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ABSTRACT Large-conductance Ca®"-activated K™ channels (BK) play a fundamental role in modulating membrane potential
in many cell types. The gating of BK channels and its modulation by Ca®* and voltage has been the subject of intensive research
over almost three decades, yielding several of the most complicated kinetic mechanisms ever proposed. A large number of open
and closed states disposed, respectively, in two planes, named tiers, characterize these mechanisms. Transitions between
states in the same plane are cooperative and modulated by Ca*. Transitions across planes are highly concerted and
voltage-dependent. Here we reexamine the validity of the two-tiered hypothesis by restricting attention to the modulation by
Ca®". Large single channel data sets at five Ca®>" concentrations were simultaneously analyzed from a Bayesian perspective
by using hidden Markov models and Markov-chain Monte Carlo stochastic integration techniques. Our results support a dramatic
reduction in model complexity, favoring a simple mechanism derived from the Monod-Wyman-Changeux allosteric model for
homotetramers, able to explain the Ca®* modulation of the gating process. This model differs from the standard Monod-
Wyman-Changeux scheme in that one distinguishes when two Ca®* ions are bound to adjacent or diagonal subunits of the

tetramer.

INTRODUCTION

The kinetic analysis of the gating of ion channels has been the
subject of extensive research over several decades. The pre-
vailing approach consists in modeling the dynamics of
a single channel as a finite state Markov process. A central
issue has therefore been the estimation of the infinitesimal
generator, containing the rates that govern the transitions
among the states of a qualitative reaction scheme. In partic-
ular, the gating of single large-conductance Ca®"-activated
K" (BK) channels and its dependency on Ca*" and voltage
has deserved special attention (1-9). This is partly due to
the ubiquitous presence of these channels and to the high
signal/noise ratio of single BK data. BK channels are homo-
tetramers constituted by four a-subunits, each one with
a Ca®" bowl region involved in Ca>" binding and regulatory
B-subunits. Hill’s coefficient for the open probability as
a function of intracellular Ca®>" concentration is ~2-5, a
fact that strongly suggests the allosteric character of Ca®"
as a modulator of BK channel gating. Based on the theory
of allosteric cooperativism for homotetrameric proteins,
Cox et al. (4) proposed a 55-state plausible gating model
for BK channels. In this model, each «-subunit can assume
two conformations, each of which may bind a single Ca*"
ion. Assuming that adjacent or diagonally Ca®" bound
subunits are indistinguishable from one another, the model
can be reduced to 25 states. Further, if one assumes that the
conformational changes that lead to channel opening occur
simultaneously in all four subunits, i.e., that they are highly
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concerted, then the resulting model is further reduced to the
10-state mechanism

Oy <= Oy <= Oy <= Cy <2~ C5

v 1 v l v 1 v 1 v 1

vy vy vy vy vy
Og <= O7 <= Og =~ Og <~ O1g
where C; and O; denote, respectively, closed and open states.
Transitions marked by V are Ca®"-dependent and those
marked by v_ and v, depend upon membrane hyperpolariza-
tion and depolarization, respectively. This scheme is equiva-
lent to the well-known Monod-Wyman-Changeux (MWC)
model for allosteric homotetramers (10), if one assumes that
the binding of a Ca®" ion to a given subunit does not affect
the subsequent binding steps.

Despite being relatively simple, the voltage-dependent
MWC model described above is able to reproduce several
properties derived from macroscopic measurements such as
the monoexponential activation and relaxation of macro-
scopic currents as well as the Boltzmann shaped conduc-
tance-voltage relations for a wide range of Ca®" and voltage
conditions (4,7,8,11). This model, however, fails to predict
the experimental findings at high saturating Ca®" concentra-
tions. Some improvements were brought about by relaxing
the independence between subsequent Ca>™ binding steps,
leading to a general 10-state MWC model in which each
binding constant may take different values from the others.
This generalized model also proved to be useful in the analysis
of steady-state single channel data, inspiring several of the
gating mechanisms considered by the literature (12—14), the
authors of which actually also considered the full 55-state
model as a starting point. These models greatly expanded
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the predictive power of previously proposed mechanisms (see
(3)), such as the presence of multiple gateways between open
and closed classes of states (modal gating), fast flickers, and
high positive open-closed correlations at saturating Ca®"
concentrations. To achieve this, however, some of the most
complicated gating schemes ever proposed were used. In
these models, a large number of states are arranged in two
planes according to whether these correspond to open or
closed conformations of the tetramer. Consistently with the
MWC model, Ca®" modulated transitions between states of
the same plane are cooperative, whereas those across planes
leading to closing and opening are concerted and voltage-
dependent. These models present a large number of parame-
ters, being in some cases up to 46 (scheme X in (13) shown
here in Fig. 1 as scheme II) or 66 (scheme II in (14), shown
here in Fig. 1 as scheme IV).

