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ABSTRACT Large-conductance Ca2þ-activated Kþ channels (BK) play a fundamental role in modulating membrane potential
in many cell types. The gating of BK channels and its modulation by Ca2þ and voltage has been the subject of intensive research
over almost three decades, yielding several of the most complicated kinetic mechanisms ever proposed. A large number of open
and closed states disposed, respectively, in two planes, named tiers, characterize these mechanisms. Transitions between
states in the same plane are cooperative and modulated by Ca2þ. Transitions across planes are highly concerted and
voltage-dependent. Here we reexamine the validity of the two-tiered hypothesis by restricting attention to the modulation by
Ca2þ. Large single channel data sets at five Ca2þ concentrations were simultaneously analyzed from a Bayesian perspective
by using hidden Markov models and Markov-chain Monte Carlo stochastic integration techniques. Our results support a dramatic
reduction in model complexity, favoring a simple mechanism derived from the Monod-Wyman-Changeux allosteric model for
homotetramers, able to explain the Ca2þ modulation of the gating process. This model differs from the standard Monod-
Wyman-Changeux scheme in that one distinguishes when two Ca2þ ions are bound to adjacent or diagonal subunits of the
tetramer.
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INTRODUCTION

The kinetic analysis of the gating of ion channels has been the

subject of extensive research over several decades. The pre-

vailing approach consists in modeling the dynamics of

a single channel as a finite state Markov process. A central

issue has therefore been the estimation of the infinitesimal

generator, containing the rates that govern the transitions

among the states of a qualitative reaction scheme. In partic-

ular, the gating of single large-conductance Ca2þ-activated

Kþ (BK) channels and its dependency on Ca2þ and voltage

has deserved special attention (1–9). This is partly due to

the ubiquitous presence of these channels and to the high

signal/noise ratio of single BK data. BK channels are homo-

tetramers constituted by four a-subunits, each one with

a Ca2þ bowl region involved in Ca2þ binding and regulatory

b-subunits. Hill’s coefficient for the open probability as

a function of intracellular Ca2þ concentration is ~2–5, a

fact that strongly suggests the allosteric character of Ca2þ

as a modulator of BK channel gating. Based on the theory

of allosteric cooperativism for homotetrameric proteins,

Cox et al. (4) proposed a 55-state plausible gating model

for BK channels. In this model, each a-subunit can assume

two conformations, each of which may bind a single Ca2þ

ion. Assuming that adjacent or diagonally Ca2þ bound

subunits are indistinguishable from one another, the model

can be reduced to 25 states. Further, if one assumes that the

conformational changes that lead to channel opening occur

simultaneously in all four subunits, i.e., that they are highly
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concerted, then the resulting model is further reduced to the

10-state mechanism

where Ci and Oi denote, respectively, closed and open states.

Transitions marked by 7 are Ca2þ-dependent and those

marked by v� and vþ depend upon membrane hyperpolariza-

tion and depolarization, respectively. This scheme is equiva-

lent to the well-known Monod-Wyman-Changeux (MWC)

model for allosteric homotetramers (10), if one assumes that

the binding of a Ca2þ ion to a given subunit does not affect

the subsequent binding steps.

Despite being relatively simple, the voltage-dependent

MWC model described above is able to reproduce several

properties derived from macroscopic measurements such as

the monoexponential activation and relaxation of macro-

scopic currents as well as the Boltzmann shaped conduc-

tance-voltage relations for a wide range of Ca2þ and voltage

conditions (4,7,8,11). This model, however, fails to predict

the experimental findings at high saturating Ca2þ concentra-

tions. Some improvements were brought about by relaxing

the independence between subsequent Ca2þ binding steps,

leading to a general 10-state MWC model in which each

binding constant may take different values from the others.

This generalized model also proved to be useful in the analysis

of steady-state single channel data, inspiring several of the

gating mechanisms considered by the literature (12–14), the

authors of which actually also considered the full 55-state

model as a starting point. These models greatly expanded
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the predictive power of previously proposed mechanisms (see

(3)), such as the presence of multiple gateways between open

and closed classes of states (modal gating), fast flickers, and

high positive open-closed correlations at saturating Ca2þ

concentrations. To achieve this, however, some of the most

complicated gating schemes ever proposed were used. In

these models, a large number of states are arranged in two

planes according to whether these correspond to open or

closed conformations of the tetramer. Consistently with the

MWC model, Ca2þ modulated transitions between states of

the same plane are cooperative, whereas those across planes

leading to closing and opening are concerted and voltage-

dependent. These models present a large number of parame-

ters, being in some cases up to 46 (scheme X in (13) shown

here in Fig. 1 as scheme II) or 66 (scheme II in (14), shown

here in Fig. 1 as scheme IV).

