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We resolve several conjectures of J. Birman and R. F. Williams concerning the knotting and linking of closed orbits 
of flows on 3-manifolds. Our methods center on the symbolic dynamics of semiflows on branched 2-manifolds, or 
templates. By proving the existence of “universal templates”, or embedded branched 2-manifolds supporting all 
finite links, we conclude that the set of closed orbits of any flow transverse to the fibration of the figure-eight knot 
complement in S3 contains representatives of every (tame) knot and link isotopy class. Copyright 0 1996 Elsevier 
Science Ltd 

1. INTRODUCTION 

In these notes, we will answer some questions raised by Birman and Williams in their 
original examination of the link of closed orbits in the flow on S3 induced by the fibration of 
the complement of a knot or link [l] (see Section 4 for definitions). In this work, they 
proposed the following conjecture: 

CONJECTURE 1 (Birman and Williams [2]). The jigure-eight knot does not appear as 

a closed orbit of the Jlow induced by theJibration of the complement of theJigure-eight knot 

in S3. 

By “the” fibration, we mean the unique fibration whose monodromy is the pseudo- 
Anosov representative of its isotopy class, with respect to the Thurston classification [3,4]. 
By “the” flow, we mean the flow obtained by integrating the gradient of the fibration: it is 
everywhere normal to the fibers. 

We resolve this conjecture, and in so doing, unearth some surprising facts about flows 
on 3-manifolds (via semiflows on branched 2-manifolds). Our main results, announced in 
[S], are as follows: 

THEOREM 3. There exists an embedded branched 2-manifold in S3 with semijlow whose 

closed orbits contain representatives of every link isotopy class. 

THEOREM 4. AnyJEow transverse to ajibration over S’ of the$gure-eight knot complement 

in S3 contains representatives of every link isotopy class as closed orbits. 

To assist us, we adopt certain perspectives from symbolic dynamics for labeling and 
manipulating infinite sublinks of an infinite link. We will include only those definitions and 
methods which are relevant to the context of this paper, leaving a more detailed exposition 
of the symbolic methods and the dynamical implications to a more comprehensive 
work [6]. 
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2. BACKGROUND 

Periodic orbits of a flow are embedded circles. When the flow is three-dimensional, 

periodic orbits are knots and the collection of periodic orbits forms a link which often is 
nontrivial. Since there is an underlying flow structure for these objects, the link comes to us 
oriented. We follow the (not-so-standard) convention of Cl, 2,7-111 for signed crossings 
displayed in Fig. 1. 

The principal tool for examining knotted periodic orbits in three-dimensional flows is 

the template construction of Birman and Williams Cl, 21. 

Dejinition 1. A template (also known as a knotholder) is a compact branched two- 
manifold with boundary and with smooth expanding semiflow, built from local branch line 

charts displayed in Fig. 2(a). 

For an equivalent definition, with examples, see [l, 23. The term semiflow denotes an 
action of [w + as opposed to [w and is necessary since the flow is not uniquely reversible at the 
branch lines. By expansive we mean that the return map on the branch lines induced by the 
semiflow is an expanding map: i.e., any sufficiently small subinterval is stretched to a larger 
one. Each branch line in the template will locally appear as in Fig. 2(a): there will be 
a certain number ( 2 2) of incoming strips which completely cover the branch line (expand- 
ing the incoming semiflow), and a certain number ( > 2) of outgoing strips. The incoming 
and outgoing strips of all the branch lines are then connected bijectively. In Fig. 2(b), we 
show the simplest example of a template: the Lorenz template [2, 12, 131, consisting of one 
branch line and two strips. 

A template thus consists of a finite set of branch lines connected by strips. Though this 
description differs slightly from the “joining and splitting chart” description in [l, 21, it is 

Fig. 1. Positive and negative crossings. 

Fig. 2. (a) Strips meet at a branch line; (b) the Lorenz template. 
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nevertheless equivalent and serves to facilitate a symbolic approach to templates (as will be 

explained). 
Strictly speaking, the template itself is not invariant under the semiflow as some orbits 

may “escape” through gaps in the branch lines. However, since no closed orbits can exit 
through a gap, we may ignore the escaping orbits. 

The relationship between templates and links of periodic orbits in three-dimensional 
flows is expressed in the template theorem: 

THEOREM 1 (Birman and Williams [2]). Gioen aflow on a three-manifold having a hyper- 

bolic chain-recurrent set (i.e., Axiom A plus no-cycle), the link of periodic orbits is in bijective 

correspondence with the link of periodic orbits on a particular embedded template (with at most 

two exceptions). On any Jinite sublink, this correspondence is via ambient isotopy. 

We refer the reader to [14-171 for definitions concerning hyperbolicity and chain- 
recurrence, which are not necessary for the remainder of this paper. Intuitively, this 
hyperbolicity condition requires the existence of uniform expanding and contracting direc- 
tions along the flow. The template is derived by collapsing out the contracting direction (a 
strong stable foliation) of the original flow, changing the flow on a three-manifold to 

a semiflow on a branched two-manifold. In cases where the entire flow is hyperbolic, one 
must first “split” the flow along at most two orbits, thus giving rise to fictitious additional 
periodic orbits (the occasional “exceptions” of Theorem 1) - see [l, 61 for the precise 
construction, the details of which are not vital to the present work. Theorem 1 acts as 
a method of dimension reduction for the problem of understanding the periodic orbits of 
the original flow, and greatly facilitates the analysis of knotting and linking. Aside from 
their relevance to the dynamics of flows, we argue in this work that templates are in their 
own right a fascinating class of objects. 

Let .Y denote a template embedded in S3. The study of Y has traditionally taken one of 
two forms. Often, one studies the topological properties of the individual closed orbits on 
Y. For example, one might prove a result on the types of torus knots that Y supports [Z, 71 
or what bounds on the genus or the prime decomposition of individual closed orbits exist 
[l, 2, 10,181. This perspective has been of greatest use in concocting invariants for bifurca- 
tions of periodic orbits in flows [7,8,11,19,20]. The following conjecture, concerning the 
“spectrum” of individual knots that any template may support, was also posed in [l]: 

CONJECTURE 2 (Birman and Williams [a]). There does not exist an embedded template 

which supports all (tame) knots as periodic orbits of the semijlow: i.e., a universal template. 