In this article, we reexamine the validity of the two-tiered
models, by analyzing large data sets (40 x 10° samples) at
five different Ca>" concentrations. Several models, including
those in the literature (4,12,14), are compared by means of
the Bayesian information criterion (BIC). Our analysis is
made by representing the observations as the realization of
an aggregated hidden Markov model and extending previous
Markov-chain Monte Carlo (MCMC) methods (15), which
allow the simultaneous analysis of data at several Ca®"
concentrations. These techniques enable us to use all the
information available in the data by considering every single
observation in the inferential process. As a result, the model
with highest BIC rank resulted in a simple two-tiered model,
referred to as scheme III in Cox et al. (4).

THEORY AND METHODS
Modeling approach

The gating process is modeled by representing the channel as a homogeneous
Markov process, {Z(¢):t > 0}, with values on the set & of kinetically distin-
guishable states of a gating mechanism. © may be partitioned into sets of
states sharing the same conductance, usually © = {0;},i =1, ..., n,, the
set of open states, and & = {C;}, i = 1, ..., n, the set of closed states. Let
n = n, + n.. The continuous time process Z() is sampled at N evenly spaced
time periods, of duration d, producing the ok-skeleton, Zg, k =1, ..., N. For
simplicity, hereafter we denote Zs, simply by Z,. The gating process is then
characterized by a transition probability matrix P with entries py; = P(Z, =
J | Zx_1 = ), and an initial distribution P(Zy = i) = p;, i, j, € ©. The process
Zy is, however, not directly observed in a patch-clamp experiment. As a first
approximation, each observation y,, 1 < k < N, may be thought of as
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w = f(Z) + g(Z)éx (D

where f(Z)) = ug if Zy € O and f(Z,) = ug otherwise, and also g(Z,) = ugo
or g(Zy) = ue. Here ug and ug denote the mean current values (in pA) when
the channel is open and closed, respectively, and ug, ue the standard devi-
ations of the current fluctuations associated to each conformation. The
values &y, 1 < k < N, are independent and identically distributed standard
normal random variables.

The above model, referred to as aggregated hidden Markov model in
Rosales (15), is actually a generalization of the hidden Markov model
initially described by Chung et al. (16). Several other extensions including
dependent background noise and filtering, most notably by Ventakaramanan
and Sigworth (17) and de Gunst et al. (18), have since then appeared. Depen-
dencies originate from the properties of the processes that give rise to the
background noise, and due to low band-pass filtering, used to restrict the
signal power at high frequencies and prevent aliasing. The filtering charac-
teristics of the recording apparatus may be modeled via a finite impulse
response filter with coefficients ay, k =0, ..., [ — 1, obtained by measuring
the step response of the patch-clamp system. Denote by * the convolution
operation, then the anti-aliasing step can be accounted for as
(a+f(2)), = b anf(Zii). Let ¢, 1 < k < N denote the correlated
background noise sequence. The correlations present in ¢, may also be
modeled by using a finite impulse response filter of order u, determined
by the coefficients by, k = 0, ..., u — 1. This filter is estimated from the
autocorrelations present in ¢, i.e., from a data segment without channel
openings, via a Yule-Walker system, efficiently solved by means of the
Levinson-Durbin algorithm ((19), algorithm 4.7.2). The background correla-
tions may then be removed by convolution with the inverse of by, denoted
here as { (that is, &, = ({*c)y).

This preprocessing step produces the sequence x = (x), | < k < N, of
whitened observations. Following Eq. 1, xi is given by

Xk = (C*Y)k: (C*a*f(Z))k+U§k, @)

where it has been assumed that the variance of the background noise is state-
independent, i.e., that g(Z,) = o. A general approach to class-dependent
variances may also be incorporated into the Bayesian treatment at the cost
of extra computational burden (see (18)).

In practice, we found that # = 3 was sufficient to model the correlations
present in the background noise. Also, / = 5 gave an appropriate description
for the filtering effects. In this case, {*a in Eq. 2 resulted in a filter with an
effective lag of u + [ = 8 coefficients.

