-exclusive nature of accredited services based on the principle of free competition,
(iv) economic and financial self-sustainability, and
(v) technological fertilization, use of open, interoperable solutions, economic accessibility and use of applications.

This memorandum of understanding was the first step towards a shared URBeLOG platform to analyze and develop the most significant experience gained in the urban distribution of goods. This stage, hopefully with the involvement of all cities affected by the transition to Metropolitan Cities, is currently undergoing with specific actions to obtain information and experiences in the field in order to apply solutions and develop effective regulations for the urban distribution of goods. Moreover, the Ministry of Infrastructure and Transport has identified the three Cities that were the first to sign the memorandum of understanding as case histories to be considered by all representatives of Metropolitan Areas in order to jointly analyze the implications of a diverse and more innovative management of goods at an urban level. The aim is to promote not only an early process of harmonization among those involved, but also a more consistent and long-lasting system to share experience and know-how that local authorities will gain through the actions envisaged in the Agreement.
2.3. Development of Supporting Technologies

The URBeLOG project is based on the C-ITS (Cooperative ITS) architecture, which has evolved from the CALM (Communications access for land mobiles) concept [1], a communication architecture for Intelligent Transport Systems, ITS, which is currently the subject of standardization by the ISO committee ISO TC204. As part of the standardization mandate M/453 of the European Commission, ETSI TC ITS [2] and CEN TC278 have harmonized different standards and the current C-ITS reference architecture is integrated in the European standard ETSI EN 302 665 [3], with a view to achieving uniformity at international level and defining the Intelligent Transport System - Station, ITS-S concept as in Figure 1.

According to this concept, ITS-S abstracts the ITS application from the communication protocols used; in fact a typical station will include multiple communication channels which are exchanged transparently according to the application's requirements, in terms of performance, security or safety. As regards smart roadside infrastructure, C-ITS architecture does not currently envisage any reference to WSN type networks, which are assimilated with proprietary type networks for which a traditional type adaptation gateway is necessary. This solution has evident limits as concerns architecture scalability, and this is expected to be overcome by extending specifications to include and define the use of IETF 6LoWPAN [4] and IETF CoAP [5] protocols in an ITS environment. Thanks to this extension, the ITS-S concept will be stretched to WSN networks based on the physical level protocol and MAC IEEE802.15.4, allowing pervasive installations in which the sensor node to become a potential active part of distributed applications are possible.

![Figure 1. The URBeLOG interconnected eco-logistics system](image)

As regards vehicle communication, C-ITS standards call for the use of the physical level protocol and MAC IEEE802.11p which enables "vehicle-infrastructure" (V2I) and "vehicle-vehicle" (V2V) proximity communication, that are often referred to, together, as V2X. V2X communication meets both safety-critical functional requirements and requirements more generally related to "comfort" and "infomobility". The integration of "smart vehicles" and "smart road infrastructures" planned for in the URBeLOG project will pave the way for trials of last mile logistics applications based on a modern and technologically advanced approach, inspired by the activities and results of international standardization.
3. The innovation in URBeLOG

The general objective of the URBeLOG project is to develop and trial a distributed, innovative ICT environment which consists of an innovative, open, dynamic and participated computerized platform of services and applications for last mile urban logistics that can aggregate the ecosystem of stakeholders and manage distribution processes, from production to delivery, in real time. The development of this project will not necessarily replace all ICT platforms used by various parties to manage the logistics process and/or mobility at a city level. On the contrary, as shown in the Figure 2, starting from available resources that are in use, the project identified elements necessary to establish a suite of logistic processes that are more efficient, cost-effective and eco-sustainable and to design and trial ICT solutions in the field that can integrate and interface with available used resources, to effectively meet the needs of the local public administration and of industry operators.

In terms of the logistic process in general, and last mile management in particular, the project is developing and will trial a virtuous goods' transport system that streamline, make efficient and eco-sustainable and cut the costs of last mile services, allowing for the development of B2B type, advanced, real-time e-services, for stakeholders to use in an urban fabric. Consequently, the URBeLOG platform will oversee the delivery of high added value services, interface transactions for the use of logistic resources and safe, dynamic tariff-based payments, facilitate use of the most advanced forms of trading and enable use with certification and accreditation (recognition scheme) systems for the urban transport of goods.