The other principal perspective is to examine the topological properties of Y in its own 
right - this is often surprisingly subtle. A fundamental problem in the study of templates is 
the equivalence problem: when are two templates equivalent? We must, however, carefully 
specify what we mean by equivalence. Though the matter has not been clearly treated in the 
literature, the “implied” definition one finds is the following: 

Dejnition 2. Two embedded templates are equivalent if their periodic orbit sets can be 
placed in a bijective correspondence which preserves isotopy classes of every finite sublink. 

For the remainder of this paper, we will adopt this as the definition for template 
equivalence, though our results imply that it is neither the most useful nor the most natural 
definition. Under Definition 2, one may cut a template along nonperiodic orbits of the 
semiflow and isotope the resulting object without changing the template equivalence class. 
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There are other “moves” on templates which preserve template equivalence classes (see [l] 
for examples), but it is important to note that the moves which generate template equiva- 
lence (the analogue of the Reidemeister moves in knot theory) are not completely known. 
Even if there were a finite set of moves, there is no reason to believe that equivalent 
templates can be realized through a finite sequence of such moves, since the underlying links 
are infinite. 

In this work, we adopt and develop a different perspective (first considered in [S, 181) 
which, instead of considering either the entire template or the individual orbits, focuses on 

something of intermediate size. 

Definition 3. A subtemplate Y of a template Y is a subset of Y which, under the 
restriction of the semiflow of 5 to 9, satisfies Definition 1. 

Subtemplates can be thought of as “connected” proper infinite sublinks. Examples will 
appear later in Figs 4-6. Subtemplates are obtained through removing portions of Y by 
cutting along periodic and nonperiodic orbits of the semiflow. Sullivan has discovered some 
surprising behavior in the subtemplate structure of templates having a combination of 
positive and negative crossings (template crossings having the same convention as crossings 
in Fig. 1) [lo]. His insights were the starting points for the present work, which came about 
while reformulating his results using symbolic methods. 

In Section 2, we establish our conventions for the symbolic description of knots on 
templates and introduce methods for identifying subtemplates through simple maps on 
spaces of symbol sequences. In Section 3, we apply these techniques to resolve Conjecture 2. 
We then turn to the study of fibered knots and links in Section 4 and answer Conjecture 1. 

This work is intended to complement the existing literature on template theory. The 
seminal works in this field are the two papers of Birman and Williams Cl, 21 (foreshadowed 
by Williams [12, 133). The series of papers by Holmes and Williams [7] and Holmes [S, 201 
lay the foundation for applying templates to bifurcations in a family of H&non maps (see [6, 
1 l] for surveys). Franks [21] along with Williams [ 13,221 has used templates to contribute 
to the relationship between dynamics and knot types [23]. Polynomial invariants for 
template knots are considered in [24]. More recent work on topological properties has been 
conducted by Sullivan [lo, 18,251. Finally, the paper of Mindlin et al. [26] has initiated the 
use of templates in time series data analysis (see also [27,28]). This is by no means 
a complete survey of references for this growing field. 

3. SYMBOLIC DYNAMICS AND INFLATIONS 

The utility of symbolic dynamics for describing orbits in hyperbolic sets of dynamical 
systems (e.g., the Smale horseshoe map) is well known [14, 171. The same is true in 
describing knots on templates [l, 1 l-131. Consider a template F composed of strips, each 
of which connects two (not necessarily distinct) branch lines. Assign to the strips the labels 

x1,x2, 1.. 3 xN: this forms a Markov partition for the return map induced by the semiflow 
on the branch lines. Hence, every forward orbit (periodic or nonperiodic) may be assigned 
a unique semi-infinite symbol sequence in the Xi symbols given by the order in which it 
traverses the various strips. This symbol sequence is the orbit’s itinerary [12,13,29]. The 
itinerary set for a template Y is denoted 

LJ = {a = aoala2 . . . : a is an itinerary of an orbit on S} (1) 

z+ 
= (x142, ... ,XN} . 
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Fig. 3. The templates %!” and Y” - the subscript refers to the 2n signed half-twists in the x4 strip. 

The itinerary set CT does not consist of all possible strings of symbols, but only those 
strings which are admissible [14, 171. We will refer to the elements of the Markov partition 

1 x1,x2, ... 9 xN} as the generators of C Y. In the case of a periodic orbit, the itinerary is also 

periodic and may be referred to by the corresponding finite word of minimal period: e.g., 
x1.x2x1x2 . . . = (X1X2)m. 

The way in which orbits fit together on a template is described by placing a “coordinate 
system” on each branch line and then pushing these coordinates forward to the itinerary 
space &. The kneading theory [12, 13,291 establishes this coordinate system for the 
symbol sequences in CT through an ordering, a, which reflects the ordering of the points on 
the branch line from which the orbits commence. 

For a given template Y-, one simply specifies an appropriate ordering among all 
generators of the itinerary set whose corresponding orbits commence from the same branch 
line. For orientable templates, itineraries may then be ordered “lexicographically” with 
respect to Q. Ordering itineraries on nonorientable templates is no more difficult, but it does 
require more bookkeeping. We now illustrate these concepts via a set of examples which are 
central to the remaining work. 

Example 1. Let %!” and V” (n E Z) be the families of embedded templates pictured in 
Fig. 3, outfitted with the Markov partitions {x1, . . . , x4} as labeled. The subscript n refers 
to the number of (signed) full twists in the xq strip: in other words, there are 2n half-twists 
(positive or negative as per the sign) in the xq strip. Examples of these templates were first 
studied by Sullivan [lo] with the notation A (our Vo) and B (our a,,). 

The kneading ordering for these templates* is: 

x14x2 Xl ax2 

a&: Y$ (3) 

x4ax3 x34x4. 

Since these templates each have two branch lines, there are two a-orderings: one for 
each branch line. For example, on the upper branch line of V,,, x:xzx3 . . . a 

X1X2X3 . . . 4x2x3 . . 

*The apparent reversal of ordering on the second branch line of ^v;, is imposed to preserve a symmetry, to be 
exploited in Proposition 2. 
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For a given template Y endowed with a Markov partition x1, . . . , xN, every branch line 
of Y may be further decomposed into branch segments via the Markov partition. A branch 
segment, b,(S) for i = 1 . . . N, can be thought of as the closed interval of the branch line 
from which the xi-strip emanates; symbolically, 

pi(S)= {aE&: Uo = Xi>. (4) 

The left and right endpoints (with respect to a) of each pi(S) will be denoted al(Y) and 
a:(Y) respectively. These orbits are eventually periodic and each forms a portion of the 
boundary of F. 