Statistical treatment

Denote by 0 = (ugo, ug, o, P, p) € Q, the parameters of an aggregated hidden
Markov model associated to a particular gating mechanism, and
Q=R" x R™ x (0, )" x [0,1]"" x [0,1]", the space spanned by 6.
The estimation of # is made from a Bayesian perspective by using
MCMC methods. Briefly, given a sequence of gating states z = (zy), zx €
©, and observations x = (x), 1 < k < N, the above formulation describes
the likelihood for the data,

L(x,z]0) = PX = x0,Z = 2)P(Z = z6). (3)
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Allosteric gating mechanisms. Scheme I corresponds to scheme VII in Rothberg and Magleby (12), scheme II to scheme X in Rothberg and Magleby

(13), and scheme IV to scheme II in Rothberg and Magleby (14). Scheme III corresponds to a simpler two-tiered gating mechanism described as scheme III in Cox

et al. (4). All transitions marked with V are Ca2+-dependent.
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Following Eq. 2, the first term at the right of Eq. 3 is just a product of N
normal distributions with mean {*a*f(z), and standard deviation o. The
Markov property on Z determines the distribution P(Z = z | 6) uniquely
in terms of P and p. The joint posterior distribution for 6 and z is proportional
to the product of the likelihood in Eq. 3 and the prior distribution, that is

P(0, 2]x) < L(x,2|0)P(® = 6).

Given a gating mechanism, this formulation provides a consistent descrip-
tion of the fit of any model configuration for the mechanism, i.e., any pair
of values (f, z). Most characterizations of the distribution of (6, z) are formu-
lated as the expectation of a function & with respect to P,

E[h(©,2) | ] = /Q/wh(ﬁ,z)P(dﬁ,dz\x).

The main interest here is directed toward the estimation of P, namely by
taking 4(®, Z) = (O, Z). In this case, a estimate for the transition probabil-
ities of the hidden process, P, is simply given by its posterior expected value.
The necessary integrations are numerically performed via MCMC, more
precisely by using the Gibbs sampler described in Rosales (15). The sampler
consists essentially of an ergodic Markov chain {®", Z"}, re N, with P as
its invariant distribution. In this case, because of the ergodic theorem, for
any initial values (6°, ), R' 3K (6",2) > E[(®,Z) | 4], as R — .
Thus, our MCMC estimate for P is simply given by

~ R P’
Py = -
K ZR—(b+1)’

r=b+1

where P" denotes the " MCMC sample for P, and to allow for the conver-
gence of the sampler, we discarded the first » MCMC iterations. This initial
period was assessed by using the Raftery-Lewis and the Heidelberger-Welch
convergence diagnostics, implemented in the BOA software (http://www.
public-health.uiowa.edu/boa).

The estimate for P, obtained at the limited resolution imposed by d, say
P;s, may be used to compute the transition rate matrix

Qs = (I —P;)/0, “4)

with elements g;;, i, j € ©. Let pjj denote the elements of Px, then, the
estimates for the transition rates are given by

Gi = (1 *ﬁii)/&

It is important to stress that O has to be taken only as an approximation to
the infinitesimal generator of the continuous process Z(), i.e., lims— o+ Qs.
Qs, however, contains all the relevant information to characterize the
dynamical properties of an ion channel at this temporal resolution. To
simplify notation, Qs and P will be denoted throughout as Q and P. Stan-
dard Q-matrix methods (see (20,21)) were used here to compute: 1), the
dwell-time distributions in £, &; and 2), the bivariate distribution of the
open-closed dwell-times. Computations were carried out by using Maple 7
(Maplesoft, Waterloo Maple, Waterloo, Ontario).

All the MCMC runs made only considered as free parameters the transi-
tion rate matrix P and the initial distribution p of the hidden process. The
values ug, uo, and o were kept constant and equal to values obtained
from a standard all-points amplitude histogram (see (22)).

EI\ij = ﬁij/éa

Global analysis

The way in which Ca®>" modulates the gating of BK channels may be studied
by analyzing separately single channel data at several intracellular Ca®*
concentrations. This, however, has the disadvantage that at a particular
condition, the channel only visits a given set of the gating states rendering
almost no information about some other possible transitions. This may
happen, for instance, at low or high saturating Ca*" concentrations. It is
therefore desirable to be able to gather most of the information available
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by performing a global analysis, producing a single estimate for Ps. This
is accomplished as follows. The Gibbs sampler used here produces
a sequence of transition probability matrices, {P*}, by drawing each row,
P, 1 <i < n=n,+ n from the full conditional density

(P, | 0( = P),x,2)dP; = CL(x,=| )P (® = 0)
C=[p L(x,z|6)P(® = 0)aP;

for Dy ={0<pjj <1: Zj pij < 1}. Here 6(— P;) is used to denote all the
parameters in # but P;. By considering a Dirichlet distribution as a priori with
parameter ¢; = (ejy, ..., €n), €;j > 0, one can, in fact, compute the integral
above, yielding

( Z Gj + eu)

m(Pi | 0( = Pi),x,2) = Hrc+e
ij ij

H z,J+e,J71

j
a Dirichlet distribution with parameter ¢; 4 ¢; = (¢j; + €;1, - -, Cin + €in). The
terms ¢;; = 0,

N

—1
cj = Lz -1z, =3

k=1

arise from the likelihood function of a given gating sequence z, and stand for
the number of transitions from state i to state j, i; j € &©. Suppose M data sets,
each at a different Ca®>" concentration, are being analyzed. Denote by G,
1 < m < M, the number of transitions i — ; present at the m™ segment.
The total number of transitions of type i — j may be computed as

M
g = Y cf/Rm, Q)
m=1

with R,,, = [Ca®*],/[Ca®* 1g, and [Ca®* ], as the Ca>* concentration at the
m™ file and [Ca®"]g the concentration at an arbitrary reference condition.
This allows us to express a single estimate for the transition rate matrix
with respect to this condition.