In this article, we reexamine the validity of the two-tiered

models, by analyzing large data sets (40 � 106 samples) at

five different Ca2þ concentrations. Several models, including

those in the literature (4,12,14), are compared by means of

the Bayesian information criterion (BIC). Our analysis is

made by representing the observations as the realization of

an aggregated hidden Markov model and extending previous

Markov-chain Monte Carlo (MCMC) methods (15), which

allow the simultaneous analysis of data at several Ca2þ

concentrations. These techniques enable us to use all the

information available in the data by considering every single

observation in the inferential process. As a result, the model

with highest BIC rank resulted in a simple two-tiered model,

referred to as scheme III in Cox et al. (4).

THEORY AND METHODS

Modeling approach

The gating process is modeled by representing the channel as a homogeneous

Markov process, {Z(t):t R 0}, with values on the set S of kinetically distin-

guishable states of a gating mechanism. S may be partitioned into sets of

states sharing the same conductance, usually O ¼ {Oi}, i ¼ 1, ., no, the

set of open states, and L ¼ {Ci}, i ¼ 1, ., nc, the set of closed states. Let

n ¼ noþ nc. The continuous time process Z(t) is sampled at N evenly spaced

time periods, of duration d, producing the dk-skeleton, Zdk, k ¼ 1, ., N. For

simplicity, hereafter we denote Zdk simply by Zk. The gating process is then

characterized by a transition probability matrix P with entries pij ¼ P(Zk ¼
j j Zk–1 ¼ i), and an initial distribution P(Z0 ¼ i) ¼ pi, i, j, ˛ S. The process

Zk is, however, not directly observed in a patch-clamp experiment. As a first

approximation, each observation yk, 1 % k % N, may be thought of as
yk ¼ f ðZkÞ þ gðZkÞxk; (1)

where f(Zk) ¼ mO if Zk ˛ O and f(Zk) ¼ mL otherwise, and also g(Zk) ¼ mO

or g(Zk)¼ mL. Here mO and mL denote the mean current values (in pA) when

the channel is open and closed, respectively, and mO, mL the standard devi-

ations of the current fluctuations associated to each conformation. The

values xk, 1 % k % N, are independent and identically distributed standard

normal random variables.

The above model, referred to as aggregated hidden Markov model in

Rosales (15), is actually a generalization of the hidden Markov model

initially described by Chung et al. (16). Several other extensions including

dependent background noise and filtering, most notably by Ventakaramanan

and Sigworth (17) and de Gunst et al. (18), have since then appeared. Depen-

dencies originate from the properties of the processes that give rise to the

background noise, and due to low band-pass filtering, used to restrict the

signal power at high frequencies and prevent aliasing. The filtering charac-

teristics of the recording apparatus may be modeled via a finite impulse

response filter with coefficients ak, k ¼ 0, ., l � 1, obtained by measuring

the step response of the patch-clamp system. Denote by * the convolution

operation, then the anti-aliasing step can be accounted for as

ða � f ðZÞÞk ¼
Pl�1

i¼0 akf ðZk�iÞ. Let ck, 1 % k % N denote the correlated

background noise sequence. The correlations present in ck may also be

modeled by using a finite impulse response filter of order u, determined

by the coefficients bk, k ¼ 0, ., u � 1. This filter is estimated from the

autocorrelations present in ck, i.e., from a data segment without channel

openings, via a Yule-Walker system, efficiently solved by means of the

Levinson-Durbin algorithm ((19), algorithm 4.7.2). The background correla-

tions may then be removed by convolution with the inverse of bk, denoted

here as zk (that is, xk ¼ (z*c)k).

This preprocessing step produces the sequence x ¼ (xk), 1 % k % N, of

whitened observations. Following Eq. 1, xk is given by

xk ¼ ðz � yÞk¼ ðz � a � f ðZÞÞkþ sxk; (2)

where it has been assumed that the variance of the background noise is state-

independent, i.e., that g(Zk) ¼ s. A general approach to class-dependent

variances may also be incorporated into the Bayesian treatment at the cost

of extra computational burden (see (18)).

In practice, we found that u ¼ 3 was sufficient to model the correlations

present in the background noise. Also, l ¼ 5 gave an appropriate description

for the filtering effects. In this case, z*a in Eq. 2 resulted in a filter with an

effective lag of u þ l ¼ 8 coefficients.

