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Abstract

An abstract scheme using particular types of relations on filters leads to general unifying results
on stability under supremum and product of local topological properties. We present applications
for Fréchetness, strong Fréchetness, countable tightness and countable fan-tightness, some of which
recover or refine classical results, some of which are new. The reader may find other applications as
well.
© 2005 Elsevier B.V. All rights reserved.

MSC: 54B10; 54A10; 54A20

Keywords: Product spaces; Fréchet; Strongly Fréchet and productively Fréchet spaces; Tightness; Fan-tightness;
Absolute tightness; Tight points

1. Introduction

A large number of topological properties fail to be stable under finite products or even
by supremum of topologies. Among such properties are a lot of fundamental local topo-
logical features such as Fréchetness, strong Fréchetness, countable tightness and countable
fan-tightness, to cite a few (see the next section for definitions). Consequently, the quest
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for conditions on the factor spaces to ensure that the product space has the desired lo-
cal property has attracted a lot of attention, e.g., [1,8,12–15,18,21,24,23,25–31,16,17] for
Fréchetness and strong Fréchetness alone; [1,4,2,5,6,21,20] for tightness and fan-tightness.

In this paper, we propose a unified approach to this class of problems, obtaining as
byproducts of our theory both refinements and generalizations of known results and en-
tirely new theorems. More specifically, we are interested in the following type of problem:
Let P and Q be local topological properties.

Question 1. Characterize topological spaces X such that X × Y has property Q for every
space Y with property P .

In most cases, investigations have been restricted to P = Q.
The first crucial observation is that if P and Q are local topological properties, they

are characterized by a property of the neighborhood filters. Of course, the property is not
stable under product because the corresponding class of filters is not. The second crucial
observation is that, even if these classes of filters behave badly with respect to the product
operation, they are almost always defined via other better behaved classes of filters. For
instance, a topological space is Fréchet if whenever a point x is in the closure of a subset
A, there exists a sequence (equivalently a countably based filter) on A that converges to x.

If A ⊆ X, then the principal filter of A is A↑ = {B ⊆ X: A ⊆ B}. Similarly, if A ⊂ 2X ,
we denote A↑ the family of subsets of X that contains an element of A. However, we will
often identify subsets of X with their principal filters, that is, A↑ is often simply denoted A.
Two collections of sets F and G mesh, in symbol F # G, if F ∩ G �= ∅ for every F ∈ F
and every G ∈ G. The supremum F ∨ G of two collections of sets F and G exists when
F # G and stands for the collection of intersections {F ∩ G: F ∈ F and G ∈ G}. However,
when F and G are filters we will understand F ∨ G to be the filter (F ∨ G)↑ generated by
the collection of intersections.

With these notations, the definition of Fréchetness in terms of closure rephrases in terms
of neighborhood filter as follows: F is a Fréchet filter (a filter of neighborhood in a Fréchet
space) if whenever A #F , there exists a countably based filter (equivalently, a sequence) L
which is finer than A ∨ F . This definition depends on the class F1 of principal filters and
on the class Fω of countably based filters, which are both productive.

We will take an approach based on relations between filters. For example, we consider
the relation � on the set F(X) of filters on X defined by F �H if

H # F �⇒ ∃L ∈ Fω: L� F ∨H.

A filter is Fréchet if and only if it is in the �-relation with every principal filter. In other
words the class of Fréchet filters is F

�
1 [20,9] where we denote by J� the filters that are in

the �-relation with every filter of the class J.
Under mild conditions on J and on relations � and �, we characterize filters whose

supremum (in Section 3) and whose product (Section 4) with a filter of the class J or J�

is a filter of J� or J�. The quests for stability under supremum and under product turn
out to be intimately related (Section 4). These abstract results lead to a large collection
of significant concrete corollaries, because most classical local topological properties, like
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Fréchetness, can be characterized in terms of neighborhood filters of the type J� for classes
J and relations � that fulfill the needed conditions.

In Section 4, we show how solutions for the problem of stability under product are
obtained as an abstractly defined subclass, called kernel, of the class of solutions for the
problem of stability under supremum. From the technical viewpoint, the difficulties (that
attracted attention to this type of problems for so long) lie in the internal characterization
of kernels. In Section 5, we characterize a variety of such kernels, obtaining as byprod-
ucts improvements of classical results as well as entirely new results. Finally, our abstract
approach allows us to clarify (Section 6) the relationships between all these properties,
improving again upon the known results.

We present applications related to three relations only, but the theory is designed for
further applications with other examples of relations and of classes of filters.

2. Sup-compatible relations on F(X)

Let R denote a relation on a set X (R ⊆ X × X). As usual, Rx = {y ∈ X: (x, y) ∈ R}
and if F ⊆ X, RF = ⋃

x∈F Rx. The polar of a subset F of X (with respect to R) is

FR =
⋂
x∈F

Rx,

with the convention that ∅R = X. An immediate consequence of the definitions is that

Lemma 2. If R is a symmetric relation on X and F ⊆ X, then

(1) F ⊆ FRR ;
(2) FRRR = FR .

Moreover, if F ⊆ FR then F ⊆ FRR ⊆ FR .

The symbol ¬ denotes negation. For instance, x(¬R)y means that (x, y) /∈ R.
The set of filters on a given set X is denoted by F(X). A symmetric relation � on F(X)

for which F � G whenever F and G do not mesh and which verifies

F � (G ∨H) �⇒ (F ∨H) � G, (•)

whenever G # F and F # H is called sup-compatible or ∨-compatible.
We are going to consider several particular classes of filters. In general J and D will

denote generic classes of filters. A filter of the class J is called a J-filter. The collection
of J-filters on X is denoted J(X). However, we will often omit X when the underlying
set considered is clear. In particular, we will frequently consider the classes F1 and Fω of
principal and countably based filters, respectively.

Example 3. The relation � on F(X) defined by F �H if

H # F �⇒ ∃L ∈ Fω: L� F ∨H, (1)
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is a ∨-compatible relation. Then F
�
1 is the class of Fréchet filters [20,9]. As noticed in the

introduction, a topological space is Fréchet if and only if all its neighborhood filters are
Fréchet.

Analogously, F
�
ω is the class of strongly Fréchet filters [20,9], that is, of filters F satis-

fying (1) for every countably based filter H. Recall that a topological space X is strongly
Fréchet if for every x ∈ X and every decreasing countable collection An ⊆ X such that
x ∈ cl(An) for every n, there exists a sequence xn ∈ An that converges to x. It is easy to
see that a topological space is strongly Fréchet if and only if all its neighborhood filters are
strongly Fréchet.

Example 4. Consider the relation ♦ on F(X) defined by F ♦H if

H # F �⇒ ∃A ∈ F1, |A| � ω: A # F ∨H.

This is a ∨-compatible relation. Then F
♦
1 is the class of countably tight filters. Recall

that a topological space X is countably tight [1] if for every x ∈ X and A ⊆ X such that
x ∈ cl(A), there exists a countable subset B ⊆ A such that x ∈ cl(B). It is easy to see that
a space X is countably tight if and only if all its neighborhood filters are countably tight.

Example 5. A topological space is countably fan-tight [2] if for every countable family
(An)ω of subsets such that x ∈ ⋂

n∈ω cl(An), there exists finite subsets Bn of An such that
x ∈ cl(

⋃
n∈ω Bn).

We call a filter F countably fan-tight if whenever An # F , there exists finite subsets
Bn of An such that

⋃
n∈ω Bn # F . It was observed in [2, Remark 1] that the definition of

fan-tightness is unchanged if we only consider decreasing countable collections (An)ω.
Clearly, a space is countably fan-tight if and only if all its neighborhood filters are count-
ably fan-tight. Consider the relation † on F(X) defined by F † H if

(An)ω # (F ∨H) �⇒ ∃Bn ⊆ An, |Bn| < ω,

( ⋃
n∈ω

Bn

)
# F ∨H.

This is a ∨-compatible relation. By [2, Remark 1], F † H if for any decreasing count-
able filter base (An)ω meshing with F ∨ H, there exists finite sets Bn ⊆ An such that
(
⋃

n∈ω Bn) # F ∨H.

Lemma 6. The following are equivalent:

(1) F is countably fan tight;
(2) {Ek}k∈ω # F , then there exist finite sets Bk ⊆ Ek such that {⋃n�k Bk}n∈ω # F ;
(3) If {Ek}k∈ω is a decreasing countable filter base and {Ek}k∈ω #F , then there exist finite

sets Bk ⊆ Ek such that {⋃n�k Bk}n∈ω # F ;

(4) F ∈ F†
ω;

(5) F ∈ F
†
1.

Proof. (1) ⇒ (2). Fix n ∈ ω. Since Ek #F for all k � n, there exist finite sets {Bn
k }k�n such

that Bn ⊆ Ek and (
⋃

Bn)#F . For every k ∈ ω let Bk = ⋃
Bn. Notice Bk ⊆ Ek and
k k�n k k�n k
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Bk is finite for every k ∈ ω. Let n ∈ ω and F ∈ F . There is a k � n such that F ∩ Bn
k �= ∅.