Example 2. Each of the templates %!” (VJ has two branch lines, and each of these 
contains two branch segments from whence the strips emanate. Hence, the symbolic brunch 

set fl(%!,J (fl(V’J) consists of a total of four “closed intervals”: fli(%“) (fii(Vn)) for i = 1 . . . 4, 
corresponding to the four elements of the Markov partition. 

81@!) = Cwa Gtwl = Cbv, xl%(xdml 

83(@) = CMWY wwl = Cw4(Xl)m, c@l 

(6) 

Blv”) = m-y-), S(Y)1 = C(XlY, xlhx4)ml 

PZW = C&w-), G(Wl = CX2(X3)03? (w4)a?l 

B4V) = Ca@“), W~)l = cx4(x1)m, (x4x2n 

Since these symbolic descriptions are independent of the number of full twists in the x4 
branch, we have omitted the subscripts for 4?~~ and V”. 

Although the symbolic data for a given template neither encodes the topology of the 
template nor provides invariants for orbits, it does become useful in extracting certain 
subtemplate structures through a construction which we call a template inflation. 

Dejinition 4. A template inflation of a template Y into a template Y is 
a map ‘9I : Y CL, F taking orbits to orbits which is a diffeomorphism onto its image. 

Remark 1. The image of a template inflation 9I : 9 CI F is clearly a subtemplate. 

The kernel of Definition 4 is that the image of the induced subtemplate !R(Y) has the 
same dynamics as Y. This does not imply that ‘3(Y) holds the same knots or has the same 
topological features as 9. 
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In the case where an inflation !R maps Y G Y-, we say that ‘~3 is a template renormaliz- 

ation, since one can interpret !R as a renormalization of the induced return map of the 

semiflow on the branch segments [6]; however, it is more enlightening for our purposes to 
think in terms of subtemplates. The image ‘%2(Y) c F is a subtemplate of Y which is 
diffeomorphic to Y. 

For Y and 5 embedded templates, a template inflation % : 9’ CL+ F induces 
a topological action on periodic orbits of Y. Inflations which preserve the isotopy class of 
the link of periodic orbits will be of particular importance in this paper (other types of 
inflations are useful; e.g., in the study of the suspended Smale horseshoe map [6,8, 111). 

Dejnition 5. Let % : Y t, 9 be an inflation of a template Y c Y3 into a template 
Y c Y3. Let iY and ir denote inclusion of Y and Y respectively into Y3. If iY and i,- 0 ‘$3 

are isotopic embeddings of Y in S3, then ‘$3 is an isotopic inflation. 

The image of an isotopic inflation is a subtemplate s(Y) isotopic to Y. Therefore, one 
says that Y contains Y as a subtemplate: Y c 5. 

The key ingredients for our results are the combination of isotopic inflations, which 
allow us to keep track of the topology of orbits, and the related action on orbit itineraries, 
which allows for symbolic computation of “deeply” embedded orbits: 

LEMMA 1. A template inflation ‘3 : Y c, Y induces a map ‘33 : Cy 4 ET whose action is 

to inflate each generator {Xi : i = 1 . . . N} of Cy to ajnite admissible word {wi : i = 1 . . . N} in 
the generators of &. 

Proof By continuity, % maps the branch lines of Y into the branch lines of Y. Hence, 
each strip of Y (corresponding to a generator xi of C,) is mapped to a finite sequence of 
strips in Y, corresponding to a finite admissible word. 0 

The image under !R of any orbit on Y is thus obtained by “inflating” each symbol Xi in 
the itinerary by the word wi (which in some cases may consist of xi alone). This immediately 
implies the following useful result: 

COROLLARY 1. Given 93 : Y c, F a template inflation, the branch segments of the subtem- 

plate ‘S(Y) are given by 

Bitsty)) = it) = {W); a E Pity)}. 

Returning to the families of templates in Example 1, we will use isotopic inflations to 
keep track of arbitrarily deep copies of 3!,, and V” in each other. By starting with a few 
simple inflations that can be easily visualized, we can compose very complicated subtem- 
plate structures. A special case (m, n = 0) of the following theorem appears in [lo]: 

THEOREM 2. For any m, n E Z, the following isotopic template inflations exist: 

We first establish a few simple isotopic inflations with which we build the inflations of 
Theorem 2. 
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PROPOSITION 1. The following are isotopic template injations: 

Xl H Xl 

42 n+l 4 %I 
“%+I 4 %I I x2 H XIX2 

X3HX3 

x4 - x4 

(9) 

(10) 

(11) 

This is shown by drawing the image of the given inflation and noting that it is an 

isotopic copy of the domain. Figure 4 gives the proof for D acting on nyb: the other cases 
follow in like manner and are a simple exercise. Figures 5 and 6 give the proofs for ij and 8, 
respectively. 

The following two propositions specify the inherent symmetries among the various a,, 

and Vn which we will later exploit: 

Fig. 4. The action of D is via isotopy. 
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Fig. 5. The action of 5 is via isotopy. 

UO 

=q b 
= vo 

-... . . . . 
“.. 

Fig. 6. The action of Q is via isotopy. 

PROPOSITION 2. For every n E Z, the inflation 

Xl H x3 

x2 ++ x4 

x3 +-+X1 

XqHX2 

(12) 

takes any orbit to its mirror image: i.e., x reverses all crossings. 

Proof. Consider first the case n = 0; then x : 4& -+ 4!~,, (V. + _vb) is an involution which 

acts on the branch lines by exchanging them. Hence, x reverses all crossings in this case. For 
n # 0, the additional crossings in the x,-strip associated with 4?& (V’J are reversed in 
specifying the range as @_ ,, (V_ “). Since the action of x is again to exchange the upper and 
lower branch lines, all of the crossings have been reversed. 0 

Consider the space of all isotopic inflations among the family of templates 
{92”, Y”y;,: n E Z}. The nonisotopic inflation x induces an involution on this space via 
conjugation: 

PROPOSITION 3. Fix m and n arbitrary integers. Choose g to represent either the 
symbol @ or -Ir (for example, if ?Y = 42 then @YO is the template So). Choose %” to represent 
either ?I! or Y” as well. Given any injlation 93: g,,, 4 ZZn which acts isotopically, the 
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(13) 

(14) 

acts isotopically as well. 