Statistical treatment

Denote by q¼ (mO, mL, s, P, p) ˛ U, the parameters of an aggregated hidden

Markov model associated to a particular gating mechanism, and

U ¼ Rno � Rnc � ð0;NÞn � ½0; 1�n�n � ½0; 1�n, the space spanned by q.

The estimation of q is made from a Bayesian perspective by using

MCMC methods. Briefly, given a sequence of gating states z ¼ (zk), zk ˛
S, and observations x ¼ (xk), 1 % k % N, the above formulation describes

the likelihood for the data,

Lðx; zjqÞ ¼ PðX ¼ xjq; Z ¼ zÞPðZ ¼ zjqÞ: (3)
FIGURE 1 Allosteric gating mechanisms. Scheme I corresponds to scheme VII in Rothberg and Magleby (12), scheme II to scheme X in Rothberg and Magleby

(13), and scheme IV to scheme II in Rothberg and Magleby (14). Scheme III corresponds to a simpler two-tiered gating mechanism described as scheme III in Cox

et al. (4). All transitions marked with V are Ca2þ-dependent.
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Following Eq. 2, the first term at the right of Eq. 3 is just a product of N

normal distributions with mean z*a*f(z), and standard deviation s. The

Markov property on Z determines the distribution P(Z ¼ z j q) uniquely

in terms of P and p. The joint posterior distribution for q and z is proportional

to the product of the likelihood in Eq. 3 and the prior distribution, that is

Pðq; zjxÞfLðx; zjqÞPðQ ¼ qÞ:

Given a gating mechanism, this formulation provides a consistent descrip-

tion of the fit of any model configuration for the mechanism, i.e., any pair

of values (q, z). Most characterizations of the distribution of (q, z) are formu-

lated as the expectation of a function h with respect to P,

E½hðQ; ZÞ j x� ¼
Z

U

Z
SN

hðq; zÞPðdq; dz j xÞ:

The main interest here is directed toward the estimation of P, namely by

taking h(Q, Z) ¼ (Q, Z). In this case, a estimate for the transition probabil-

ities of the hidden process, P, is simply given by its posterior expected value.

The necessary integrations are numerically performed via MCMC, more

precisely by using the Gibbs sampler described in Rosales (15). The sampler

consists essentially of an ergodic Markov chain {Qr, Zr}, r˛N, with P as

its invariant distribution. In this case, because of the ergodic theorem, for

any initial values (q0, z0), R�1
PK

r¼1 ðqr ; zrÞ/E½ðQ;ZÞ j x�, as R / N.

Thus, our MCMC estimate for P is simply given by

bPR ¼
XR

r¼ bþ 1

Pr

R� ðb þ 1Þ ;

where Pr denotes the rth MCMC sample for P, and to allow for the conver-

gence of the sampler, we discarded the first b MCMC iterations. This initial

period was assessed by using the Raftery-Lewis and the Heidelberger-Welch

convergence diagnostics, implemented in the BOA software (http://www.

public-health.uiowa.edu/boa).

The estimate for P, obtained at the limited resolution imposed by d, say

Pd, may be used to compute the transition rate matrix

Qd ¼ ðI � PdÞ=d; (4)

with elements qij, i, j ˛ S. Let bpij denote the elements of bPR, then, the

estimates for the transition rates are given by

bqij ¼ bpij=d; bqii ¼
�
1� bpii

�
=d:

It is important to stress that Qd has to be taken only as an approximation to

the infinitesimal generator of the continuous process Z(t), i.e., limd/0þQd.

Qd, however, contains all the relevant information to characterize the

dynamical properties of an ion channel at this temporal resolution. To

simplify notation, Qd and Pd will be denoted throughout as Q and P. Stan-

dard Q-matrix methods (see (20,21)) were used here to compute: 1), the

dwell-time distributions in O, L; and 2), the bivariate distribution of the

open-closed dwell-times. Computations were carried out by using Maple 7

(Maplesoft, Waterloo Maple, Waterloo, Ontario).

All the MCMC runs made only considered as free parameters the transi-

tion rate matrix P and the initial distribution p of the hidden process. The

values mL, mO, and s were kept constant and equal to values obtained

from a standard all-points amplitude histogram (see (22)).