Suppose any given transition i — j is Ca>"-dependent. The procedure
above is justified because from Eq. 4 one has that p;; = g;; [Ca>")/6. 1t should
be noted that the changes introduced by Eq. 5 do not compromise the ergo-
dicity of the Gibbs sampler.

Model choice

Denote by x' = (x{,...,x4 ), 1 < i < M, several independent data sets.
Models considered here were ranked by using the global (i.e., by analyzing
all M data sets) BIC score

M M
BIC = 2 n(£(< | #)) + 2N Y (M)
i=1 i=1

Here Ny stands for the number of parameters associated to a model, N;
denotes the number of observations of the /™ data set, £(x | %) is the
marginal likelihood

Lix|0) = /aN L(x,dz|0%),

and 6* is the MCMC estimate for . Marginalization may be performed effi-
ciently by means of the standard Baum-Welch recursion. If g, o, and o are
fixed, then Ny equals the number of transition rates that have to be estimated.

Dwell-time densities

Dwell-time densities are computed by using the MCMC estimate for the
Q-matrix and standard Q-matrix methods (20,21). This includes the
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single-class dwell-time distributions seen later in Fig. 4 and the joint open-
closed dwell-time densities seen later in Fig. 5. Let f&, £ denote the joint
density for open-closed dwell-time pairs, and /& and £ the marginal densi-
ties for the closed class and the open class, respectively. Following Magleby
and Song (23), the dependency-difference plots seen later in Fig. 6 are
computed as

d(x,y) = fuo, O, 9) *~fe(0) o', (©)

and the difference plots seen later in Fig. 7 as

{foo(e,3)/Ife(@)fo )]} 2 1. %)

So, if d(x, y) > 0, then the given x, y dwell-time pair is positively
correlated.

Dwell-time densities from standard filter and threshold analysis such as
those seen later in Fig. 8 are computed by using the idealized dwell-time
data in conjunction with kernel-density estimation methods (24).

Single channel recordings

Currents through single BK channels were measured by using the patch-
clamp technique in the inside-out configuration, as described in Carnio
and Varanda (25). Freshly isolated Leydig cells from mice were plated
onto small coverslips and transferred to a recording chamber continuously
perfused with Hanks’ solution (145 mM NaCl; 4.6 mM KCI; 1.2 mM
MgCly; 1.6 mM CaCly; 10 mM; 10 mM glucose; 5 mM NaHCOg3;
pH 7.4). Recording pipettes were filled with (mM): 150 KCI; 1 MgCly;
5 HEDTA; 10 HEPES (pH 7.3 adjusted with KOH); 1077 M CaCl, and
had resistance >12 MQ. At first, channels were observed with the cell-
attached configuration, and then the pipette was retracted to achieve the
inside-out configuration. A holding potential of +60 mV was applied and
single channel events recorded. Under these conditions, the steady-state
open probability is well above 0.95, so that recordings with more than
one channel could be easily discarded. If only one channel was present,
then the bath solution was changed to the same solution inside the pipette,
but having free calcium concentration of 1077 M, 5 x 1077 M, 107 M,
3 x 107° M, and 107> M as desired. Free calcium concentrations were
calculated by using the program Webmax Extended (www.stanford.edu/
~cpatton/webmax/webmaxcE.htm). Single channel activity was now re-
corded at +30 mV. This potential was chosen because most of the single
channel modeling concerning the Ca®* modulation of BK channel kinetics
was done at +30 mV, and this also gives a suitable signal/noise ratio for the
analysis with hidden Markov models. Current was measured with Axopatch
200B (Axon Instruments, Foster City, CA), filtered at 10 KHz (-3 dB,
eight-pole Bessel filter), sampled at 100 KHz via a Digidata 1200 interface
(Axon Instruments) and stored on hard disk for off-line analysis. Five data
sets, each at one Ca>" concentration mentioned above, were simultaneously
used for the global analysis described in the modeling section. Each data set
contained 40 x 10° samples.

As an example, Fig. 2 presents few brief segments of the raw data used in
the global analysis. This figure also displays the corresponding sequence of
hidden states predicted in one of the iterations of the MCMC sampler. Close
inspection of these realizations may be used to identify the transitions
involved in particular features such as fast flickers.