Since k � n, we have Bn
k ⊆ Bk . Thus, k � n and Bk ∩ F �= ∅. Therefore, (

⋃
n�k Bk) # F

for every n ∈ ω.
(2) ⇒ (3) and (4) ⇒ (5) are straightforward. (5) ⇒ (1) was observed in Example 5.
(3) ⇒ (4) follows from [2, Remark 1]. Indeed, if F is as in (3), H and A are

countably based filters with decreasing filter bases (Hn)n∈ω and (An)n∈ω respectively,
such that (An)n # (H ∨ F), then (An ∩ Hn)n # F . Therefore, there exists finite sets
Bn ⊂ An ∩ Hn such that {⋃n�k Bk}n∈ω # F . Clearly, {⋃n�k Bk}n∈ω # (F ∨ H). In par-

ticular, (
⋃

n∈ω Bn) # (F ∨H) and F ∈ F†
ω . �

3. Stability of local properties under supremum

We call a class J of filters (D,M)-steady if F ∨ H ∈ M(X) whenever F ∈ J(X) and
H ∈ D(X). If J is (D,J)-steady we say that J is D-steady. If J is J-steady, we simply
say that J is steady. By Lemma 2, we only generate the two classes J� and J�� from a
given class J by taking the polars with respect to a symmetric relation � on filters. We now
investigate stability relationships between these classes under supremum. To begin, notice
that an immediate consequence of the definitions is that a class of filters J is (D,M)-steady
if and only if D is (J,M)-steady.

Proposition 7. If J is a D-steady class of filters, and if � and � are ∨-compatible relations,
then J� and J�� are both D-steady.

Proof. Let F ∈ J�(X) and H ∈ D(X) such that F #H. We want to show that F ∨H ∈ J�.
Let L be a J-filter such that L # F ∨ H. As J is D-steady, L∨ H ∈ J. Thus, F � (L∨ H)

because F ∈ J�. By (•), (F ∨H) �L. Hence, F ∨H ∈ J�.
Let F ∈ J��(X) and H ∈ D(X) such that F # H. We want to show that F ∨H ∈ J��.

Let L be a J�-filter such that L#F ∨H. As we have proved that J� is D-steady, L∨H ∈ J�.
Thus, F � (L∨H) because F ∈ J��. By (•), (F ∨H)�L. Hence, F ∨H ∈ J��. �
Corollary 8. If J is a steady class of filters and � and � are ∨-compatible relations, then
J� is (J��,J�)-steady. In particular, J� is J��-steady.

Proof. Let F ∈ J�(X) and H ∈ J��(X) such that F # H. We want to show that F ∨H ∈
J�. Let L be a J-filter such that L # F ∨ H. As J�� is J-steady, L ∨ H ∈ J��, so that
(L∨H)�F . By (•), (F ∨H)�L. �
Corollary 9. If J is a steady class of filters and �, �, and � are ∨-compatible relations,
then J�� is (J��,J��)-steady. In particular, J�� is steady.

Proof. Let F ∈ J��(X) and H ∈ J��(X) such that F #H. We want to show that F ∨H ∈
J��. Let L be a J�-filter such that L # F ∨H. As J� is (J��,J�)-steady, L∨H ∈ J�, so
that (L∨H) �F . By (•), (F ∨H) �L. �
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Theorem 10. Let � and � be two ∨-compatible relations on F(X) and let J be a steady
class of filters containing F1.

(1) F ∈ J
� ⇐⇒ ∀G ∈ J, G # F �⇒ F ∨ G ∈ F

�
1

⇐⇒ ∀G ∈ J, G # F �⇒ F ∨ G ∈ J
�

⇐⇒ ∀G ∈ J
��, G # F �⇒ F ∨ G ∈ J

�.

(2) F ∈ J
�� ⇐⇒ ∀G ∈ J

�, G # F �⇒ F ∨ G ∈ J
���

⇐⇒ ∀G ∈ J
�, G # F �⇒ F ∨ G ∈ F

���
1

⇐⇒ ∀G ∈ J
�, G # F �⇒ F ∨ G ∈ J

�

⇐⇒ ∀G ∈ J
�, G # F �⇒ F ∨ G ∈ F

�
1 .

Proof. We show (1). If F ∈ J� then

∀G ∈ J
��, G # F �⇒ F ∨ G ∈ J

�

because J� is J��-steady, by Corollary 8. The two other direct implications follow from
F1 ⊆ J ⊆ J�� (the last inclusion comes from Lemma 2).

Conversely, if F /∈ J�(X), then there exists G ∈ J(X) such that F(¬�)G, or in other
words, F(¬�)(G ∨ X). Therefore (F ∨ G)(¬�)X, so that (F ∨ G) /∈ F�

1.
We show (2). Let F ∈ J�� and G ∈ J�. Let H ∈ J�� and H # (F ∨ G). Since H # G, we

have, by Corollary 8, H∨G ∈ J�. So, F � (H∨G). By (•), (F∨G)�H. So, F∨G ∈ J���.
By the containments J��� ⊆ J� ⊆ F�

1 and J��� ⊆ F���
1 ⊆ F�

1 , F ∈ J�� implies any of
the first three statements on the right and each of the first three statements on the right
implies the last statement on the right.

Conversely, assume that F /∈ J��. Then, there exists H ∈ J� such that H # F but
H(¬�)F . By (•), H∨ X(¬�)F and F ∨H(¬�)X. Thus, F ∨H /∈ F�

1 . �
A topological space is called J-based if all its neighborhood filters are J-filters. For

instance, the J-based spaces are respectively the finitely generated [19,22], first-countable,
Fréchet, strongly Fréchet, countably tight, countably fan-tight spaces, when J is the class
F1, Fω , F

�
1 , F

�
ω , F

♦
1 and F

†
1 respectively. We say that a class J of filters is called pointable

if F ∧ {x} ∈ J(X) whenever F ∈ J(X), for every set X and every x ∈ X.

Corollary 11. Let �, �, and � be ∨-compatible relations on filters. Let J be a pointable
and steady class containing F1.

(1) Each of the following statements are equivalent:
(a) (X, τ) is J�-based,
(b) (X, τ ∨ ξ) is J�-based for every J��-based topology ξ on X,
(c) (X, τ ∨ ξ) is J�-based for every J-based topology ξ on X,
(d) (X, τ ∨ ξ) is F�

1-based for every J-based topology ξ on X.
(2) If J� is pointable then the following are equivalent:

(a) (X, τ) is J��-based,
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(b) (X, τ ∨ ξ) is J���-based for every J�-based topology ξ on X,
(c) (X, τ ∨ ξ) is F���

1 -based for every J�-based topology ξ on X,
(d) (X, τ ∨ ξ) is J�-based for every J�-based topology ξ on X,
(e) (X, τ ∨ ξ) is F�

1 -based for every J�-based topology ξ on X.
(3) If (X, τ) is J��-based, then (X, τ ∨ ξ) is J��-based for every J��-based topology ξ

on X.

Proof. (1a) ⇒ (1b) follows immediately from Theorem 10. (1b) ⇒ (1c) ⇒ (1d) follows
from J ⊆ J�� and J� ⊆ F�

1 (because F1 ⊆ J).
(1d) ⇒ (1a). By way of contradiction, assuming that (X, τ) is not J�-based, there exists

x ∈ X such that Nτ (x) /∈ J�. In view of the first part of Theorem 10, there exists G ∈ J

such that G #Nτ (x) and Nτ (x) ∨ G /∈ F�
1. Let ξ be the topology on X with all points but x

isolated with Nξ (x) = G ∧ {x}. The space (X, ξ) is J-based because J is pointable. So, by
(1d), Nτ (x) ∨ (G ∧ {x}) = Nτ∨ξ (x) ∈ F�

1. We consider two cases.
If x /∈ ⋂

G, then (Nτ (x) ∨ (G ∧ {x})) # (X \ {x}) and G = (G ∧ {x}) ∨ (X \ {x}). So,
(Nτ {x}∨ (G ∧{x})) � (X \ {x}). Since � is ∨-compatible, Nτ (x) � (((G ∧{x})∨ (X \ {x})).
Thus, Nτ {x} � G, a contradiction.

If x ∈ ⋂
G, then G ∧ {x} = G. In this case we have Nτ (x) ∨ G ∈ F�

1 and Nτ (x) # G.
Since (Nτ (x)∨G)# X, (Nτ (x)∨G) �X. By the ∨-compatibility of �, Nτ � (G∨X). Thus,
Nτ (x) � G, a contradiction.

Therefore, (X, τ) is J�-based.
The second part is proved in a similar way.
The third part follows from Corollary 9. �
A class J of filters is called F1-composable if the image of a J-filter under a relation is

a J-filter.

Lemma 12.

(1) F1, Fω, F
♦
1 , F

†
1, F

�
1 , F

�
ω are all F1-composable.

(2) An F1-composable class is pointable.

Proof. For brevity we only show that F
†
1 is F1-composable, the other cases are similar and

more straightforward. Let F ∈ F
†
1(X), Y be a set and R ⊆ X × Y . Suppose B ⊆ Y and

(An)ω # (B ∨ RF). Since R−(An)ω # (F ∨ R−B), there exist finite sets Kn ⊆ R−An such
that (

⋃
ω Kn)# (F ∨R−B). For each n pick a finite Jn ⊆ An ∩B such that Kn ⊆ R−Jn. Let

F ∈ F . There is an n such that Kn ∩ F �= ∅. Since Kn ⊆ RJn, RJn # F . So, Jn ∩ RF �= ∅.
Thus, (

⋃
ω Jn) # (B ∨ RF) and RF † B .

For the second part consider the relation R = {(x, x): x ∈ X} ∪ (X × {p}). Then F ∧
(p) = RF . �

We call a filter F almost principal if there exists F0 ∈ F such that |F0 \ F | < ω for
every F ∈ F . Principal filters and cofinite filters (of an infinite set) are almost principal.
We use the same name for spaces based in such filters. Such spaces include sequences and
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one point compactifications of discrete sets. It is easily verified that every almost principal
filter is Fréchet.

If H ∈ F(X), we denote by H• the principal part
⋂

H of H and by H◦ the free part
H ∨ (H•)c . One or the other may be the degenerate filter {∅}↑. With the convention, that
G ∧ {∅}↑ = G for any filter G, we have

H = H◦ ∧H•.