Proof The topological action of x (reversing all crossings) commutes with the topologi- 
cal action of % (isotopy), even though the symbolic actions do not commute. Hence, on the 
topological level, Yl* acts as x2%. By Proposition 2, the topological action of x2 is trivial; 
hence, %* acts via isotopy. 0 

Taking conjugates allows us to build new isotopic inflations: e.g., 

Remark 2. For any inflations 9? and ‘8, (!R’%)* = %*%* since x is involutive. 

Proofof Theorem 2. One may use the inflations a,%, and 0 along with their conjugates 
in various combinations. For example, to find an isotopic copy of %_ 3 in 9&, we may apply 
(ZD*)3 or 0g(D*)2 to the orbits of %!-3. Of course, many such inflations are available. 0 

The inflations (Da*), 0, and 0* appear pictorially in the work of Sullivan [lo], without 
the symbolic description. The simple inflations a, 5, and 0, and their conjugates allow us 
to easily specify complicated subtemplates within this family of templates: e.g., 

PROPOSITION 4. There exists a countable collection of isotopic copies of V. embedded in 

V. c S3 as subtemplates which are disjoint and (completely) separable. 

Proof: Consider the inflations 0 and 0* which each map Y$ + 9&, isotopically. We 
claim that the images of V. under 0 and 0* are disjoint (except at a common boundary) 
and separable. Using Corollary 1, one computes the images of the branch set fi(Vo) under 
0 and 0* and uses the a-ordering to prove that the branch lines, and hence the subtem- 
plates, are disjoint. In Fig. 7, we display the two embedded subtemplates after crushing out 
the direction transverse to the semiflow (for ease of visualization), yielding two graphs, 
which can be seen to be separable. Alternatively, one can refer to Fig. 2.3 of [lo]. 

Consider the inflations 890 and sD0* which take V. 4 V. isotopically by Proposi- 
tion 1. Since a and 5 act isotopically, the images of gD0 and 31)0* are also disjoint and 
separable. Consider the sequence of template inflations 

{d,},“=~ = {(@0)(@0*)“:n = 0 . . . c9}. (16) 

Each &” has as its image a subtemplate of Y$ which is isotopic to Yo. Since the images 
of gD0 and BDQ* are disjoint and separable, it follows that the images of 
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Fig. 7. The subtemplates S(V’J and t5*(V& presented as graphs, are separable. 

d, = (gD6)@96*)” and of an = ($JDG*)“‘l are likewise disjoint and separable. But the 

image of 9& contains the image of every ~4~ for k > n as a subtemplate, since 

dk = (5ao)(gao*)k-“-‘(Sao*)n+’ = (~ao)(gao*)k-~-‘~“. (17) 

This implies that the subtemplates corresponding to the images of the inflations d, are 
disjoint and separable, not only pairwise but also completely. 0 

When combined with Theorem 2, the above result holds for any %” or Y”: a surprising 
fact. Already, this seemingly simple family of templates displays a surprising richness. 

In the next section, we will use the actions of ‘deep” isotopic inflations on the branch 
segments (/_I) and the boundaries (a) to keep track of where and how certain subtemplates 
are situated, even though we can no longer visualize them. This will assist us in answering 
Conjecture 2. 

4. UNIVERSAL TEMPLATES 

Having developed the necessary template theory and examples, we state our main 
theorem: 

THEOREM 3. The embedded template VO contains an isotopic copy of every (tamely 

embedded) knot and link as periodic orbits of the semiflow. 

Proof: Consider the templates rfL;I, q > 0, pictured in Fig. 8. These templates are 
embedded q-fold covers of -yb, though we do not depend on this fact for the proof. Note in 
particular that the sign of the crossings in the sequence of “ears” along the bottom 



434 Robert W. Ghrist 

29 

Fig. 8. The template ^w,. 

alternates. It should be clear that there is a natural sequence of subtemplate inclusions 

Our strategy is to show that the converse is also true: ?4$ is a subtemplate of ^yb for every 4. 
Then, we show that any closed braid appears as a set of closed orbits of every “w, for 
4 greater than some Q -C co. 

The template Y& is isotopic to _vb. We build wq by “sewing in” positive and negative 
(with respect to our sign convention) ears to a deeper copy of %$_ 1 in +‘& At each stage, we 
use a series of isotopic inflations to push the original copy of V0 deeper and deeper into 
itself, maneuvering the boundary components of the image of the original V0 for the next 
ear to be added. This manipulation of subtemplates is fairly difficult and requires some 
symbolic bookkeeping. 

In order to apply an iterative argument, we need to exploit the symmetry in V0 

expressed by x: 

LEMMA 2. x is a-preserving on Vn: i.e., ~(4) = a. Furthermore, x has the following action 
on the branch segments and boundary components: 

(19) 

Proof. That x is a-preserving follows from checking that Eq. (3) is invariant under x. 
The action of x on pi(V) is to take the first symbol, xi, to &); hence, x(fli(V)) = pi(V) 
wherej equals the index of x(xi). The action of x on ai” can be computed directly from 

Eq. (6). 17 
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Fig. 9. Appending an ear to a subtemplate 1. 

The following important lemma deals with a modification for subtemplates of Y& which 

we denote appending an ear. 

LEMMA 3. Let F be a subtemplate of V” which does not contain the orbit (x1)*. Define 

Z = [a’(Z), a’(Z)] to be the component ofS n (bl (Y) u fi2(V)) which is minimal with respect to 

a on the upper branch line of “v;,. Then, there exists a subtemplate .F’ satisfying 

F c F+ c Vn which is isotopic to the union of F and a positiue ear appended along the new 

brlznch line [(x~)~, c?‘(Z)]. The subtemplate F’ contains the orbit a\(V). 

Proof Since the subtemplate Y avoids the (x1)03 component of the boundary of VO, the 
interval Z = [a’(Z), 8(Z)] cannot be part of /I(S), the branch set of Y-; otherwise, one of the 
strips of Y which terminates at the branch line must come from the x1 strip, contradicting 
the minimality of I. Since Y does not intersect /3(V) in the points between (x~)~ and a’(Z), 
we may create here a new branch line by adding a new ear about the x1 strip of V” and 
“thickening” the incoming x4 strip: see Fig. 9. 