URBeLOG integrates main functions allowing for the development of processes, services and applications for City Logistics of the future, in particular it:

(i) redefines the business model to consolidate loads and share assets, by introducing smart satellite units for pick-up and delivery,
(ii) creates innovative middleware for the integration of data from heterogeneous sources and the provision of ICT services to implement planning, optimization and real-time management of a dynamic routing service for fleets of distribution vehicles based on data supplied in real time from the local area (such as environmental conditions, traffic, transit constraints, public policies and events),
(iii) integrates the development of predictive, trading and decision-making systems that can make pick-up, delivery and trade more effective,
(iv) enables services and applications for testing and applying public policies and for managing a measurement and accreditation system for the environmental sustainability of parties operating in the urban logistics distribution system, and
(v) tests low environmental impact electric and hybrid vehicles, which can make the process sustainable and create operating conditions that promote the use of innovative vehicles.
The project is also evaluating the achievability of a number of KPI targets that have been selected at the early stage of the project; a subset of such KPIs are:

(i) less 20% of commercial vehicle traffic,
(ii) increase 40% of transport company saturation,
(iii) less 40% CO2 emissions relative to standard routing,
(iv) 5% of cost saving for transport operations deriving from the use of dynamic routing, and
(v) less 30/50% of emissions and consumption in relation to the use of petrol based vehicles.

The accurate definition of KPIs is essential by industrial partners, in order to engineer and put into operation a solution, on project completion, that meets the actual needs of parties involved and is sufficiently modular and scalable to be expanded and gradually offered to all Metropolitan areas in Italy.

The pilot sites to trial the URBeLOG project are Genoa, Milan and Turin. With their characteristics, these cities significantly represent different application and process case studies that will allow for significant testing that in turn will make the subsequent promotion of project results and possible extensive application to other national scenarios more credible.

1. the pilot sites have a main focus on a specific, exemplifying application, in particular
 o Turin: drop boxes, access management
 o Milan: bays, traffic restriction area
 o Genoa: loading/unloading bays

URBeLOG benefits the potential of ITS investments and the existing physical infrastructure, testing a new technological infrastructure with limited interventions to develop a new physical infrastructure.

2. a business model will be identified for each of the three specific functionalities/applications/services characterizing the three pilot sites, as well as financing to sustain the project when operational and over the long term.

Involvement in the platform is not mandatory, but extremely attractive because it stimulates the virtuous aggregation of operators for load consolidation and the sharing of vehicles, with cost reductions and the use of a rewarding business model.

URBeLOG is an open model that enables operators to easily access to the recognition scheme (accreditamento) and to the local transport planner to manage the effects of single or combined measures within city framework. The model does not concern the delivery tariff system, which is exclusively determined by market drivers and free competition.

1. Within project lifetime the following services are be tested:
2. Dynamic, real time management and optimization of fleet routing, with the integration of data from real time heterogeneous sources;
3. Management of loading/unloading bays, using predictive applications;
4. Dynamic management of restricted traffic lanes in critical conditions;
5. Introduction and management of drop boxes as a shared multi-player consolidation points;
6. Fleets of hybrid and electrical vehicles, enabled based on their optimal use;
7. Measurement and certification of excellence in logistics transport;
8. DSS application and services and dynamic policy making enabled by the measurement and certification system, in particular: road pricing in Milan, incentives for access to areas with traffic restrictions in Turin.

In Turin there is also the involvement of a proper freight village in the close surroundings of the city (SITO) that acts as both a hub and Transit Point, giving the trial flexibility for both one-tier and two-tier models. In this framework the main project application to be tested in terms of efficiency is the drop box, the second application is the trial of real time dynamic routing enabled by the platform which integrates data from heterogeneous sources. It
will be used in areas with traffic restrictions, without excluding extension to other areas without restriction and penalty systems.

In Milan the project is enabling the activation of a loading and unloading bay management system, with features integrated with the traffic control unit that can monitor and plan the use of areas in real time, also allowing for the automatic control of unauthorized use of bays. Independent management by operators and automatic enforcement (with fines) will be applied for loading/unloading bays in a city area where the demand for commercial vehicles parking is higher than the available lots and where there is no possibilities to increase the level of infrastructures.

In Genoa the focus is on dynamic management of restricted traffic lanes, based on integrated real time conditions obtained from the URBelog platform. The complimentary pilot site is in the historic city downtown where the commercial flows of heavy vehicles coming from the harbor mixed up with local distribution flows supplying the shopkeepers in the area.

URBeLOG development stage is currently addressing a number of technical/scientific issues that are highly innovative in terms of the eco-sustainable management of the logistics process and ICT solutions. In particular, specific attention is placed to the prototype development and validation of “ITS Cooperative” (C-ITS) communication solutions, which are currently the subject of standardization at European level and are part of the objectives and priorities of the European Commission's ITS Action Plan.