Theorem 13. F
��
1 is exactly the class of almost principal filters.

Proof. Let F be an almost principal filter and let H # F be a Fréchet filter. There exists
F0 ∈ F such that |F0 \ F | < ω for every F ∈ F . If H•(¬#)F , then H◦ # F . In particular,
H◦ # F0. So, there exists a free sequence finer than H ∨ F0, by Fréchetness of H. This
sequence is also finer than F , hence finer than F ∨H. If H• # F , then since F is Fréchet,
there is a sequence finer than H• ∨F � H∨F . Thus, F ∈ F

��
1 .

Conversely, if F is not almost principal, then for all F ∈ F there exists HF ∈ F such
that |F \ HF | � ω. Therefore, there exists a free sequence (xF

n )n on F \ HF . The fil-
ter

∧
F∈F (xF

n )n is a Fréchet filter meshing with F . If (yn)n is finer than F , then for
every F ∈ F , there exists kF such that {yn: n � kF } ⊆ HF . Therefore, there exists nF

such that {xF
n : n � nF } ∩ {yn: n ∈ ω} = ∅. The set

⋃
F∈F {xF

n : n � nF } is an element of∧
F∈F (xF

n )n disjoint from {yn: n ∈ ω}. Thus, F /∈ F
��
1 . �

When � = � = � and J = F1, Corollary 11 rephrases as

Corollary 14.

(1) The following are equivalent:
(a) (X, τ) is Fréchet;
(b) (X, τ ∨ ξ) is Fréchet for every finitely generated topology ξ on X;
(c) (X, τ ∨ ξ) is Fréchet for every almost principal topology ξ on X;

(2) The following are equivalent:
(a) (X, τ) is almost principal;
(b) (X, τ ∨ ξ) is Fréchet for every Fréchet topology ξ on X.

No general condition was known to ensure that the supremum of two Fréchet topology
is Fréchet, as noticed for instance in [7,6].

Recall that F
�
ω is the class of strongly Fréchet filters (or of neighborhood filters of

strongly Fréchet spaces). We call productively Fréchet [16] the filters from the class F
��
ω

and we use the same name for spaces based in such filters. When � = � = � and J = Fω,
Corollary 11 rephrases as

Corollary 15.

(1) The following are equivalent:
(a) (X, τ) is strongly Fréchet;
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(b) (X, τ ∨ ξ) is Fréchet for every first-countable topology ξ on X;
(c) (X, τ ∨ ξ) is strongly Fréchet for every first-countable topology ξ on X;
(d) (X, τ ∨ ξ) is strongly Fréchet for every productively Fréchet topology ξ on X;

(2) The following are equivalent:
(a) (X, τ) is productively Fréchet;
(b) (X, τ ∨ ξ) is Fréchet for every strongly Fréchet topology ξ on X;
(c) (X, τ ∨ ξ) is strongly Fréchet for every strongly Fréchet topology ξ on X.

Consider J = F1 and � = ♦. We call steadily countably tight filters of F
♦♦
1 and we use

the same name for spaces based in such filters. Notice that F
♦
1 = F♦

ω .

Corollary 16.

(1) The following are equivalent:
(a) (X, τ) is countably tight;
(b) (X, τ ∨ ξ) is countably tight for every finitely generated topology ξ on X;
(c) (X, τ ∨ ξ) is countably tight for every countably based topology ξ on X;
(d) (X, τ ∨ ξ) is countably tight for every steadily countably tight topology ξ on X;

(2) The following are equivalent:
(a) (X, τ) is steadily countably tight;
(b) (X, τ ∨ ξ) is countably tight for every countably tight topology ξ on X.

Consider J = F1 and � = †. We call steadily countably fan-tight filters of F
††
1 and we

use the same name for spaces based in such filters. Recall from Lemma 6 that F
†
1 = F†

ω.

Corollary 17.

(1) The following are equivalent:
(a) (X, τ) is countably fan-tight;
(b) (X, τ ∨ ξ) is countably fan-tight for every finitely generated topology ξ on X;
(c) (X, τ ∨ ξ) is countably fan-tight for every countably based topology ξ on X;
(d) (X, τ ∨ ξ) is countably fan-tight for every steadily countably fan-tight topology ξ

on X;
(2) The following are equivalent:

(a) (X, τ) is steadily countably fan-tight;
(b) (X, τ ∨ ξ) is countably fan-tight for every countably fan-tight topology ξ on X.

To our knowledge, no general conditions ensuring that the supremum of two countably
(fan) tight topologies is countably (fan) tight (as in Corollaries 16 and 17) was known.

As a sample example of what one may get from Corollary 11 by mixing relations we let
J = Fω, � = �, � = †, � = ♦.
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Corollary 18.

(1) The following are equivalent:
(a) (X, τ) is based in F

�†
ω ;

(b) (X, τ ∨ ξ) is based in F
��†
ω for every strongly Fréchet topology ξ on X;

(c) (X, τ ∨ ξ) is based in F
��†
1 for every strongly Fréchet topology ξ on X;

(d) (X, τ ∨ ξ) is countably fan tight for every strongly Fréchet topology ξ on X;
(2) If (X, τ) is based in F

�†
ω , then (X, τ ∨ξ) is based in F

�♦
ω for every F†♦

ω -based topology
ξ on X.

4. From steady to composable

If F is a filter on a set X, G is a filter on a set Y and H is a filter on X × Y such that
F × Y # H and X × G # H, we denote by HF the filter on Y generated by the sets

HF = {
y: ∃x ∈ F, (x, y) ∈ H

}
,

for H ∈H and F ∈F and by H−G the filter on X generated by the sets

H−G = {
x: ∃y ∈ G, (x, y) ∈ H

}
,

for H ∈H and G ∈ G. Notice that

H # (F × G) ⇐⇒ HF # G ⇐⇒ F # H−G.

A class J of filters is (D,M)-composable if for every X and Y and every J-filter F
on X and every D filter H on X × Y , the filter HF is an M-filter on Y . A class J is
called D-composable [11,22] if it is (D,J)-composable. We say that a class of filters J

is projectable provided that for every X and Y and every J-filter F on X × Y we have
πY (F) ∈ J. Obviously, every F1-composable class of filters is projectable.

Given a class of filters J, we define the kernel of J (ker(J)) to be the class of (F1,J)-
composable filters. Notice that ker(J) is the largest F1-composable subclass of J.

Lemma 19. If D is an F1-composable class of filters, then D is F1-steady, and D × A ∈ D

for every D ∈ D and every principal filter A.

Proof. Let A ⊆ X and F ∈ D(X) be such that F # A. Since ΔA = {(x, x): x ∈ A} ∈
F1(X × X) and D is F1-composable, A ∨F = ΔAF ∈ D.

Now, if D ∈ D(X) and A ⊂ Y , then D × A = π−
XD ∨ π−

Y A ∈ D because we already
have shown that D is F1-steady. �
Theorem 20.

(1) Let M be an F1-steady and projectable class. If J ×D ∈ M for every J ∈ J and every
D ∈ D, then J is (D,M)-steady.

(2) Let M be projectable and J be F1-composable. If J is (D,M)-steady then J is (D,M)-
composable.
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(3) Let D be an F1-composable class. If J is (D,M)-composable, then J × D ∈ M for
every J ∈ J and every D ∈ D.

(4) Let M be an F1-steady and projectable class. If either D or J is F1-composable then
J ×D ∈ M for every J ∈ J and every D ∈ D if and only if J ×D ∈ ker(M) for every
J ∈ J and every D ∈ D.

Proof. Proof of (1). Let D ∈ D(X) and J ∈ J(X) such that D #J . Then D×J ∈ M(X ×
X). Let Δ be the diagonal of X × X. As M is F1-steady, (D × J ) ∨ Δ ∈ M(X × X). As
M is projectable, the X-projection of (D × J ) ∨ Δ is an M-filter. We conclude with the
observation that πX((D ×J ) ∨ Δ) = D ∨J .

Proof of (2). Let J ∈ J(X) and let H ∈ D(X ×Y). The filter J ×Y is a J-filter because
J is F1-composable. Therefore (J × Y) ∨H is an M-filter. As M is projectable, πY ((J ×
Y) ∨H) ∈ M(Y ). We conclude with the observation that H(J ) = πY ((J × Y) ∨H).

Proof of (3). Let J ∈ J(X) and D ∈ D(Y ). Let ΔX be the diagonal of X × X, and
consider the filter ΔX × D as a filter of relations from X to X × Y , that is, a filter on
X × (X × Y). This is a D-filter by Lemma 19, because D is F1-composable. Moreover,
J ×D = (ΔX ×D)(J ), so that J ×D ∈ M(X × Y).

Proof of (4). Let J ∈ J(X), D ∈ D(Y ) and A ⊂ X × Y × Z. We want to show that
A(J × D) ∈ M(Z). If either D or J is F1-composable, then either J × Z ∈ J(X × Z)

or D × Z ∈ D(Y × Z). In any case, J × D × Z ∈ M(X × Y × Z). Moreover, πZ(A ∨
(J × D × Z)) ∈ M(Z) because M is both F1-steady and projectable. We conclude with
the observation that A(J ×D) = πZ(A ∨ (J ×D × Z)). �

The following diagram summarizes these relationships between stability under product,
composability and steadiness. Notice that ker(M) is F1-composable, hence F1-steady and
projectable.