Specifically, for any 8’r(Y) which contains the itinerary 8(Z), we replace this block with 
(xl)“. Now let us define two new branch segments for F’: 

PN+ IV’) = CWrn, x1W)l 

h+2V-+) = u = CW), a'U)l. 

This is the formal description of Y’, which is a subtemplate in accordance with Definition 
3: what we have really done is added a new ear along the x1 strip which is of positive sign. 
We note that the new template 5+ is isotopic to the original Y in every way except for the 
addition of the ear and the thickened strip(s) - of course, appending an ear adds many new 
orbits to a subtemplate. Since the orbit (xI)Oo is separable (it links no other orbit of VO), the 
appended ear does not link any other strip of Y. The subtemplate Y’ contains a\(?%‘) as 
part of its boundary, since a\(V) flows into (x$‘. n 

We may exploit the symmetry of Vn expressed in Lemma 2 to obtain a conjugate result: 

LEMMA 4. Let Y be a subtemplate of V” which does not contain the orbit (x$‘. Define 
Z = [a’(Z), a’(Z)] to be the component of F n (b3(V) u f14(Y)) which is minimal with respect to 

a on the lower branch line of *lr,. Then, there exists a subtemplate F- satisfying 

F c F- t V” which is isotopic to the union of F with a negative ear appended along the 

new branch line [(x$‘, a’(Z)]. The subtemplate Y- contains the orbit a:(V). 
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Proof: Apply x: *y;, -+ VY_,, to send Y to its mirror image F* c “Ir_, (as per 
Proposition 2). By applying Lemma 2, one checks that F* and x(q satisfy the hypotheses of 
Lemma 3; hence, there exists a copy of (F*)+ in V_,, which is isotopic to the mirror image of 
5 with an added positive ear along the branch line [(xl)“, x8(1)]. Apply x again to send 
V_, back to Vn and (F*)+ H ((F*)+)* = F-, a copy of the original F with an additional 
negative (the mirror image of a positive) ear at the branch line [x(x1)“, x28(l)] = [(x3)OD, 
a’(l)]. The subtemplate F- contains the orbit x(Jk(V”)), which by Lemma 2 
equals C?:(V). cl 

The technical part of the proof of Theorem 3 is to show that we can append positive and 
negative ears to a copy of V. in alternating fashion. To do so, we first must map VO into “%$ 
in such a way as to avoid either the the (~r)~ or (x$’ edge of V& as required by the 
hypotheses of Lemmas 3 and 4. Then, after appending the appropriate ear, we send this 
latter VO back into itself in such a way that we may iterate the procedure. This is a crucial 
step which depends greatly on our ability to work with subtemplates symbolically. 

PROPOSITION 5. The inflation $ E ~*D*@ij’j1DB* takes VO r. VO isotopically. An inter- 

section of the image of a:(V) in j&(V) is a-minimal among all orbits in the image of 5. 

Proof The symbolic action of 9 is 

!ij s ~*a*sgaQ* : “yb 4 vo X2 H X2X~X4xl(x2x4)3X2X3X4Xl 

x3 H x2x;x4x1x2x4 
(21) 

That this inflation is 
impossible to draw 
encouraged to verify 
inflation 

x4 H x2x:x4x1x2x4. 

isotopic follows from repeated application of Proposition 1. It seems 
an accurate picture of the action of this inflation (the reader is 
this). We first compute the image of the endpoints @r(Y) under the 

(22) 

Gv-) I-+ (X2X~X4X1(X2X4)2X2X3X4Xl~~ 

a;(f) - X2X:X4X, (X2X4)2X2X3X4Xl (X2X~X4Xl(X2X4)3X2X3X4X1X2X~X4XlX2x4)m 

a;(r) H (x2x;x4x1(x2x4)3x x x x x X2X x x x 2341234124 )” 

a:(v) I-P (X2X:X4xlx2X4)m 

a;(V) H(X X2X X X X X X2X X (XZX~)~X~X~X~X~)~. 2341242341 
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From (21), the image of the first x2 in a:(V) contains two x1 symbols. We claim that 

a shift of the image of a’,(V) to one of these two x1 symbols is a-minimal in /?r(V) among 

all shifts of the image of every other endpoint of /I(V) which begin with x1. That this is so is 
a simple matter of choosing the shift of the image of a’,(+‘) which is a-minimal in pi(V) and 
then comparing this to all such shifts of the other endpoints fi(&“(V”)). Using the kneading 
ordering in (3), this can be done by hand or (more conveniently) by computer. In this 
manner, we calculate that 

a’4$(&(v)) = ~~(~&&~~2~~)~ (23) 

is a-minimal among all other orbits in the image of fi in /Ii(Y”), where cr denotes the shift 
operator. q 

PROPOSITION 6. The injation @* E SDQ*g*D*Q takes V. C+ V. isotopically. An 

intersection of the image of at(V) in f14(Y) is a-minimal among all orbits in the image of $*. 

Proof: Since 9 is isotopic, so is the conjugate $* via Proposition 3. Apply x to Eq. (23) 
to show that 

is X(a)-minimal in x(/Jr(V)); after an application of Lemma 2 and the fact that x commutes 
with the shift operator 0, 

~‘4&i%a’,(~)) = XdX4XtX2~4X2)~ (25) 

is a-minimal in &(V). Now insert x2 in the domain. Since x is involutive, we have shown 
that 

o’4&(,$\(r)) = ~&~X:XZV~XZ)~ (26) 

or 

a’4Sj*(a!@-)) = x&&~x&$)~ (27) 

is a-minimal in fi3(V). q 

PROPOSITION 7. The template Wq appears as a subtemplate of V. for all q > 0. 

ProoJ: Since we will be inflating V0 or Ye iteratively, we set some notation for distin- 
guishing the various copies of VO. Let {Tk: k = 1,2, . . . } be a sequence of disjoint 
embedded templates, each of which is isotopic to VO. Please note the difference between 
superscripts and subscripts: the superscripts are used solely to label different copies of the 
same template. 

Let a:qvl) for i = 1, . . . ,4 denote the boundary orbits of the template Yl. These 
symbol sequences are the same as those in Eq. (6), but we note that they refer to the edges of 
thisJirst copy of VO. The symbol sequences for the boundary components #‘(V”) for k > 1 
are identical to those of “Y-l, but they refer to orbits on difirent copies of the same template. 