RESULTS
Model ranking

Five data sets containing the activity of a single BK channel
at different Ca’" concentrations were simultaneously
analyzed. The analysis was made by considering several
gating mechanisms already reported in the literature, shown
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FIGURE 2 Noisy traces from top to bottom present brief data segments at
1x1077,3x 1075 and 1 x 10> M Ca*, respectively. Channel openings
correspond to upward deflections. Straight-line traces display a possible real-
ization of the underlying gating process. The hidden realization drawn by the
MCMC sampler corresponds to just one of 15,000 realizations produced
while iterating the MCMC algorithm by using the KNF model. Different
conductances were artificially assigned to each state as an aid to enhance
visualization (data was, however, analyzed by assuming just two conduc-
tances in accordance to the KNF model).
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FIGURE 3 (A) MCMC samples for the Qs matrix obtained by the global

analysis of single channel data at five different Ca>" concentrations for the
KNF gating scheme. The shaded area shows the iterations discarded to allow
for the relaxation period of the MCMC sampler. The nondiagonal entries of
the Qs matrix are not displayed. (B) Cross-correlation matrix for the MCMC
samples obtained by the global analysis performed with the KNF scheme.
Labels denoted by g1, ¢2, ..., ¢48 correspond to the following ordering of
the allowed transitions between the states in scheme III: g1 = O, —O0;,
q2=0,1—0,, ¢3=0,—C7, ¢4 =0,—0,, ... (ie, O precedes C).
Note that panel B includes the cross-correlations for all the entries in the
Q; matrix, including the diagonal.

in Fig. 1. The first model, referred here to as scheme I, corre-
sponds to scheme VII in Rothberg and Magleby (12). This
scheme was chosen because it represents one of the simplest
mechanisms that was initially able to reproduce a fair amount
of the properties found while analyzing single channel data
(1-3). Interestingly, the reaction scheme of this model is
also consistent with the standard MWC model. Despite of
its qualities, scheme I failed to reproduce the kinetics at
high Ca?" such as the presence of fast flickers. To overcome
these problems Rothberg and Magleby (13) proposed the
two-tiered model, represented by scheme II in Fig. 1. This
model may be seen as a simplified version of the initial 55-
state mechanism for a homotetramer with a Ca®" binding
site per subunit, in which every closed conformation could
lead to opening. This model was able to predict an excess
of brief open intervals adjacent to longer closed intervals
observed at high Ca®" conditions. Scheme III presents
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a model introduced by Cox et al. (4). This model is a direct
extension of the 10-state MWC model for which the confor-
mations that correspond to a channel with two bound Ca®" in
adjacent or diagonal subunits can now be distinguished
(states Co, Co and O3, Oy, see scheme III in Fig. 1). The
same as in Cox et al. (4), we will refer to scheme III as the
KNF model, which actually stands as an abbreviation for
Khosland-Nemethy-Filmer. This terminology was presum-
ably used because this model has extra Ca®'-dependent
concerted transitions, not present in the MWC model.
Scheme IV in Fig. 1 was proposed in Rothberg and Magleby
(14) as an extension to scheme II, to account for both Ca*"
and voltage regulation of BK gating.

The transition rates for schemes [-IV were estimated as
described in Theory and Methods via MCMC. The traces
in Fig. 3 A show the actual samples for the 36 transition rates
of scheme III (diagonal entries are not shown). The MCMC
sampler seems to converge after approximately the first 1500
iterations, a value that was quantitatively assessed by means
of several convergence tests mentioned in Theory and
Methods. Fig. 3 B displays the cross-correlation matrix for
the transition rates computed directly by using the MCMC
samples after convergence. This matrix shows that there
are quite a few significant positive and negative correlations.
For example, the entry (g6, ¢29) has a correlation of 0.8, and
the entry (¢q1g, g4>) has a correlation of —0.8. This suggests
that the KNF model does provide a sensible parameterization
for the underlying dynamics.

The rate estimates for schemes I-IV were used to rank
these models according to their BIC values. Models with
smaller values are preferred, being the smallest value equal
to 354118975.798 the one corresponding to scheme IIIL.
To facilitate the comparison, denote by ABIC; the difference
of the BIC value for the /™ model minus the BIC for
scheme III. So as a result from our analysis we found that
ABICry = 2038.779, ABIC = 28454.068, and ABIC; =
173797.626. These values yield thus the rank order

m>1v >1I > L

Interestingly, this order is consistent with the results in the liter-
ature (12-14), namely: IV > II > 1. All results reported here-
after will refer to those obtained by the estimates for the best
model, that is, scheme III. The actual estimate for the transition
rate matrix is shown in Table 1. These values were computed
by taking the average of the last 13,500 samples out of a total of
15,000 MCMC iterations (displayed in Fig. 1). Ca*"-depen-
dent transition rates are given in ms~ ! x 1077 M~! whereas
Ca*"-independent rates are in ms .