D(J) ⊂ M

J ∨ D ⊂ MD × J ⊂ M

D × J ⊂ ker(M) J ∨ D ⊂ ker(M)

D(J) ⊂ ker(M)
�

J is F1-composable

��������������

D is F1-composable

�

�
�

�

�
��������������

D or J is F1-composable

M is F1-steady and projectable

D is F1-composable

J is F1-composable
M projectable

Corollary 21. Let J and D be two F1-composable classes of filters, and M be an F1-steady
projectable class of filters. The following are equivalent:
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(1) J is (D,M)-composable;
(2) J is (D,ker(M))-composable;
(3) J is (D,ker(M))-steady;
(4) J is (D,M)-steady;
(5) (F ×L) ∈ ker(M) whenever L ∈ D and F ∈ J;
(6) (F ×L) ∈ M whenever L ∈ D and F ∈ J.

In particular, Fω , F
�
ω , F

��
ω are all F1-composable, so that steady and composable are the

same for these classes. Therefore, Corollary 15 combines with Corollary 21 to the effect
that

Proposition 22. [21,16] The following are equivalent:

(1) X is strongly Fréchet;
(2) X × Y is strongly Fréchet for every productively Fréchet space Y ;
(3) X × Y is Fréchet for every first-countable space Y .

Proposition 23. [16] X is productively Fréchet if and only if X×Y is Fréchet (equivalently
strongly Fréchet) for every strongly Fréchet space Y .

G. Gruenhage brought to our attention that another characterization of productively
Fréchet spaces (under the name of PP spaces) was contained in [14], providing an earlier
solution to the problem studied in [16].

Analogously, F
�
1 (the class of Fréchet filters) is F1-composable. From Theorem 10 ap-

plied with � = � and J = F1 we get

Proposition 24. [22] A topological space is Fréchet if and only if its product with every
finitely generated space is Fréchet.

The classes F1, Fω, and F†
ω, and F

♦
1 are F1-composable, so that steady and composable

are the same for these classes. Therefore, Corollaries 16 and 17 combine with Corollary 21
to the effect that:

Proposition 25. X is countably tight if and only if X × Y is countably tight for every
countably based Y .

Proposition 26. X is countably fan tight if and only if X × Y is countably fan tight for
every countably based space Y .

In contrast, we will see that the classes F
♦♦
1 , F

�♦
1 , F

†♦
1 , F

�♦
ω and F

��
1 are not F1-

composable.1 Hence, to investigate stability under product of the associated properties, we
need to introduce more machinery.

1 We do not know if F
�†
ω and F

†† are F1-composable.
1
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A ∨-compatible relation on filters (that is, defined on F(X) for any set X) is ×-
compatible provided that

(F × G) � A �⇒ G � AF . (••)

The proof of the following lemma is left to the reader.

Lemma 27. �, ♦ and † are all ×-compatible.

Lemma 28. If J is an F1-composable class of filters and � is a ×-compatible relation, then
J� is F1-steady and projectable.

Proof. The fact that J� is F1-steady follows from Proposition 7. Let F ∈ J�(X × Y) and
G ∈ J(Y ). Since X × G ∈ J(X × Y), (X × G) � F . Since � is ×-compatible, FX � G.
However, FX = πY (F). Thus, πY (F) ∈ J�. �
Theorem 29. Let J be a steady F1-composable class of filters containing F1, and let �, �,
and � be ×-compatible relations.

(1) The following are equivalent:
(a) F ∈ ker(J�);
(b) (F × G) ∈ ker(J�) for every G ∈ ker(J��);
(c) (F × G) ∈ J� for every G ∈ J;
(d) (F × G) ∈ F�

1 for every G ∈ J.
(2) If J� is F1-composable and contains F1, then the following are equivalent:

(a) F ∈ ker(J��);
(b) (F × G) ∈ ker((ker(J��))�) for every G ∈ J�;
(c) (F × G) ∈ J� for every G ∈ J�;
(d) (F × G) ∈ F�

1 for every G ∈ J�.
(3) Let J� be an F1-composable class of filters. If F ∈ ker(J��) then (F ×G) ∈ ker(J��)

for every G ∈ ker(J��).

Proof. We prove (1).
(1a) ⇒ (1b). By Theorem 10 (1), F ∨ G ∈ J� for every G ∈ J��, hence in particular for

every G ∈ ker(J��). Since J is F1-composable, Lemma 28 applies to the effect that J� is F1-
steady and projectable. Moreover, ker(J�) and ker(J��) are F1-composable by definition.
In view of Corollary 21, (1b) follows.

(1b) ⇒ (1c) because J ⊂ ker(J��) and ker(J�) ⊂ J�. Similarly, (1c) ⇒ (1d) because
J� ⊂ F�

1.
(1d) ⇒ (1a). Let A ⊂ X × Y . We want to show that AF ∈ J�. If G ∈ J(Y ) meshes with

AF then A # (F ×G). But F × G ∈ F�
1, so that (F ×G) � A. By (••), we have G � AF , so

that AF ∈ J�.
(2a) ⇒ (2b) is proved from Theorem 10 (2), combined with Lemma 28 and Corollary 21

as (1a) ⇒ (1b). (2b) ⇒ (2c) ⇒ (2d) follows from inclusions among the classes of filters
considered and (2d) ⇒ (2a) follows from (••).

Finally (3) follows in a similar way from Corollary 9. �



F. Jordan, F. Mynard / Topology and its Applications 153 (2006) 2386–2412 2399
In the very same way that we deduced Corollary 11 from Theorem 10, we deduce the
following from Theorem 29.

Corollary 30. Let J be a steady F1-composable class containing F1 and let � and � be
two ×-compatible relations.

(1) The following are equivalent:
(a) X is ker(J�)-based;
(b) X × Y is ker(J�)-based for every ker(J��)-based Y ;
(c) X × Y is J�-based for every J-based Y ;
(d) X × Y is F�

1-based for every J-based Y .
(2) If J� is F1-composable and contains F1, then the following are equivalent:

(a) X is ker(J��)-based;
(b) X × Y is ker((ker(J��))�)-based for every J�-based Y ;
(c) X × Y is J�-based for every J�-based Y ;
(d) X × Y is F�

1 -based for every J�-based Y .
(3) If J� is F1-composable and contains F1, and if X is ker(J��)-based, then X × Y is

ker(J��)-based for every ker(J��)-based Y .

5. Characterizations of kernels

Now the missing point to apply the previous results to theorems of stability of local
topological properties like tightness or fan-tightness under product is to characterize ker-
nels of the corresponding classes of filters.

Theorem 31.

ker
(
F

��
1

) = F1.

Proof. F1 ⊆ ker(F��
1 ) is clear. Conversely, if X is a set and F /∈ F1(X), then for every

F ∈ F , there exists HF ∈ F and xF ∈ F \ HF . Let Y be an infinite set. Then F × Y

is not an almost principal filter because the sets {xF } × Y are infinite. By Theorem 13,
F × Y /∈ F

��
1 , and F /∈ ker(F��

1 ). �
As a consequence, we obtain the dual statement to Proposition 24.

Corollary 32. [22] A topological space is finitely generated if and only if its product with
every Fréchet space is Fréchet.

5.1. κ-tightness, productive κ-tightness, tight points, and absolute countable tightness

For our discussion of kernels for tightness we consider the following relation. Let κ be
an infinite cardinal and define the relation ♦κ on F(X) by F ♦κ H if

H # F �⇒ ∃A ∈ F1, |A| � κ: A # F ∨H.
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This is a ∨-compatible and ×-compatible relation. F
♦κ

1 is the class of κ-tight filters. Recall
that a topological space X has tightness κ [1] if for every x ∈ X and A ⊆ X such that
x ∈ cl(A), there exists a subset B ⊆ A such that |B| � κ and x ∈ cl(B). It is easy to see
that a space X has κ-tightness if and only if all its neighborhood filters are κ-tight.

Now we give a general result for kernels of ♦κ -polars for classes of filters satisfying
certain conditions.

Let I and J be sets. A function γ : I ×J → 2X is called a presentation on X. We define

γ∗ =
{⋃

α∈I

γ (α,β): β ∈ J

}↑
.

If G is a filter on X and G = γ∗, then we say that γ is a presentation of G. Of course,
if γ∗ is a filter, then γ is a presentation of γ∗. A presentation γ : I × J → 2X is called
J-expandable if the filter γ ∗ defined on X × I by

γ ∗ =
{{⋃

α∈I

γ (α,β) × {α}
}

: β ∈ J

}↑

is a J-filter on X × I . Notice that γ∗ = πX(γ ∗). Therefore, if J is projectable and γ : I ×
J → 2X is a J-expandable presentation on X, then γ∗ ∈ J(X).

Theorem 33. Let J be an F1-composable class of filters included in F
♦κ

1 . The following
are equivalent:

(1) F ∈ ker(J♦κ );
(2) F ∈ J♦κ and A ∨F ∈ ker(J♦κ ) for all A such that A # F and |A| � κ ;
(3) For any J-expandable presentation γ : I × J → 2X such that γ∗ # F , there exists

a subset C of I of cardinality at most κ such that {⋃α∈C γ (α,β): β ∈ J } # F ;
(4) For any J-expandable presentation γ :F × J → 2X such that γ∗ # F , where J

is a J-filter, each set γ (F,J ) is a subset of F of cardinality at most κ and each
γ (F,I) is a J-filter, there exists a subfamily K of F of cardinality at most κ such
that {⋃F∈K γ (F,J ): J ∈ J } # F .