This is the outline of the proof: we assemble “w;, from Y’ by appending ears (as per 
Lemmas 3 and 4) along the image of a\(Vl) in V2. At each stage, we embed Vk into Vk+ ’ 
isotopically, stretching out the original a’,(V”‘) to lie in the proper position to apply either 
Proposition 5 or 6. Two points are worthy of mention: (1) the signs of the appended ears 
alternate + , - , + , - , . . . ; and, (2) each successive ear is appended to the image of 
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&(V’) “preceding” the last appended ear (preceding in the sense of the orientation on 
&(V’) induced by the semiflow). 

Equation (28) shows the steps in building “ry-,. Each arrow denotes a subtemplate 
inclusion. Alternating !?j and $* sends Vk CG Vk+ ’ . isotopically while allowing us to 

append positive and negative ears as in the upper sequence. 

“w; 
append + 
- w: 

append - 
- w2 

append + append - 
- w-: - 

We now turn to the details of the above outline. Embed Y’ into Y* via the isotopic 
inflation 8. By Proposition 5, the image of a\($‘“‘) is a-minimal in /11(T2) among all other 
orbits in the image of $. Hence, the subtemplate sj(Y’) c V* satisfies the hypotheses of 
Lemma 3 and we may append a positive ear along the minimal intersection of sj [a\(-t”)] in 
f11(Y2). Appending a positive ear to 9& at that location yields a new subtemplate of V”* 
pictured in Fig. 10 which we denote w:. By Lemma 3, w: c V2 contains the orbit 
a:(r2). 

Now map V*, along with its subtemplates w1 and w: via the inflation 
B* : V* 4 V3. By Proposition 6, this takes YY: to a “deeper” isotopic copy of %‘-[ in V3 
while taking &(V2) to a point which is a-minimal in &(V3). The hypotheses of Lemma 
4 are thus satisfied and one may append a negative ear along the intersection of 
$*[ak(Y*)] with fi3(V3), which precedes the appended positive ear of 9V: (since afr(V*) 
precedes the appended ear in V*); therefore, in the grand scheme, this negative ear fits “in 
between” the two existing positive ears. We now have an isotopic copy of “llr, in Y3: see 
Fig. 11 for a schematic representation. By Proposition 6, this copy of “w; c V3 contains the 
orbit &(-tr3) and this orbit precedes the appended negative ear as per Fig. 11. 

We now have Y3 which contains a subtemplate “N2 containing the orbit a\(Y3) along 
which we wish to append another pair of ears. Since Y3 is again an isotopic copy of Y’ 
with &(V3) corresponding to &(V’), we may now iterate the procedure. Map V3 into Y4 
via fi, append a positive ear to the image of ^IIT2 to obtain w:, then apply 5j* and append 
a negative ear to the image of w: to produce w3. Since all the inflations involved are 
isotopic, we continue to carry the completed fl along isotopically as we append additional 
ears. Thus, we can embed wq in V0 for arbitrary 4. 0 

It is difficult to keep track of the symbol sequences in order to find an explicit inflation of 
wq into VO, but the essence of where %$ sits can be tracked easily. Crush out each strip of 

appended 

Fig. 10. The template W:. 
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(4 w2 

Fig. 11. The steps in building Wq; (a) begin with Y’: a copy of “v,; (b) append a positive ear to sj[13\(V’)] to 
obtain W: c Vz which contains ah(V2) as an orbit; (c) append a negative ear to b*[ak(V2)] to get Wz c V3 

with a\(Y3) as an orbit. 

71 729 74 73 72 

Fig. 12. The spine of ‘L-, and the generators yi of A~(%‘J. 

^w; in the direction transverse to the semiflow to obtain the spine and consider the 

generating set for nl(Vq) given by {ye, . . . , y4} as in Fig. 12. Then the “simplest” image of 

these loops in V0 is given by Table 1: 

Table 1 

0 ($*sj)~-‘(x,x,) = [~as*(~*a*o)~~a0*]‘-‘(X2Xq) 

1 ($*$)“-yxJ = [3YD0*(3*a*0y3a0*]‘-‘(xI) 

i=2k>O (Sj*$)qX3) = [Sao*(5*~*0)25ao*]“-‘(x3) 

(29) 

i=2k+l>l (.5j9j)q-k-yxL) = [3a0*(3*a*0)23acti*]q-‘-l3a0*3*a*o(~~) 

To finish the proof of Theorem 3, we borrow some basic terminology and results from 
the study of braids [30,31]. 

Definition 6. The braid group on M strands, B M, is defined as the group generated by 

{ui}~-’ with relations 

UiUj = UjOi )i - jl > 1 

UiUjUi = UjUiUj Ii -jl = 1. (30) 
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Any element of BM may be geometrically realized as an embedding of the disjoint union of 
M - 1 compact arcs in [w3 with endpoints (i, 0, 1) and (i, 0, - l), i = 1, . . . , M - 1, such 
that the last coordinate of each embedded arc is monotonically decreasing. In this repres- 
entation, the group operation is concatenation of arcs, top to bottom, the identity element 
consists of the M - 1 straight lines connecting (i, 0,l) to (i, 0, - l), and the generator et is 
obtained from the identity by crossing the ith strand over the (i + 1)st strand with a single 

positive crossing. 
The relationship between braids and links crystallizes in the notion of a closed braid. 

Given a braid b, the closure, 6, is the link obtained by connecting the top and bottom 
endpoints with unknotted arcs in the simplest possible fashion: see [30, 311 for complete 
definitions and background. 

LEMMA 5. Let b E BM be a braid on M-strands. Then 6, the closure of b, appears as a (set 

of) periodic orbit(s) on Wq for suficiently large q < co. 

Proof: The concatenation of alternating positive and negative ears on “w;, mimics the 
group operation of B M. We first find a generating set for BM which “fits” on a finite 
concatenation of alternating ears, as occurs in “ly-,. Figure 13 shows how to put the word 

0102 . . . ok on a positive ear and a;la;’ . . . 0;’ on a negative ear. In particular, we can 
explicitly get u1 and o; ’ on a single positive (negative respectively) ear. Assuming that we 
can find the generators cl, a; r , cr2, a; ‘, . . . > ck, ok - ’ on a finite sequence of ears, we can 
construct gk+ 1 and ok;lr by COnCatenating additional ears as fOllOWS: 

gk+l = (a;‘) . . . (0;‘)(0;‘)(fll02 . . . ck+l) 

(31) 

By induction, each generator for BM fits on a finite sequence of positive and negative ears 
and b can be built from a finite sequence of these generators. 