This matrix constitutes the basis for all further analyses
and model predictions presented next.

KNF model predictions

Predictions made with scheme III can be described in several
ways. To facilitate the presentation, results shown hereafter
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TABLE 1 Estimated Q-matrix for scheme lll

Transition Rate constant Transition Rate constant
050, 0.423¢7* 0,-C; 0.541
0,—0, 0.128¢ 2 025 05 0.73¢ 74
0,50, 0.581¢™2 0,—Cy 1.956

05— 0, 0.229¢™4 05 5 05 0.32¢74
03— Co 0.352 04— 0, 0.163¢73
045 05 0.821¢7* 04— Co 0.912
05— 0; 1.229 05— 04 0.134
05 > 06 0.512¢72 0s—Cyy 13.41
06— 0s 0.442 06— Ch2 12.352
C1 >0, 9.13 S Gy 0.823¢72
Cy— 0, 0.11¢! Cyg—Cy 0.1e2
Cs > Co 0.418¢72 Cs > Cio 0.422¢76
Cg—>04 8.051 C9—>Cg 1.194

Co S Cyy 0.46¢2 Cio— 03 8.137
Cio—Cs 0.193¢™" Cio > Cyy 0.337¢72
Ci1— Os 1.08 C11—Co 0.453¢7!
Cii—Cro 0.39¢73 Ci S Cp 0.99¢*
C1— 06 8.262 Cin—Cn 0.108¢72

Transitions marked with V are calcium-dependent. Ca>"-dependent rates are
given inms™' x 1077 M~'. Ca®*-independent rates are in ms ™. Diagonal
entries are not shown. Rates corresponding to nonallowed transitions are
equal to 0.

will be restricted to tree representative Ca>" concentrations:
low corresponding to 1 x 10~7 M, intermediate correspond-
ing to 3 x 107° M, and high to 1 x 107> M.

An essential characterization of the dynamics of single
channels is given by the distributions of the time spent at
a given set of states, for instance in the closed and the open
classes. Fig. 4 shows the dwell-time densities in the open
class © = {0y, ..., Og} and the closed class & = {C7, ...,
C,} for the KNF model. At low Ca?", the closed class
density is essentially dominated by the sojourns in state Cg,
followed then by those in state C;. The excess of dwell times
in these two states is determined by the two maxima of the
density in Fig. 4. The density for the open class at this condi-
tion is dominated by sojourns in state O . At the intermediate
Ca*" condition, the closed density lost its slowest compo-
nent. The component with highest area corresponds now to
dwell times in C,,. The open class density is now character-
ized by the appearance of two fast components, Os and O.
This density is, however, still characterized by a predominant
component corresponding to sojourns in O3. At the highest
Ca’t concentration, the slowest components of the closed
density have been further shifted toward the left; meaning
that most of the long-lasting sojourns at low Ca>" concentra-
tions have now disappeared. The most important components
for the open class are O3 and Oy, but now two very fast
components Os and O¢ have also a substantial proportion
of the dwell times. All these results are also reinforced by
the values for the stationary distribution and the single-state
mean lifetimes presented in Tables 2 and 3. These quantities
are computed directly from the MCMC Q-matrix estimate.
When considered together, they allow us to draw a detailed
picture for the changes induced by Ca*". At low Ca’", the
channel prefers to dwell in states C7, Cg, and O;. The state
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FIGURE 4 Predicted single-class log dwell-time densities at several Ca*"

concentrations for scheme KNF. Single state components are shown as
dashed lines. Graphs at the left column display the densities for the open
class, ©, and those at the right column the densities for the closed class,
L. Rows from top to bottom present the densities at 1 x 107’ M, 3 x
107 M, and 1 x 107°M Ca”, respectively. Numbers associated to each
component indicate the actual state within the class, for instance ““1” corre-
sponds to Oy, “7” to C7, and so on (see scheme III). Plots actually show the
square-root of the density.

C7 has quite a long expected mean lifetime, and is respon-
sible for the long closed data stretches. Long closures are
briefly interrupted by transitions to O, via Cg and O,. As
Ca** rises, the channel now spends most of the time at states
C10, and O3, and, less frequently, at C; and O,. At the high-
est Ca®t concentration, the channel still prefers O3 and Oy,
but the closed dwell times are almost all from sojourns in
C11. The intermediate open dwell times in O3 are interrupted
by very fast closures and openings associated to the transi-
tions Cjp <> 0g and C;; <> Os. The actual identity of the
transitions is readily available from the MCMC sampler, as
shown by the hidden realization in Fig. 2.