Proof. (1) ⇒ (2) is obvious.
(2) ⇒ (3). Let γ : I × J → 2X be a J-expandable presentation such that γ∗ #F . As F ∈

J♦κ , there exists A of cardinality at most κ such that A#F∨γ∗ or equivalently, F∨A # γ∗.
By J-expandability of γ , the filter γ ∗ is a J-filter on X × I . Moreover π−

X (F ∨ A) ∈
J♦κ (X × I ) because F ∨A ∈ ker(J♦κ ); and π−

X (F ∨A) # γ ∗. Thus, there exists a set D of
cardinality at most κ such that D #π−

X (F ∨A)∨γ ∗. Then {⋃α∈πI (D) γ (α,β): β ∈ J } # F .
(3) ⇒ (4) is obvious.
(4) ⇒ (1). Let A ⊂ X × Y and let G be a J-filter on Y such that G # AF . For every

F ∈F , G # AF and G ∈ F
♦κ

1 so that there exists a subset BF of AF of cardinality at
most κ and meshing with G. For each F ∈ F , there exists a function fF :BF → F with
graph included in A. Consider the function γ :F ×G → 2X defined by γ (F,G) = fF (G∩
BF ). It is a J-expandable presentation, because J is F1-composable and {⋃F∈F γ (F,G)×
{F }: G ∈ G}↑ is the image of the J-filter G under the multivalued map R :Y ⇒ X×F with



F. Jordan, F. Mynard / Topology and its Applications 153 (2006) 2386–2412 2401
graph {(y, x,F ): fF (x) = y}. By (4), there is a subfamily K of F of cardinality at most κ

such that {⋃F∈K γ (F,G): G ∈ G} # F . The set C = ⋃
F∈K BF is of cardinality at most κ

and C # G ∨ AF . �
Let

∧
(D) be the class of filters than can be represented as the infimum of a family of

D-filters.

Corollary 34. If J is an F1-composable class included in the class F
♦κ

1 such that J = ∧
(D)

where D contains F1, then the following are equivalent:

(1) F ∈ ker(J♦κ );
(2) F ∈ J♦κ and A ∨F ∈ ker(J♦κ ) for all A such that A # F and |A| � κ ;
(3) for every family (Gα)α∈I of D-filters such that

∧
α∈I Gα # F there exists J ⊆ I such

that |J | � κ and
∧

α∈J Gα # F ;
(4) for every family (Gα)α∈I of D-filters: if ∀F ∈ F , ∃α ∈ I and CF ⊆ F : CF ∈ Gα and

|CF | � κ , then there exists J ⊆ I such that |J | � κ and
∧

α∈J Gα # F ;
(5) for every family (Gα)α∈I of D-filters, each of which is either free or the principal

filter of a set of cardinality at most κ : if ∀F ∈ F , ∃α ∈ I and CF ⊆ F : CF ∈ Gα and
|CF | � κ , then there exists J ⊆ I such that |J | � κ and

∧
α∈J Gα # F .

Proof. (1) ⇔ (2) follows from Theorem 33 and (3) ⇒ (4) ⇒ (5) by definition.
(1) ⇒ (3). Let (Gα)α∈I be a family of D-filters such that

∧
α∈I Gα # F . Consider the

presentation γ : I × ∏
α∈I Gα → 2X defined by γ (α, (Gβ)β∈I ) = Gα . It is a J-expandable

presentation of
∧

α∈I Gα . Indeed, J is F1-composable so that Gα × {α} ∈ J for all α ∈ I ,
and J is stable by infimum so that

∧
α∈I (Gα × {α}) is a J-filter on X × I . In view of

Theorem 33, there exists C ⊂ I such that |C| � κ and
∧

α∈C Gα # F .
(5) ⇒ (1). In view of Theorem 33, we only need to show that for any J-filter G such that

G # F and every J-expandable presentation γ :F ×J → 2X of G such that J is a J-filter
each γ (F,J ) is a subset of F of cardinality at most κ and each γ (F,I) is a J-filter, there
exists a subfamily K of F of cardinality at most κ such that {⋃F∈K γ (F,J ): J ∈ J } #F .
For each F ∈ F , consider the J-filter JF = γ (F,J ). As J = ∧

(D), there exists a D-
filter LF � JF that is either free or principal. Indeed, if J •

F is non-degenerate, then it
is a D-filter finer than JF . Otherwise, JF is free and therefore admits finer free D-filters.∧

F∈F LF #F and each LF contains a subset a cardinality at most κ of F . Therefore, there
exists a subfamily K of F of cardinality at most κ such that

∧
F∈KLF # F . Moreover,

{⋃F∈K γ (F,J ): J ∈ J }↑ �
∧

F∈KJF �
∧

F∈KLF . Therefore, {⋃F∈K γ (F,J ): J ∈
J }↑ # F . �
5.1.1. Productive κ-tightness
Corollary 35. The following are equivalent:

(1) F ∈ ker(F♦κ♦κ

1 );

(2) F ∈ F♦κ♦κ and A ∨F ∈ ker(F♦κ♦κ

1 ) for all A such that A # F and |A| � κ ;

(3) for every collection {Gα: α ∈ I } ⊆ F
♦κ

1 : if
∧

α∈I Gα #F , then ∃J ⊆ I such that |J | � κ

and
∧

Gα # F ;
α∈J
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(4) for every collection {Gα: α ∈ I } ⊆ F
♦κ

1 : if ∀F ∈ F , ∃α ∈ I and CF ⊆ F such that
CF ∈ Gα and |CF | � κ , then ∃J ⊆ I such that |J | � κ and

∧
α∈J Gα # F ;

(5) for every collection {Gα: α ∈ I } ⊆ F
♦κ

1 each of which is either free or the principal
filter of a set of cardinality at most κ : if ∀F ∈ F , ∃α ∈ I and CF ⊆ F such that
CF ∈ Gα and |CF | � κ , then there exists J ⊆ I such that |J | � κ and

∧
α∈J Gα # F .

Proof. Since F
♦κ

1 = ∧
(F

♦κ

1 ), the corollary is just a restatement of Corollary 34 with D =
J = F

♦κ

1 . �
A point x of a topological space X is a productively κ-tight point if NX(x) ∈

ker(F♦κ♦κ

1 ). A topological space is productively κ-tight if all its points are productively
κ-tight.

The interest of such an explicit description of a kernel lies in its combination with the
corresponding instance of Corollary 30. In the present case,

Corollary 36. X × Y is κ-tight for every κ-tight space Y if and only if X is productively
κ-tight.

Notice that the fourth condition in Corollary 35 corresponds to the non-existence of sin-
gular families in the sense of Arhangel’skii [1]. Hence, the combination of Corollaries 35
and 36 extends the equivalence between (b) and (c) in [1, Theorem 3.6], and provides a
shorter proof. Of all the conditions of Corollary 35 the third is probably the most straight-
forward and easy to use, but was apparently not known to be equivalent to productive
κ-tightness.

5.1.2. Tight points
We now characterize ker(F�♦

1 ). For a cardinal κ we let Sκ denote the space obtained as

a quotient of κ-many mutually disjoint convergent sequences (z
ξ
n)n∈ω by identifying their

limit points to a single point w. Sκ is endowed with the quotient topology. We denote the
neighborhood of w by Sκ .

Theorem 37. The following are equivalent for a filter on X:

(1) F ∈ ker(F�♦
1 );

(2) F ∈ F
�♦
1 and F ∨ A ∈ ker(F�♦

1 ) for any countable set A meshing with F ;
(3) If

∧
α∈I (x

α
n )n∈ω #F , then there exists a countable J ⊆ I such that

∧
α∈J (xα

n )n∈ω #F ;
(4) If

∧
α∈I (x

α
n )n∈ω # F , where each sequence (xα

n )n∈ω is either free or principal, then
there exists a countable J ⊆ I such that

∧
α∈J (xα

n )n∈ω # F ;

(5) If {Gα: α ∈ I } ⊆ F
�
1 and

∧
α∈I Gα # F , then there exists a countable J ⊆ I such that∧

α∈J Gα # F ;
(6) F × S|Xω| ∈ F

♦
1 .
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Proof. (1) ⇔ (3) ⇔ (4) ⇔ (2) follows from Corollary 34 with J = F
�
1 and D equal to the

class of sequences and the observation that F
�
1 = ∧

(D) (e.g., [10]).

(1) ⇔ (5) follows from Corollary 34 with J = F
�
1 and D = F

�
1 and the observation that

F
�
1 = ∧

(F
�
1 ).

(1) ⇒ (6). By Theorem 20, F × G ∈ F
♦
1 (X × Y) for any Fréchet filter G on any set Y .

In particular, F × S|Xω| ∈ F
♦
1 (X × S|Xω|).

(6) ⇒ (3). Let {(xα
n )n∈ω: α ∈ I } be a collection of sequences such that (

∧
α∈I (x

α
n )n∈ω)#

F . Let κ = |Xω| and K = {(xξ
n)n∈ω: ξ ∈ κ} be an enumeration of the set {(xα

n )n∈ω: α ∈ I }
possibly with repetitions. Let R ⊆ X × Sκ be defined by R = ⋃

ξ∈κ{(xξ
n, z

ξ
n): n ∈ ω}.

Notice that R # (F ×Sκ). By (6), there is a countable set T # (R ∨ (F ×Sκ)). Let Q = {ξ ∈
κ: (∃n ∈ ω)(x

ξ
n, z

ξ
n) ∈ T }. Let F ∈ F . Since T # (R ∨ (F × Sκ )), there is ξ ∈ Q such that

π−1
X (F ) # (x

ξ
n, z

ξ
n)n∈ω. So, for some ξ ∈ Q we have F # (x

ξ
n)n∈ω . Thus, F #

∧
ξ∈Q(x

ξ
n)n∈ω

and Q is countable. �
In [5] the notion of a tight point is introduced. A collection of sets E is said to cluster at

a point p provided that for every neighborhood U of x there is an E ∈ E such that U ∩E is
infinite. A point x in a space X is said to be tight provided that for any collection of sets E
that clusters at p one can find a countable subcollection E∗ ⊆ E such that E∗ clusters at p.