4. The URBelog Portal

Architectural design is the process aimed to identify the patterns, models and frameworks to be used in the development phase, the sub-systems that made up the system to be developed and their inter-relations in terms of exchangeable data and communication modes. The main activities that are undergoing in the URBelog architectural design phase are the following:

(i) Comprehension and formalization of the requirements and processes defined in the preliminary phase with system end users (functional requirements) as well as those concerning performance, security, durability and other goals and restrictions the system must satisfy,

(ii) Definition of the architectural models and main system technologies (base technologies, frameworks, integration modes, etc.),

(iii) Identification of the components and relevant interfaces designing, for example with UML standards, the component diagrams to show the main system parts and interfaces they interact through. The activity will include the creation of component diagrams to show the main system parts, the design of dependencies between components and interfaces to show the system structure, the definition of services each component provides or requires, and

(iv) Interactions between components: for each use case, event or message, a flow chart can be created that shows how main system components interact, or how a component uses services or functions directly or indirectly provided by another component. Specifically, the provided interfaces show the services that the component provides for other components while the required interfaces show the services that the components use in other components.

The platform will be designed using open source solutions, models and enabling technologies and Service-Oriented architectures (SOA), 3-tier and MVC (Model, View, Controller) that will guarantee flexibility, modularity, scalability, security and interoperability with local legacy systems and large national logistics platforms. The platform will also have cloud mode usability features and will provide services to users or institutions from mobile devices or fixed stations via web.

Figure 3 presents an architectural outline of the platform layers according to the currently defined paradigms and user front-ends via the Portal Presentation layer on the one hand and to external systems via the middleware module on the other.
The Middleware level implements the interconnection functions with heterogeneous legacy systems, guaranteeing data exchange, intelligent routing, service orchestration and the recognition and management of platform process activation events. It is designed and developed with view to service orientation to allow for integration via Adapter/Wrapper SOAP, B2B, B2C and B2G integration (service catalogue), communication via multi-modal FTP, SMTP, http, etc. Implemented protocols will specifically support the technologies and systems interfaced with the “vehicle structure” in the trial phase, for vehicle T&T and on-board – platform data exchange and with the “Smart” road infrastructure and technological support systems such as entrance portals, devices used to manage loading and unloading areas and other field systems. Additional interfaces will be installed to allow for added value legacy system data integration for the platform, as could be, for example, the carriers’ ITS platforms, urban mobility centres and UIRNet\(^\dagger\) platforms.

The Business Layer is an intermediate layer made up of various modules including:

\(^\dagger\) UIRNet SpA is a Public Company established in 2005 in accordance with Ministerial Decree, issued by the Ministry of Infrastructure and Transport. UIRNet SpA signed an agreement with the Ministry of Transport for the design, realization and management of a system which allows for the interconnection of modal interchanges (freight-village). The focus of the project is the realization of a localized hardware and software platform which is open and modular and capable of integrating service providers and freight suppliers directed towards logistics process management and freight transport, with the aim of providing various services through the interaction of the various players involved.
(i) Information Intelligence (event correlated): the module which, using an inferential engine, applies the data correlation rules allowing for new smart events to be generated,

(ii) Decision Support System (DSS): it offers data access, analysis and implementation tools for intelligent applications support system end users, and

(iii) Workflow: it allows for the construction, configuration and regulation of processes supporting decisions, operations and system activities, identifying the actions to be taken automatically when an event occurs.

The Presentation Layer is the application layer that displays information and platform service access according to the different methods (PC, Smartphone, tablet, the latter also used as “On Board Units”). These services will be accessible to the user community mainly represented by the Public Administration, Carriers and Shipping companies, Businessmen, Citizens and Players.

The URBeLOG portal is the front-end of the players’ platform and includes a public section accessible to all users dedicated to helpful services and information such as: news, events, weather & mobility, map of businesses and the Green Area, reference regulations and services offered, service policies for businessmen and consumers, storefront and e-commerce services, service registration methods and permission requests, social networks for businessmen, professionals, carriers and citizens with the goal to receive feedback on the effectiveness of the solutions implemented and ideas and improvement suggestions. The private section dedicated to associates where users are managed, supplied services set and services and applications distributed under Last Mile Logistics, ITS & infomobility and Predictive Applications.