The information provided by the dwell-time distributions
and the stationary distribution is complemented by the corre-
lations between subsequent open-closed dwell-time pairs.
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TABLE 2 KNF stationary probability distribution (n) and single-state mean lifetime (r, ms) at several Ca®* concentrations for the

closed class

[C32+] M) C; Cg Co Cio Cp Ciz

1 x 1077 1, 0.368¢7! 0.325 0.113¢72 0.132¢73 0.42¢* 0.22¢7°
7c, 63.954 0.109 0.888 0.108 0.123 0.121

3 %107 1, 0.381¢73 0.1 0.101¢7! 0.319¢7! 0.175¢7" 0.879¢ >
TC, 8.253 0.107 0.106 0.886 0.122 0.121

1 x107° 7, 0.22¢74 0.019 0.621¢72 0.035 0.047 0.008
T, 2.657 0.1 0.102 0.882 0.122 0.121

These correlations constitute useful means in the determina-
tion of the connectivity between the states of a gating mech-
anism from the data. The estimation of these correlations
were fundamental for the approaches that lead to schemes
I, II, and IV (see (12-14)). In fact, it was the failure of
scheme I to predict a large correlation between open dwell
times followed by fast closures (flickers), that lead Rothberg
and Magleby (13,14) to consider both mechanisms II and I'V.
Correlations between adjacent open-closed dwell-time pairs
may be computed from the joint open-closed densities such
as those displayed in Fig. 5. Here, these densities correspond
to the one predicted directly by the Q-matrix estimate for the
KNF model. Consistently with the results for the single class
distributions, as Ca" rises, the densities concentrate toward
faster dwell-time components. Correlations obtained from
these densities may be displayed by plotting the depen-
dency-difference defined by Eq. 6. The actual significance
of these correlations can be measured by the difference given
by Eq. 7. These two quantities at the low, intermediate, and
high Ca”" conditions are shown, respectively, in Figs. 6 and
7. The open-closed correlations are not very much affected
by Ca*t changes. Interestingly, however, as Ca®t increases,
the most significant correlation component seems to shift
gradually from fast-open fast-closed transitions to slower-
open fast-closed ones. It is important to remark that these
correlations are also detected by analyzing the same data
with scheme IV (Fig. S1), the best model so far proposed
by Rothberg and Magleby (12—14); however, this does not
happen with scheme I (data not shown). A standard filter
and threshold analysis at 10 KHz reveals (Fig. S2) these
correlations to be a genuine feature of our data.

Model comparison

A simple way for assessing the predictive power of both
scheme III and IV consists in a direct comparison of the asso-

ciated single class dwell-time distributions. For brevity,
results in this section are restricted to the lowest and the high-
est Ca>" condition. Fig. 8 presents the dwell-time densities
for the open and the closed classes shown in Fig. 4 for
scheme III, superimposed on the densities for scheme IV
and also those produced by a standard filter and threshold
analysis at 7.5 KHz.

At 7.5 KHz, the threshold analysis produces an apparent
excess of brief open sojourns, presumably due to back-
ground-noise threshold crossings. At the highest Ca®"
condition (Fig. 8, C and D), both scheme III and the
threshold analysis produced quite similar dwell-time distri-
butions. At this concentration, scheme IV detects fewer
fast open transitions and predicts an excess of long-lived
shut periods. At the lowest Ca’* concentration, scheme IV
is closer than scheme III to the threshold analysis. All three
predict the existence of long-lived shut periods; however,
scheme III assigns the smallest weight to these events.
Although this is a substantial difference, scheme III is able
to better describe the data as a whole because: 1), the log-
likelihood values for the three higher Ca*" conditions are
much smaller than for the other models; and 2), the
second-best-ranked model (scheme IV), with a similar total
likelihood value to scheme III, has a much larger penaliza-
tion factor because of the number of parameters associated
with it.

DISCUSSION

The evidence present in our data strongly supports a large
simplification of models previously used while analyzing
single channel data, to describe the allosteric modulation
of BK channel gating by Ca>". Indeed, the number of tran-
sitions rates in the model defined by scheme III, the model
with highest BIC rank, is approximately half the number

TABLE3 KNF stationary probability distribution (n) and single-state mean lifetime (7, ms) at several Ca?* concentrations for the open

class

[Ca*] (M) 0, 0, 03 0, Os Os

1 x 1077 no, 0.621 0.184¢2 0.446¢2 0.997¢ 2 0.305¢ > 0.81¢°°
To, 1.847 0.511 1.096 2.842 0.677¢™" 0.782¢7"

3 %107 7o, 0.641¢2 0.581¢73 0.741 0.887¢ 7! 0.135¢ 72 0.584¢ 3
To, 1.843 0.506 2.835 1.093 0.669¢ ! 0.784¢!