Theorem 38. A point p of a space X is tight if and only if NX(p) ∈ ker(F�♦
1 ).

Proof. Suppose that the neighborhood filter N (p) is in ker(F�♦
1 ). Let E be a collection of

sets which clusters at p. For each F ∈ N (p) we can find an EF ∈ E such that EF ∩ F is
infinite. Let (xF

n )n∈ω be a free sequence on EF ∩ F . Clearly, N (p) #
∧

F∈N (x)(x
F
n )n∈ω.

There exists {Fk: k ∈ ω} ⊆ F such that N (p) #
∧

k∈ω(x
Fk
n )n∈ω . Let E∗ = {EFk : k ∈ ω}. It

is easily verified that E∗ clusters at p.
Suppose that p is a tight point of X. Let N (p) #

∧
α∈I (x

α
n )n∈ω , where each sequence

(xα
n )n∈ω is either free or principal. In other words, we can write N (p) # A(

∧
α∈J (xα

n )n∈ω),
where A = ∧{(xα

n )n∈ω: (xα
n )n∈ω ∈ F1} and every sequence (xα

n )n∈ω with α ∈ J is free. If
A #N (p), either A #N (p)• or A #N (p)◦. In the first case, there is a fixed sequence of the
original collection whose defining point is in N (p)• and is therefore finer than N (p). In
the second case, A ∩ N is infinite for every N ∈N (p) and there exists a countably infinite
set AN ⊂ A ∩ N . The collection {AN : N ∈ N (p)} clusters at p. Since p is a tight point,
there exists {ANk

: k ∈ ω} which clusters at p. Then
⋃

k∈ω ANk
is a countable subset of A

meshing with N (p), and therefore defines a countable collection of (fixed) sequences from
the original collection whose infimum is meshing with N (p).

If A(¬#)N (p) then N (p) #
∧

α∈J (xα
n )n∈ω . Each N ∈ N (p) is meshing with one of

the sequences (xα
n )n∈ω for α ∈ J , so that the family {{xα

n : n ∈ ω}: α ∈ J } clusters at p.
Since p is tight, there is (αk)k∈ω in J such that {{xαk

n : n ∈ ω}: k ∈ ω} clusters at p. Then
N (p) #

∧
k∈ω(x

αk
n )n∈ω . �

From Theorems 37 and 38, we have the following improvement of [5, Theorem 3.1]
which states the equivalence between (1) and (2), but only for a countable space X.
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Corollary 39. The following are equivalent:

(1) every point of X is tight;
(2) X × S|Xω| is countably tight;
(3) X × Y is countably tight for every Fréchet space Y .

By [1, Example 1.3], Sω × Sωω is not countably tight. Since Sω is a countable space,
Sω ∈ F

♦♦
1 . As Sωω ∈ F

�
1 , we have F

♦♦
1 \ ker(F�♦

1 ) �= ∅. Hence, F
♦♦
1 �= ker(F♦♦

1 ) and

F
�♦
1 �= ker(F�♦

1 ).

In view of Theorem 38 and considering that F
�
1 ⊂ F

♦
1 , hence ker(F♦♦

1 ) ⊂ ker(F�♦
1 ), we

obtain:

Corollary 40. Every productively countably tight point is a tight point.

5.1.3. Absolute tightness
A notion related to tightness, productive tightness and tight points and introduced in

[1] is that of absolute tightness. A point of a topological space X is absolutely tight if
it is a point of countable tightness in a compactification of X. Absolute tightness can be
characterized in a way that is similar to the characterization of productive tightness in
Corollary 35.

Theorem 41. Let X be a completely regular topological space and let x ∈ X. The following
are equivalent:

(1) x is an absolutely tight point;
(2) for any family {Fα: α ∈ I } of filters such that

∧
α∈I Fα # N (x) there exists (αi)i∈ω in

I such that
∧

i∈ω Fαi
# N (x);

(3) for any family {Uα: α ∈ I } of ultrafilters such that
∧

α∈I Uα #N (x) there exists (αi)i∈ω

in I such that
∧

i∈ω Uαi
# N (x).

Proof. (1) ⇒ (2). Let {Fα: α ∈ I } be a family of filters such that
∧

α∈I Fα # N (x).
Since each Fα = ∧

U∈β(Fα) U , where β(F) denotes the set of ultrafilters finer than F ,
we have

∧
α∈I,U∈β(Fα) U # N (x). Let bX denote a compactification of X and let A =⋃

α∈I,U∈β(Fα) limbX U . Let W ∈ NbX(x). By regularity of bX, there exists V ∈ NbX(x)

such that clbX V ⊂ W . Since V ∩ X ∈ NX(x), there exists α ∈ I , U ∈ β(Fα) and U ∈ U
such that U ⊂ V ∩ X. Then limbX U ⊂ clbX V ⊂ W . Therefore, x ∈ clbX A. Since x is
an absolutely tight point, there exist points an in A such that x ∈ clbX({an: n ∈ ω}).
For each n, pick Un in

⋃
α∈I β(Fα) such that an ∈ limbX Un, and pick αn such that

Un ∈ β(Fαn). We claim that N (x) #
∧

n∈ω Fαn . Indeed, for each open B ∈ NX(x), there
is an open B1 ∈ NbX(x) such that B1 ∩ X = B . There is an n ∈ ω such that an ∈ B1.
Therefore, there exists U ∈ Un such that U ⊂ B1 ∩ X = B . Hence N (x) #

∧
n∈ω Un so that

N (x) #
∧

n∈ω Fαn .
(2) ⇒ (3) is obvious.
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(3) ⇒ (1). Let bX denote a compactification of X and let A ⊂ bX be such that x ∈
clbX A. Let W ∈ NX(x) be open. There is a bX-open set V ∈ NbX(x) such that W = V ∩
X. There exists a ∈ A∩V . We can find an ultrafilter Ua on X such that limbX Ua = a. As V

is open, there exists U ∈ Ua such that U ⊂ V ∩X = W . Hence,
∧

a∈A Ua # NX(x). By (3),
there exists (an)n∈ω in A such that

∧
n∈ω Uan # NX(x). We claim that x ∈ clbX{an: n ∈

ω}. Indeed, for each V ∈ NbX(x), we can find V1 ∈ NbX(x) such that clbX V1 ⊂ V . As
X ∩ V1 ∈ NX(x) and NX(x) #

∧
n∈ω Uan , there is an n such that (X ∩ V1) ∈ Uan . Now,

an ∈ clbX V1 ⊂ V and x is an absolutely tight point. �
In view of Corollary 35, we obtain:

Corollary 42. [1] An absolutely tight point is productively countably tight.

The converse is not true in general. Indeed, as observed in [1], a Σ -product of uncount-
ably many copies of the discrete two point space {0,1} (or of the real line) is an example
of a productively countably tight space (all points of which are, in particular, tight points)
which is not absolutely countably tight. However, the converse is true for countable spaces
because every filter on a countable set is countably tight. More precisely:

Proposition 43. Let X be a topological space. The following are equivalent:

(1) X is productively countably tight;
(2) X is steadily countably tight and every countable subset of X is productively countably

tight;
(3) X is steadily countably tight and every countable subset of X is absolutely tight.

Proof. The equivalence between (1) and (2) follows from (1) ⇔ (2) in Corollary 35. More-
over, every filter on a countable set is countably tight, so that productive countable tightness
and absolute tightness coincide on countable sets; and (2) ⇔ (3) follows. �

Bella and Malykhin [4, Example 1] is an example under (CH) of a tight point which does
not have countable absolute tightness. The space considered is countable, so that it provides
an example of a tight point which is not productively countably tight. The associated filter
is in ker(F�♦

1 ) \ ker(F♦♦
1 ). It shows that, at least under (CH), the converse of Corollary 40

is not true.

5.2. Productively Fréchet and ℵ0-bisequential spaces

In [1] a regular space X is called ℵ0-bisequential provided that ω is in the frequency
spectrum of X (by [1, Theorem 3.6] and Corollary 36, it means that X is productively
countably tight) and every countable subset of X is bisequential.2 [1, Proposition 6.27]

2 A filter F is bisequential if for every filter G #F there exists a countably based filter H #G such that H �F .
A topological space is bisequential if all its neighborhood filters are bisequential.
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states that the product of an ℵ0-bisequential space with a strongly Fréchet space is strongly
Fréchet. In view of Proposition 23, every ℵ0-bisequential space is productively Fréchet.
We can also give a direct proof of this fact by characterizing productive Fréchetness in
terms comparable to ℵ0-bisequentiality.

Theorem 44. F ∈ F
��
ω (X) if and only if F ∈ F

�♦
ω (X) and F ∨ A ∈ F

��
ω (X) for every

countable A ⊆ X such that A # F .

Proof. Suppose F ∈ F
�♦
ω (X) and F ∨ A ∈ F

��
ω for every countable A ⊆ X such that

A # F . Let G ∈ F
�
ω and G # F . Since F ∈ F

�♦
ω (X), there is a countable set A such that

A # G ∨ F . Since F ∨ A ∈ F
��
ω , and G # (F ∨ A), there is countably based filter C �

G ∨ (F ∨ A) � G ∨F . Thus, F � G. Therefore, F ∈ F
��
ω .

The opposite implication is trivial. �
We now deduce

Corollary 45. [1, Proposition 6.27] If X is ℵ0-bisequential, then X is productively Fréchet.