The Last Mile Logistics function includes services and applications tied to goods pick-up and delivery management and Green Area operations. These solutions make up some vertical elements whose goal is to improve the conditions in which carriers work and limit the negative effects that could be caused by deliveries in urban areas. Three areas of intervention are already identified as follows:
(i) Green Area services: these include regulated area booking functions (loading/unloading areas, slots in yellow lanes, access to limited traffic-ZTL areas, goods pick up/delivery, van sharing, electric forklifts, spaces in CDU, etc.), Smart commerce management for local businessmen/consumers and user information (infomobility data, travel time on urban streets, events tied to the city area),

(ii) CDU services: these include site access management functions, CDU bookings (stock & pay spaces, eco vehicles, electric forklifts, etc.), pick-up and delivery planning and travel management and interface management with pick-up and delivery systems, and

(iii) Hub services: these include goods services booking functions (loading/unloading, stuffing & stripping, customs, labelling, etc.) area access management, operating conditions and delivery/pick up and distribution goods documental management, delivery planning and travel management.

The ITS & Infomobility applications is the service area focused on intelligent area exploitation. It includes geo-localization functions on vehicle maps and events (optimized load planning, vehicle management, vehicle and goods T&T, delivery and return management, route, vehicle and load geo-prioritization), for the virtual community on the mobile network and city logistics policy management for the Public Administration.

The Field System function manages field systems meaning eco-compatible vehicles used for distribution and smart road infrastructures. It allows for vehicle preparation to support innovative functions and sensor fittings and on-board ICT for field trials. It develops the road-side infrastructure to create wireless distributed systems and for V2I communications compatible with EU standards.

The Predictive applications function supports and optimizing routing and pricing based on exogenous system conditions dynamics. It guarantees the interface with the Open Data platform and suitably integrates the information obtained by this platform in order to guide routing optimization. In also provides predictive decision-making tools anticipating future conditions to enable carriers’ choices and allow for the definition of parameters for dynamic pricing policies.

The middleware module implements external legacy system interconnection functions via Service Oriented architecture, multi-protocol communications and adapters with existent field systems.

The features include the design of innovative middleware to integrate data from heterogeneous sources to create a homogeneous and standardized information database to be used as a starting point to manage and link events, implement rules for modules supporting decisions or manage process workflows regarding last mile logistics as shown in Figure 5. The Middleware module is based on a service oriented architecture (SOA) adopted to develop
the entire platform. Furthermore, the special features due to enterprise service architecture that concern Middleware are:

(i) Decoupling: the communication between internal components and external customers is fully independent and transparent,
(ii) Protocol conversion: they can be associated with external clients using various communication protocols,
(iii) Message standardization: received messages are transformed in a pre-set format based on a platform standard,
(iv) Message routing: message routing management within the platform based on message content (content-based routing),
(v) Message processing: any message information content enhancement integrating missing information,
(vi) Security: user authentication management and message encryption, and
(v) Monitoring: possibility of message flow run-time control

The logical blocks that made up the Middleware block chart are:

(i) Adapter: these are read/write interfaces with the exterior. there is a scanner for each supported protocol that can be activated on event or at set intervals and a specification of interface modes for each interfaced system,
(ii) Message Processing: this processes messages from Adapters and URBeLOG modules; it applies any logic tied to messages and converts formats if necessary. • Routing: this implements routing logic for messages to and from URBeLOG modules based on message content (content-based routing),
(iii) Translation & Data Normalization module: normalizes incoming messages reducing them to a platform standard format. Outgoing messages are returned to the format expected by the client, and
(iv) Administrative tool: module that allows for the configuration and management of client profiles that use Middleware services. A DB module is added to these to provide support for tracking, messaging archiving and the configuration of routing and process rules. Interfaced external systems significantly vary according to the urban context, even considering the full set of services to be implemented. The overall system configuration can significantly change in the various urban contexts especially according to the type and mix of installed systems as well as the quality and number of data acquired.

In general, the application context is defined by the following broad classes of possible legacy systems:

(i) systems available to the Public administration (Town)

- traffic and mobility data collection and processing systems;
- traffic control tools (considered in general terms thus including the information and infomobility diffusions tools);
- ZTL systems (limited traffic zones);
- loading/unloading area management systems (slots);
- AVM systems;
- public transit service yellow lane monitoring systems.

(ii) national platforms able to provide forecasted and current heavy vehicle traffic data in transit in the urban area and infomobility data on main arteries in the urban context and along the main routes to port areas (UIRNET);
(iii) external systems traceable to, for example, transport players such as carriers who are interested in city logistics or mobility services provided by the platform;
(v) system external to the platform but supporting HUB, CDU, GREEN AREA activities involved in city logistics.