Fig. 13. Fitting a generating set for BM on the ears of 7v,. 
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There is an obstacle to fitting the closure 6 on the expanding semiflow of W, if any 

component has a repeating symbol sequence. To prevent this, note that since only one 

strand of 6 goes around each ear of wg, 6 does not contain two components with the same 
itinerary as long as each strand loops around at least one of the ears of %$ From (31), this 
will necessarily occur if b E BM contains either cMM- 1 or 0 M1 1. If such is not the case, then we _ 
modify b to b’, 

b’ = [aM_Io&]b. (32) 

This new braid is equivalent to b in BY (hence, the closures are isotopic), but this 
now appears as a periodic orbit set on the expanding semiflow of “jL^4 (for some q) with 
certainty. 0 

Proof of Theorem 3. By Lemma 5, we can find any closed braid 6 as a periodic orbit 
set on some “w;,. By Proposition 7, every #$ c -yb; hence, we have shown that Vi 
contains all closed braids. By a theorem of Alexander (see [30-32]), V0 contains all 
knots and links. 0 

Remark 3. The algorithm detailed here is not intended to supply the “simplest” version 
of a closed braid in VO. Consider Conjecture 1 concerning the existence of a figure-eight 

knot (Ka) in a flow. A careful attempt to draw & on Ye will frustrate the reader. We can 
write the closed braid form of this knot as follows: 

KS = (wa2 = ( )GJ;1)(l~2)w)( )(~;%1~2)(0. (33) 

One may thus fit the figure-eight knot on $& c -yb. By using (29) (Table 1) we calculate this 
representation of the figure-eight knot in “yb (the simplest known example) to cross the 
branch lines 11,358,338 times (i.e., this is the minimal period of the itinerary). The symbolic 
methods used in this proof evidently extract some very deep information. 

Theorem 3 has a number of interesting consequences related to universal templates; i.e., 
embedded templates which support all links. 

COROLLARY 2. Each of the embedded templates {%,,, V”} for n E Z is universal, as is anl( 
template that contains any of these as subtemplates. 

Proof: Theorem 2. 0 

COROLLARY 3. All the Lorenz-like templates Y(O, n) for n < 0 are universal and hence 

equivalent. 

ProoJ A Lorenz-like template is a generalization of the Lorenz template studied in 
[2, 12, 131 (see Fig. 2(b)). Figure 14 illustrates this family: there is a single branch line with 
n signed half-twists in the x2-strip. In [18], it was shown that _!Z(O, n) c _T?(O, n - 2) for all 
n, and that _5?(0, - 4) c Y(O, - 1). In [lo], Sullivan showed that %,, c Y(O, - 2). 0 

We note that all of these relations (and others) among Lorenz-like templates have nice 
interpretations as template inflations. For example, it is an exercise for the curious reader to 
show that 

Xl H Xl 

x2 H x1x: (34) 
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Fig. 14. The Lorenz-like templates Y(0, n). 

Fig. 15. dp(0, 1) (left) does not contain all torus knots, while Y(0, - 1) (right) is universal. 

is an isotopic inflation of _Y(O, 2) CI Y(O, - 1). It is interesting to note that while 
_Y(O, - 1) is a universal template, _Y(O, 1) does not even support all torus knots [7] (see 
Fig. 15). In [33], we showed that for mn 2 0, Z(m, n) is universal if and only if m = 0 and 
n -c 0 or vice versa. 

The richness of these universal templates goes far beyond that expressed in the original 
conjecture of [ 11: besides containing all knots, this class of universal templates contains all 
links. By Proposition 4, we can also find a countable infinity of disjoint, separable copies of 
V0 isotopically embedded in Y& each of these containing all closed braids. The properties of 
these ostensibly simple templates are pleasantly surprising. 

It follows from Corollaries 2 and 3 that almost every template thus far appearing in the 
literature which has a combination of positive and negative crossings is in fact universal. 
This sheds light on the difficulty of finding invariants for such templates. Invariants for 
positive templates (where the crossings are all of one sign and which hence cannot be 
universal) have been found [34], but as yet, none exist for mixed-crossing templates. It is 
now clear that any such invariant which measures only the spectrum of different orbit 
embeddings would be very inefficient at distinguishing mixed templates, since many such 
templates are universal. The question of template equivalence should therefore be refined to 
a more restrictive notion. 

Perhaps a good approach would be to study the subtemplate structure of a universal 
template. Several open questions present themselves. If a template Y contains, e.g., “yb as 
a subtemplate, must it be the case that 5 c V. as well? If a template Y contains all links, 
must if follow that “yb c L?? Were this the case, the term “universal” would be well- 
deserved; if not, then there may be invariants which distinguish universal templates. 

5. FIBRATIONS OF KNOT COMPLEMENTS 

Besides applications to template theory, Theorem 3 has implications for flows induced 
by fibrations of knots and links whose monodromies are of pseudo-Anosov type (in the 
Thurston classification [3, 43). 
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Dejinition 7. A knot or link K in S3 is jibered if there is a fibration p : S3\K + S’ with 
fiber of a Seifert spanning surface MZ [3 1,353. The fibration induces a diffeomorphism @ on 

the fiber called the monodromy of the fibration. The induced flow for the fibration is that 
obtained by integrating Vp, the gradient, or, equivalently, by embedding the suspension 
flow of the monodromy @. 

By invoking the Thurston classification of surface diffeomorphisms [3,4], we can speak 
of “the” fibration for K. For example, the figure-eight knot is fibered with fiber with 
a punctured torus and monodromy isotopic to the Anosov map, 

2 1 
@= 11’ 

[ 1 (35) 

acting on the universal cover R2\H2. The closed orbits of the induced flow (the suspension 
of a) are the subject of [l] and of Conjecture 1, which we now resolve. 

THEOREM 4. AnyJEow transverse to ajbration over S’ of thejigure-eight knot complement 

in S3 contains every knot and link as closed orbits. 