Proof. Let F be the neighborhood filter of a point in X. By [1, Theorem 3.6], F ∈
ker(F♦♦

1 ) ⊆ F
♦♦
1 . In particular, F ∈ F

♦♦
1 ⊆ F

�♦
ω . Also, for every countable set A mesh-

ing F we have F ∨ A bisequential and hence F ∨ A is in F
��
ω . So by Theorem 44,

F ∈ F
��
ω . �

There are models of set theory in which the converse of Corollary 45 is false [16]. It
is unknown if there is a ZFC example of a productively Fréchet space which is not ℵ0-
bisequential.

5.3. J-expandable presentations and kernels of ♦-polars

To apply Theorem 33 for a class J that is not stable under infima, we need to use general
presentations of filters and not only infima as in Corollary 34. Practically speaking, to apply
Theorem 33 in such cases, we need to characterize J-expandability of a presentation.

A crossing of a presentation γ : I × J → 2X is a family {Dρ,l : (ρ, l) ∈ I × K} such
that for every β ∈ J and l ∈ K there exists α ∈ I such that γ (α,β) ∩ Dα,l �= ∅. A cross-
ing {Dρ,l : (ρ, l) ∈ I × ω} satisfying Dρ,l+1 ⊆ Dρ,l for every (ρ, l) ∈ I × ω is called
ω-decreasing.

Lemma 46. A presentation γ : I × J → 2X is F
�
ω -expandable if and only if for every ω-

decreasing crossing {Dρ,l : (ρ, l) ∈ I × ω} of γ , there exist ek ∈ X and αk ∈ I , such that
for every β ∈ J and n ∈ ω we have ek ∈ γ (αk,β) ∩ Dαk,n for all k sufficiently large.

Proof. Suppose γ : I × J → X is not F
�
ω -expandable. There is a decreasing countably

based filter E = {Ek}k∈ω on X × I such that E # γ ∗ and there is no sequence (xn,αn) �
E ∨ γ ∗. Since E # γ ∗, for every β ∈ J and k ∈ ω there is an α ∈ I such that
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γ (α,β) × {α} ∩ Ek �= ∅. (2)

For each k ∈ ω and α ∈ I , let Dα,k = {x ∈ X: (x,α) ∈ Ek}. By (2), {Dα,k: (α, k) ∈ I ×
ω} is a crossing of γ . It is ω-decreasing because {Ek: k ∈ ω} is decreasing. By way of
contradiction, assume that there exist points el ∈ X and αk ∈ I , such that for every β ∈ J

and k ∈ ω we have el ∈ γ (αl, β) ∩ Dαl,k for all l sufficiently large. For each l ∈ ω let
yl = (el, αl). We show that (yl)l∈ω � γ ∗ ∨ E . Let β ∈ J and k ∈ ω. There is n ∈ ω such
that el ∈ γ (αk,β) ∩ Dαk,k for all l � n. Now yl = (el, αl) ∈ (γ (αl, β) ∩ Dαl,k) × {αl} =
(γ (αl, β) × {αl}) ∩ Ek for all l � n. So, (yl)l∈ω � γ ∗ ∨ E , contradicting our choice of E .

Suppose γ : I × J → 2X is an F
�
ω -expandable presentation. Let {Dα,k: (α, k) ∈ I × ω}

be an ω-decreasing crossing of γ . For each k ∈ ω define Ek = {(x,α): x ∈ Dk,α}. It is
easily verified that (Ek)k∈ω is a countably based filter meshing with γ ∗. So, there exists
(yk)ω � (Ek)k∈ω ∨ γ ∗. For each k let ek = πX(yk) and αk = πI (yk). Let β ∈ J and n ∈ ω.
There is l ∈ ω such that yk ∈ En ∩ γ (αk,β) × αk for all k � l. So, ek ∈ Dαk,n ∩ γ (αk,β)

for all k � l. �
Lemma 47. A presentation γ : I ×J → 2X is F

†
1-expandable if and only if for any crossing

{Dρ,l : (ρ, l) ∈ I ×ω} of γ , we may find finite sets Ek ⊆ X and Hk ⊆ I , such that for every
β ∈ J there is k ∈ ω and α ∈ Hk such that we have Ek ∩ γ (α,β) ∩ Dα,k �= ∅.

Proof. Suppose γ : I × J → 2X is not F
†
1-expandable. There is a countable collection of

sets {Bk}k∈ω on X × I meshing with γ ∗ such that for any selection of finite sets Gk ⊆ Bk ,⋃
k∈ω Gk does not mesh with γ ∗. Since Bk # γ ∗, for every β ∈ J and k ∈ ω there is an

α ∈ I such that

γ (α,β) × {α} ∩ Bk �= ∅. (3)

For each k ∈ ω and α ∈ I let Dα,k = {x ∈ X: (x,α) ∈ Bk}. By (3), it is a crossing of
γ . By way of contradiction, assume that there exist finite sets Ek ∈ X and Hk ∈ I , such
that for every β ∈ J there is k ∈ ω and α ∈ Hk such that Ek ∩ γ (α,β) ∩ Dα,k �= ∅. For
each k ∈ ω let Gk = {(x,α): α ∈ Hk and x ∈ Dα,k ∩ Ek}. Notice that Gk is a finite subset
of Bk . Let β ∈ J . There is k ∈ ω and α ∈ Hk such that Ek ∩ γ (α,β) ∩ Dα,k �= ∅. Now
Gk ∩ (γ (α,β) × {α}) �= ∅. So,

⋃
k∈ω Gk # γ ∗, contradicting our choice of {Bk}k .

Suppose that γ is F
†
1-expandable. Let {Dα,k: (α, k) ∈ I × ω} be a crossing of γ . For

each k ∈ ω define Bk = {(x,α): x ∈ Dα,k}. It is easily verified that Bk #γ ∗ for every k ∈ ω.
So, there exist finite sets Gk ⊆ Bk such that

⋃
k∈ω Gk #γ ∗. For each k let Ek = πX(Gk) and

Hk = πI (Gk). Let β ∈ J . There is k ∈ ω and α ∈ I such that Gk ∩ (γ (α,β)×{α}) �= ∅. Let
(x,α) ∈ Gk ∩(γ (α,β)×{α}). Notice that α ∈ Hk and x ∈ Ek . Thus, Ek ∩Dα,k ∩γ (α,β) �=
∅ for some α ∈ Hk . �

Lemma 46 combined with Theorem 33 leads to:

Theorem 48. The following are equivalent for a filter F ∈ F(X):

(1) F ∈ ker(F�♦
ω );

(2) F ∈ F
�♦
ω and A ∨F ∈ ker(F�♦

ω ) for all countable set A meshing with F ;
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(3) for every presentation γ : I ×J → 2X for which there exists points ek in X and indices
αk ∈ I such that for every β ∈ J and every n ∈ ω we have ek ∈ γ (αk,β) ∩ Dαk,n for
all k sufficiently large, whenever {Dρ,l : (ρ, l) ∈ I ×ω} is an ω-decreasing crossing of
γ : if γ∗ #F , then there exists a countable subset C of I such that {⋃α∈C γ (α,β): β ∈
J } # F .

Theorem 48 gives a concrete characterization of the second property in the following
instance of Corollary 30.

Corollary 49. The following are equivalent for a topological space X:

(1) the product of X with every strongly Fréchet space is countably tight;
(2) X is ker(F�♦

ω )-based.

Lemma 47 combined with Theorem 33 leads to:

Theorem 50. The following are equivalent for a filter F ∈ F(X).

(1) F ∈ ker(F†♦
1 );

(2) F ∈ F
†♦
1 and A ∨F ∈ ker(F†♦

1 ) for all countable set A meshing with F ;
(3) for any presentation γ : I × J → 2X for which there exist finite sets Ek ⊆ X and Hk ⊆

I , such that for every β ∈ J there is k ∈ ω and α ∈ Hk verifying Ek ∩γ (αk,β)∩Dα,k �=
∅ whenever {Dρ,l : (ρ, l) ∈ I ×ω} is a crossing of γ : if γ∗ # F , then there is a countable
subset C of I such that {⋃α∈C γ (α,β): β ∈ J } # F .

Theorem 50 gives a concrete characterization of the second property in the following
instance of Corollary 30.

Corollary 51. The following are equivalent for a topological space X:

(1) the product of X with every countably fan-tight space is countably tight;
(2) X is ker(F†♦

1 )-based.

Characterizing kernels of †-polars internally seems to require even more machinery.
While we do not have concrete characterizations of these kernels, we can give some in-
formation (in the next section) on how they relate to kernels of ♦-polars that we have
characterized before.

6. Inclusions

Theorem 52. ker(F�♦
1 ) ⊆ ker(F�†

ω ).

Proof. Let F ∈ ker(F�♦
1 ) on X, Y be a set, and A ⊆ X × Y . We show that AF ∈ F

�†
ω (Y ),

using Lemma 6. Let G ∈ F
�
ω (Y ) and B = {Bk}k∈ω be a countably based filter such that

Bk # (G ∨ AF) for every k ∈ ω.



F. Jordan, F. Mynard / Topology and its Applications 153 (2006) 2386–2412 2409
Fix F ∈F . Since G ∈ F
�
ω (Y ) and G # (AF ∨B), we may find a sequence (yF

k )k∈ω such
that (yF

k )k∈ω � AF ∨ G and yF
k ∈ Bk for every k ∈ ω. For each k ∈ ω define xF

k ∈ F so
that (xF

k , yF
k ) ∈ A.

Since F ∈ ker(F�♦
1 ) on X, and F #

∧
F∈F (xF

k )k∈ω , we may find {Fn: ∈ ω} ⊆ F such

that F #
∧

n∈ω(x
Fn

k )k∈ω.

For every k ∈ ω let Tk = {yFn

k : n � k}. Notice that Tk ⊆ Bk and Tk is finite for all k ∈ ω.