5. The URBeLOG Project Enables New Governance Models

The accessibility (from the outside) and mobility (within the city) are two aspects of the same need: enter into a network, becoming a node, working as a meeting point and exchanging between flows of people, businesses and ideas that distinguish social action. In this sense, cities are places where you travel, but also places from which, or to which, you are moving. In the Italian understanding the mobility is not only a need but a right: the Union's policies
also, consider equitable to ensure maximum mobility for citizens and businesses of the Member States, focusing on transport modes that reduce fuel consumption, increase safety and reduce environmental impact.

At this moment, no special measures to regulate the mobility of goods in urban areas are in force in Italian Metropolitan Areas, except those related to the shape and the engine of commercial vehicles. The evolution of mobility of people, vehicles and goods within an urban setting, the information services to users and the dynamic management of traffic are the issues that Italian public administrators and other stakeholders have to face in order to respond to the demand for freedom to move and to take advantage of the opportunities offered by urban centres. Yet, they are also required to ensure efficient services to citizens and, at the same time, decrease the environmental impact of transportation. Mobility is a complex system made up of infrastructures, networks, means of public and private transport, demands expressed by users, to which management policies are applied, often disorganized and strongly inhomogeneous in the components, exerting a significant impact on urban areas and on the quality of life. In addition, there is the distribution of goods that tries to reconcile livability and economic vitality of the city with the requirements of its commercial transportation, in order to reduce the impact of freight transport.

The approach to be followed by Municipalities within URBelOG is to develop a shared path and a coordination path among key actors and to integrate public and private systems of ITS in order to extend a sustainable model of governance of the system.

The URBelOG project is strongly linked with the already operative SUMPT (Municipality Mobility Plan) in which the objective to improve the efficiency of the delivery system is mentioned. Thus the URBelOG project provides the tool to reach this goal. In the framework above described the URBelOG project will provide technologies and solutions improving the transport of goods, in particular by ensuring balanced and sustainable trade flows inside within cities. The ITS solutions that are designed and implemented within project lifetime will allow the company to complete its portfolio in the segment of ITS platforms for freight transport, tuning these solutions with those used in public and private urban transport. URBelOG project is thus contributing to the overall smart mobility solution through a platform that supports the management and regulation of goods distribution in urban areas. Recent studies show that in the future private transport will decrease in urban areas, while there will be a simultaneous increase in the use of public transport as well as a significant growth of goods distribution services in cities, due to shops' tendency to minimize stocks, the development of e-commerce that will result in increased commercial traffic and also the evolution of personal care services (e.g. the delivery of drugs to the elderly, home care replacing long-term hospitalization).

URBelOG project is thus developing a platform enabling the metropolitan Areas in Italy to pursue a new paradigm of urban freight distribution management replacing the limited access approach to incentives for sustainable operators. The first step is the signing of a dedicated Framework Agreement to share and develop the most significant experiences in the field of urban freight distribution. The Agreement signed between Ministry of Transport and the network of Municipalities (ANCI) in 2012, have had as outcomes the following:

(i) the harmonization of regulations for users, and
(ii) the use of ITS systems to increase control and efficiency (i.e. enhancement control, increase transparency).

The measures that are under implementation in the Italian Metropolitan areas have been designed in order to represent a mix of pull and push measures; in fact if on one side it set fixed deadlines for banning polluting commercial vehicles (i.e. from 2014 onwards, minimum Euro 4 compliant and from 2016 Euro 5 minimum), on the other side it establish negotiations on public funding for changing vehicles with the Ministry of Economic Development and, more crucial, it sets up a recognition scheme for commercial vehicles (registration in a specific database) with 2 conditions to fulfill: less pollution, onboard GPS system (in order to allow the municipality to trace vehicles in the city).

The URBelOG project platform includes all the tools empowering the Municipalities to effectively implement a set of measure that are a real new legislation and a brand new approach for the stakeholders:

(i) enlarging the time windows to enter the city-center (6:00-22:00),
(ii) allowing the use of reserved lanes for city logistics vehicles recognized,
(iii) use of specific parking places (70 parking lots reserved for vehicles recognized by the registration system), and
(iv) progressive tax system in order to stimulate registration (no tax for next 2 years in order to give leeway to companies to invest in the onboard system).

The development of new governance models along with the entering in force of URBeLOG platform will enable the Municipalities to modify the so called “ecotax” (today, flat yearly rate for commercial vehicles) into a brand new calculation system taking into account level of pollution, day of the week, time at which the vehicle enters the city-center (the general principle is to pay precisely for the use of the city during a certain amount of time), paving the way to a transfer this ecotax principle to all commercial vehicles (including the maintenance and service ones) in the near future.

References

ACI (2011). "Automobile statistics".