1 x107° no, 0.369¢ 3 0.12¢73 0.82 0.055 0.365¢ 2 0.526¢ 2
To, 1.833 0.494 1.086 2.819 0.651¢7! 0.787¢ !
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FIGURE 5 Joint log dwell-time densities at several Ca>" concentration predicted by the KNF mechanism. From left to right, the Ca>" concentrations are: 1
x 107" M, 3 x 107°M, and 1 x 10~> M. Plots are shown by taking the square-root of the actual densities. Densities are computed from the global Q; estimate

by using standard Q-matrix methods (see (21)).

of those present in schemes II and IV. The later have proven
to be the most successful models in the quantitative analysis
pursued by Rothberg and Magleby (13,14), being able to
describe the kinetic properties of single BK channels over
a wide range of Ca®" conditions. Most critically, these
models are able to account for flickers and highly correlated
open-closed sojourn pairs, present at high saturating Ca®"
conditions. The results presented here show that scheme III
is also able to describe these features. The material included
as Supporting Material shows that the findings of both
scheme III and scheme IV are in fact quite similar.
Although interesting from a statistical perspective, the
results presented here may be important because they
provide a simplifying view of the underling physical mech-
anism of BK channel gating. Both mechanisms II and IV are
built on the two-tier hypothesis, an idea inspired by the initial
considerations about Ca®"-modulated homotetramers made
by Cox et al. (4), further developed by Rothberg and
Magleby (14). In this theory, a large number of closed and
open states may be disposed into two separate planes, each
with states of the same class. Horizontal transitions between
closed conformations are assumed to be cooperative;
however, each closed conformation may lead directly to

log open (ms)

-0.10

-6 -4 -2 0 2 4 6 -6 -4 -2 0
log closed (ms)

log closed (ms)
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channel opening in a highly concerted manner. The main
difficulty with these models lies in the identification of
each state with a particular conformation of the protein.
Contrary to this, scheme III may be interpreted as a simple
two-tiered version of the MWC model. All the transitions
in the closed and the open tiers are cooperative and driven
by Ca®" binding steps. Any of the states in the closed tier
may lead to opening in a single concerted step, as in the
standard MWC model. Planes are originated because one
may distinguish the isoforms with two bound Ca”" ions at
adjacent subunits, for instance, states Cyy and O3 in scheme
III, from those where the two Ca®* ions are bound to diag-
onal subunits of the tetramer, i.e., states Co and O4. Fig. 9
shows a simplified version of scheme III, stressing the local-
ization of the subunit having two bound Ca”*" in the open
(03, 04) and closed (C;o, Co) conformations (Ca*"-bound
subunits are shaded).

Although the analysis here does not allow us to distinguish
between two Ca®" bound states (either in diagonal or adjacent
subunits), our key result is that the KNF model seems to be suffi-
cient to explain the kinetic properties of single BK channels.

Scheme IIT was first proposed in Cox et al. (4) for the
analysis of macroscopic BK currents. However, there the

log open (ms)
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-0.10

log closed (ms)

FIGURE 6 Dependency differences at several Ca>* concentrations predicted by the KNF mechanism. From left to right, the Ca>* concentrations are: 1 x 10~
M, 3 x 107°M, and 1 x 10~> M. Dependency differences are computed by using the predicted joint densities shown in Fig. 5 and their marginals, by following

Eq. 6.
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transition rates were constrained such as to reduce the number
of free parameters down to 10 to be consistent with the stan-
dard MWC concerted theory. The resulting model failed to
reproduce the conductance-voltage relations at high satu-
rating Ca®" conditions and was superseded by a MWC
scheme in which all transition rates are allowed to vary inde-
pendently from each other. However, (4), but did not consider
an unconstrained version of scheme III. On the other hand, the
modeling work by the literature (4—6) was directed toward the
interrelation between the Ca®" and voltage modulation of BK
gating, and did not address the dwell-time properties consid-
ered here and in the literature (12—14). It will surely be inter-
esting to see how our estimate for scheme Il is able to repro-

duce some of the properties such as conductance-voltage
relations and macroscopic currents.

Recent evidences from heterologous expression of BK
channels and site-directed mutations suggest the existence
of low and high affinity Ca®" binding sites with distinct
properties (26-28). These findings may be the reason
explaining the better performance of scheme III at high
Ca”", since this model assumes the existence of six binding
sites, instead of just four as done by the other models. Obvi-
ously, the different affinities of binding sites were not explic-
itly taken into consideration by the models here analyzed.
This is indeed a new and interesting open problem to be ad-
dressed in future modeling work.

FIGURE 8 Single class dwell-time densities for the two

4 0 2 4 6 8
log closed (ms)

models with highest BIC score, and for a standard filter
and threshold analysis at 7.5 KHz. The densities for scheme
IIT are shown as a continuous line, those for scheme IV with
a dashed line, and those for the filter and threshold analysis
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FIGURE 9 A physical interpretation for scheme III.
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