Let F ∈ F and G ∈ G. There is n ∈ ω such that (x
Fn

k )k∈ω # F . Since (y
Fn

k )k∈ω � G and

x
Fn

k ∈ F for infinitely many k ∈ ω, there is p � n such that x
Fn
p ∈ F and y

Fn
p ∈ G. Hence,

y
Fn
p ∈ AF ∩ G. Since n � p, we have Tp ∩ AF ∩ G �= ∅. So,

⋃
k∈ω Tk # (G ∨ AF). Thus,

AF ∈ F
�†
ω (Y ). �

This improves significantly [5, Proposition 2.1] that states the weaker inclusion
ker(F�♦

1 ) ⊂ F
†
1 in topological terms (i.e., every tight point has countable fan-tightness)

under the assumption of T1.

Corollary 53. The product of a space whose every point is tight with a strongly Fréchet
space has countable fan-tightness.

Theorem 54. ker(F♦♦
1 ) ⊆ ker(F††

1 ).

Proof. Let F ∈ ker(F♦♦
1 ) on X, Y be a set, and A ⊆ X × Y . We show that AF ∈ F

††
1 (Y ).

Let G ∈ F
†
1(Y ) and B = {Bk}k∈ω be a countably based filter such that Bk # (G ∨ AF) for

every k ∈ ω.
Fix F ∈ F . Since G ∈ F

†
1(Y ) and G # (AF ∨B), we may find finite sets CF

k ⊆ Bk ∩ AF

such that (
⋃

k�n Ck) # AF ∨ G for every n ∈ ω. Let HF = (
⋃

k�n CF
k )n∈ω ∨ G. In view of

Corollary 17, HF ∈ F
†
1(Y ). Define a function f F :

⋃
k∈ω CF

k → F such that f F ⊆ A and
define GF = f F (HF ).

Since F ∈ ker(F♦♦
1 ) on X, GF ∈ F

♦
1 for all F ∈ F , and F #

∧
F∈F GF , we may find

{Fn: ∈ ω} ⊆ F such that F #
∧

n∈ω GFn .

For every k ∈ ω let Tk = ⋃{CFn

k : n � k}. Notice that Tk ⊆ Bk and Tk is finite for all

k ∈ ω. Let F ∈ F and G ∈ G. There is n ∈ ω such that GFn #F . Thus, f Fn[G∩⋃
k�n C

Fn

k ]∩
F �= ∅. So, there is k � n such that f Fn[G ∩ C

Fn

k ] ∩ F �= ∅. Since f Fn ⊆ A, we have

G ∩ CF
k ∩ AF �= ∅. So,

⋃
k∈ω Tk # (G ∨ AF). Thus, AF ∈ F

††
1 (Y ). �

Arhangel’skii [2, Theorem 5] proves the much weaker inclusion ker(F♦♦
1 ) ⊂ F

†
1 in topo-

logical terms (i.e., if the product of X with every space of countable tightness has countable
tightness, then X has countable fan-tightness) among Tychonoff spaces. From the theorem
above, we conclude:

Corollary 55. If X is productively countably tight (in particular if it has countable ab-
solute tightness), then its product with every space of countable fan-tightness has countable
fan-tightness.
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This result generalizes [2, Corollary 6] that states the same conclusion (among regular
spaces) under the assumption that X is a compact space of countable tightness, which, of
course, implies that X has countable absolute tightness.

By definition, F
♦♦
1 ⊆ F

�♦
1 , so that ker(F♦♦

1 ) ⊆ ker(F�♦
1 ). By Theorem 52, ker(F�♦

1 ) ⊆
F

†
1. Therefore, ker(F♦♦

1 ) ⊆ ker(F�♦
1 ) ⊆ F

†
1 ⊆ F

♦
1 . All these inclusions are strict in general.

For instance, Sω ∈ F
♦
1 \F

†
1. Moreover, we already have observed that [4, Example 1] shows

that ker(F�♦
1 ) \ ker(F♦♦

1 ) �= ∅ under (CH). Finally, [4, Example 3] is a ZFC example of

a point of countable fan-tightness which is not tight. The neighborhood filter is in F
†
1 \

ker(F�♦
1 ). Generally, we have the following picture showing the containments that we

know:

ker(F♦♦
1 )

ker(F�♦
1 ) ker(F�†

ω )

ker(F�♦
ω )

ker(F††
1 ) ker(F†♦

1 )

F
†
1

F
♦
1

F
��
ω F

�
ω

�

�

�

�

� �
�

�
�

�
�

�
�

��

�

�

�

�

�

� �

Bella and van Mill [5, Theorem 2.3] states that in a regular countably compact space,
points of countable tightness are tight. This result can be stated at the level of filters via (4).
If X is a topological space, we denote by OX the class of filters admitting a base composed
of open sets and by Kω the class of filters admitting a base of countably compact sets. The
result quoted above follows from

Kω ∩O ∩ ker
(
F

�♦
1

) = Kω ∩O ∩ F
♦
1 , (4)

by considering neighborhood filters.
We show that the coincidence of these classes is true not only for filters of Kω, but for

the broader class of strongly q-regular filters. A filter F is strongly q-regular if for every
F ∈ F , there exists a sequence (QF

n )n∈ω in F such that adhX(
∧

i∈ω(xi
n)n∈ω) ∩ F �= ∅

whenever
∧

i∈ω(xi
n)n∈ω # (QF

n )n∈ω . Let Qω denote the class of strongly q-regular filters.
We say that a point is strongly q-regular if its neighborhood filter is strongly q-regular.

This notion is a little bit stronger than that of a q-regular point in the sense of [12], which
is a variant of a regular q-point in the sense of [21]. All points of countable character and
all points of a regular locally countably compact space are strongly q-regular. Dolecki and
Nogura [12, Proposition 13] gives an example of a non-first-countable and non-locally
countably compact strongly q-regular space.

Theorem 56.

Qω ∩O ∩ ker
(
F

�♦
1

) = Qω ∩O ∩ F
♦
1 .
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Proof. Let F ∈ Qω ∩O∩F
♦
1 . For every F ∈F there exists (QF

n )n∈ω witnessing the defin-
ition of a strongly q-regular filter. Let

∧
α∈I (x

α
k )k∈ω #F . In particular,

∧
α∈I (x

α
k )k∈ω # QF

n

for every n ∈ ω and F ∈ F . Thus, there exists (x
αn,F

k )k∈ω # QF
n . Hence

∧
n∈ω(x

αn,F

k )k∈ω #
(QF

n )n∈ω. Therefore, there exists xF ∈ F ∩ adh
∧

n∈ω(x
αn,F

k )k∈ω. Now {xF : F ∈ F} # F
and F ∈ F

♦
1 , so that there exists a sequence (Fi)i∈ω in F such that {xFi

: i ∈ ω} # F .

Then
∧

n∈ω,i∈ω(x
αn,Fi

k )k∈ω # F . Indeed, for every open U ∈F , there exists i ∈ ω such that

xFi
∈ U . But xFi

∈ adh
∧

n∈ω(x
αn,Fi

k )k∈ω . As U is open,
∧

n∈ω(x
αn,Fi

k )k∈ω # U . �
The following generalizes [5, Theorem 2.3]:

Corollary 57. A strongly q-regular point of countable tightness is tight.

A filter F is called regularly of pointwise countable type if for every F ∈F , there exists
a sequence (QF

n )n∈ω in F such that adhX H ∩ F �= ∅ whenever H # (QF
n )n∈ω. Let Q

denote the class of regularly of pointwise countable type filters.
Adapting the proof of Theorem 56 and letting A stand for the class of absolutely count-

ably tight filters, we get:

Theorem 58.

Q∩O ∩ A = Q∩O ∩ ker
(
F

♦♦
1

) = Q∩O ∩ F
♦
1 .

Notice that a regular point of pointwise countable type in the sense of [21] has a neigh-
borhood filter in Q.

Corollary 59. A point of pointwise countable type and of countable tightness of a com-
pletely regular space is absolutely countably tight.

Combined with Corollary 55, we obtain another improvement of [2, Corollary 6]:

Corollary 60. If X is regular, of pointwise countable type and of countable tightness, then
its product with every space of countable fan-tightness has countable fan-tightness.

Corollary 59 has other interesting consequences. For instance, it can be combined with
Arhangel’skii ’s theorem [3, Theorem 1] stating that a topological group with an every-
where dense subset of countable absolute tightness is metrizable to the effect that

Theorem 61. If a (completely regular) topological group has an everywhere dense subset
that has countable tightness and is of pointwise countable type, then this group is metriz-
able.
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Topology Appl. 25 (1987) 75–80.
[25] J. Novák, Double convergence and products of Fréchet spaces, Czech. Math. J. 48 (2) (1998) 207–227.
[26] J. Novák, A note on product of Fréchet spaces, Czech. Math. J. 47 (2) (1997) 337–340.
[27] J. Novák, Concerning the topological product of two Fréchet spaces, in: General Topology and Its Relations

to Modern Analysis and Algebra IV, Proc. Fourth Prague Topological Sympos., 1977, pp. 342–343.
[28] P. Nyikos, Classes of compact sequential spaces, in: Set Theory and its Applications, Toronto, ON, 1987, in:

Lecture Notes in Math., vol. 1401, Springer, Berlin, 1989, pp. 135–159.
[29] R.C. Olson, Biquotient maps, countably bisequential spaces and related topics, Topology Appl. 4 (1974)

1–28.
[30] P. Simon, A compact Fréchet space whose square is not Fréchet, Comment. Math. Univ. Carolin. 21 (1980)

749–753.
[31] K. Tamano, Product of compact Fréchet spaces, Proc. Japan Acad. Ser. A. Math. Sci. 62 (8) (1986) 304–307.