ProoJ: In [l] Birman and Williams derive two templates for the flow induced by 
integrating the gradient of the fibration of the figure-eight knot complement (corresponding 
to the unique pseudo-Anosov monodromy @) - one by means of direct visualization, and 
the other indirectly by means of branched coverings of S3. The direct version appears in the 
left in Fig. 16 and the indirect version in Fig. 17. It was noted in [l] that a direct proof of the 
equivalence of these two templates seemed highly nontrivial. In Fig. 16, we show that the 
“direct” version contains @_ 1 as a subtemplate. This is accomplished by ignoring one strip 
and noting that all remaining orbits must live on the original template. By Corollary 2, this 
version of the figure-eight template is universal. In [lo], it was shown that the “indirect” 
version contains Y0 as a subtemplate (we give an alternate proof in Proposition 8 below) 
and hence is also universal. 

These templates correspond to the particular flow induced by the fibration which has 
pseudo-Anosov monodromy; however, pseudo-Anosov maps minimize dynamics, so any 
other fibration in the isotopy class has at least the periodic orbits that the pseudo-Anosov 
case has [36]. Any flow which is transverse to such a fibration is isotopic to one which is 
obtained by integrating the gradient. 0 

a’ 
I’ 

+3 ,’ 
: 

u-1 

Fig. 16. Q- 1 (right) as a subtemplate of the direct version of the figure-eight template (left). 
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The following is a worthwhile (though potentially difficult) question to pursue: 

QUESTION 1. Which jibered knots possess all knots and links as closed orbits of the 

jbration-induced flow on their complements? 

Question 1 is relevant for knowing which fibered-knots or links do not support every 
link as closed orbits of the fibration-induced flow, since, for fibered knots or links, the link of 
closed orbits of this flow forms an invariant for the knot [l]. We can at this time provide 
only a partial answer to this question: 

PROPOSITION 8. The closure of any braid of the form (alo; l)k for 1 kl > 1 is ajbered link 

with$bration supporting all knots and links as closed orbits. In particular, the Borromean ring 
(k = 3) shares this property. 

Proof: Assume k > 1. After Birman and Williams, we examine k-fold branched covers of 
S3 branched over the unknotted closed braid b = ~~a;‘. They show in [l] that the 
template for the fibration of the complement of b consists of k-copies of the template 
pictured in Fig. 18 glued together end-to-end in cyclic fashion. In particular, note that the 
indirect model of the figure-eight template in Fig. 17 corresponds to the case k = 2. Take 
two copies of the template of Fig. 18 glued at one end as in Fig. 19(a). This object appears 
naturally within the template for the complement of the closed braid for k > 1. In 

Fig. 17. The “indirect” branched-covering version of the figure-eight template. 

Fig. 18. The fundamental template component of the branched k-fold cyclic cover of S3. 
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(b) (4 (4 (e) 

Fig. 19. (a) The 2-fold copy of the fundamental template component; (b) ignore the loose ends (and rotate); 
(c) remove the extraneous branch lines; (d) pull out a full positive twist; (e) the twists cancel to reveal “v,. 

Fig. 19(b)-(e) we ignore the loose ends of this object and isotope it to reveal a copy of “yb 
which therefore sits in the template for the complement of the closed braid when k > 1. For 
k < - 1, note that the braid (hence the template) is the mirror image of that for k > 1. The 
mirror image of a universal template is again universal. El 

Proposition 8 specifies an infinite collection of fibered knots and links with fibration- 
induced flows supporting all knots and links as closed orbits. We have also shown [6] that 
the Whitehead link shares this property. The class of fibered links whose induced flows 
contain all links as closed orbits must be from the class which have pseudo-Anosov type 
monodromy, and which are not positive braids. Question 1 is related to the more funda- 
mental question: 

QUESTION 2. What are necessary and suficient conditions for a template 5 c S3 to be 

universal? 

Even a basic set of sufficient conditions could provide some nice forcing theorems. Of 
course, one necessary condition is that the template contains crossings of both positive and 
negative type. This is not sufficient, however, as one may for example embed V0 in S3 so that 
the x4 strip is tied in a nontrivial knot K. Then all knots on this new template would be 
satellites of the knot K: such satellites will always be “more complicated” than K [31], 
so this template cannot be universal. It is difficult to formulate a simple conjecture to 
Question 2. 
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6. CONCLUSIONS 

Our results on the existence of templates which support all tame links as periodic orbits 
open up some new directions (and close others) in the study of templates. The original 
motivation for studying template knots for fibered links in [l] rested on the fact that the 
link of periodic orbits on the template is an invariant of the knot. We now see that this 
invariant is weak in a number of cases. While it is now less clear what it means for two 
templates to be “equivalent,” we do have new techniques for their analysis which do not rely 
entirely upon direct pictorial constructions. 

The existence of universal templates provides a wealth of examples of interesting 
three-dimensional flows, along with some counterintuitive facts about the set of all links. On 
the one hand, it is possible to fit (up to isotopy) every possible embedding of a disjoint set of 
l-spheres on a simple embedded branched 2-manifold. And within these, Proposition 4 

implies a self-similarity among this set. On the other hand, since a pseudo-Anosov map of 
a surface has a dense periodic set [4], the fibration of the complement of the figure-eight 
knot induces a flow on S3 whose periodic orbit set is dense in S3 and exhausts all knot and 
link isotopy classes. The fact that we can fill up S3 or V0 densely with the same set of links is 
a beautiful feature of templates. 

One may regard a universal template as a “closure” of the space of all knots or links, 
which immediately calls to mind Thurston’s theory of the space of embedded curves on 
a surface [3,4]. The closures induced by the universal templates we have described do not 
appear to share the beautiful properties that Thurston’s closures do, however. The self- 
similarity implied by Proposition 4 (and, in general, by the limits of iterated isotopic 
renormalizations) suggests that a template gives a very convoluted sort of completion: e.g., 
numerical invariants of the knots on a template do not extend naturally to a continuous 
function on nonperiodic orbits. 

There are other implications which we do not describe in this paper, mostly in 
connection with ODES and global bifurcations of periodic orbits in parameterized flows. 
Notable among them is the following, explored in detail in [37]: 

THEOREM 5. There exists an open set of parameters p E [6.5,10.5] for which periodic 

solutions to the difherential equations 

i = 7CY - &)I 

j=x-y+z 

i= -py 

contain representatives from every knot and link equivalence class. 

Equation (36) is a PL-vector field modeling an electric circuit [38]. 

(36) 
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