Global analysis

The way in which Ca2þmodulates the gating of BK channels may be studied

by analyzing separately single channel data at several intracellular Ca2þ

concentrations. This, however, has the disadvantage that at a particular

condition, the channel only visits a given set of the gating states rendering

almost no information about some other possible transitions. This may

happen, for instance, at low or high saturating Ca2þ concentrations. It is

therefore desirable to be able to gather most of the information available
by performing a global analysis, producing a single estimate for Pd. This

is accomplished as follows. The Gibbs sampler used here produces

a sequence of transition probability matrices, {Pk}, by drawing each row,

Pi, 1 % i % n ¼ no þ nc, from the full conditional density

pðPi j qð � PiÞ; x; zÞdPi ¼ CLðx; z j qÞP ðQ ¼ qÞ

C ¼
R
Di
Lðx; z j qÞPðQ ¼ qÞdPi

for Di ¼ f0 < pij < 1 :
P

j pij < 1g. Here q(� Pi) is used to denote all the

parameters in q but Pi. By considering a Dirichlet distribution as a priori with

parameter ei ¼ (ei1, ., ein), eij > 0, one can, in fact, compute the integral

above, yielding

pðPi j qð � PiÞ; x; zÞ ¼
G
�P

j

cij þ eij

�
Q

j

G
�
cij þ eij

� Y
j

p
cij þ eij�1

ij ;

a Dirichlet distribution with parameter ciþ ei¼ (ci1þ ei1, ., cinþ ein). The

terms cij R 0,

cij ¼
XN�1

k¼ 1

1fZk ¼ ig1fZkþ 1 ¼ jg;

arise from the likelihood function of a given gating sequence z, and stand for

the number of transitions from state i to state j, i; j ˛ S. Suppose M data sets,

each at a different Ca2þ concentration, are being analyzed. Denote by cij
m,

1 % m % M, the number of transitions i / j present at the mth segment.

The total number of transitions of type i / j may be computed as

cij ¼
XM

m¼ 1

cm
ij =Rm; (5)

with Rm ¼ [Ca2þ]m/[Ca2þ ]R, and [Ca2þ ]m as the Ca2þ concentration at the

mth file and [Ca2þ]R the concentration at an arbitrary reference condition.

This allows us to express a single estimate for the transition rate matrix

with respect to this condition.

Suppose any given transition i / j is Ca2þ-dependent. The procedure

above is justified because from Eq. 4 one has that pij¼ qij[Ca2þ]/d. It should

be noted that the changes introduced by Eq. 5 do not compromise the ergo-

dicity of the Gibbs sampler.

Model choice

Denote by xi ¼ ðxi
1;.; xi

Ni
Þ, 1 % i % M, several independent data sets.

Models considered here were ranked by using the global (i.e., by analyzing

all M data sets) BIC score

BIC ¼ �2
XM

i¼ 1

ln
�
L
�
xi
�� q�
��
þ 2Nq

XM

i¼ 1

lnðNiÞ:

Here Nq stands for the number of parameters associated to a model, Ni

denotes the number of observations of the ith data set, L(x j q*) is the

marginal likelihood

Lðx j q�Þ ¼
Z

SN
Lðx; dz j q�Þ;

and q* is the MCMC estimate for q. Marginalization may be performed effi-

ciently by means of the standard Baum-Welch recursion. If mL, mO, and s are

fixed, then Nq equals the number of transition rates that have to be estimated.

Dwell-time densities

Dwell-time densities are computed by using the MCMC estimate for the

Q-matrix and standard Q-matrix methods (20,21). This includes the
Biophysical Journal 96(10) 3987–3996
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single-class dwell-time distributions seen later in Fig. 4 and the joint open-

closed dwell-time densities seen later in Fig. 5. Let f L;O denote the joint

density for open-closed dwell-time pairs, and f L and f O the marginal densi-

ties for the closed class and the open class, respectively. Following Magleby

and Song (23), the dependency-difference plots seen later in Fig. 6 are

computed as

dðx; yÞ ¼ fL;Oðx; yÞ1=2�fLðxÞ1=2
fOðyÞ1=2

; (6)

and the difference plots seen later in Fig. 7 as�
fL;Oðx; yÞ=½fLðxÞfOðyÞ�

�1=2�1: (7)

So, if d(x, y) > 0, then the given x, y dwell-time pair is positively

correlated.

Dwell-time densities from standard filter and threshold analysis such as

those seen later in Fig. 8 are computed by using the idealized dwell-time

data in conjunction with kernel-density estimation methods (24).

Single channel recordings

Currents through single BK channels were measured by using the patch-

clamp technique in the inside-out configuration, as described in Carnio

and Varanda (25). Freshly isolated Leydig cells from mice were plated

onto small coverslips and transferred to a recording chamber continuously

perfused with Hanks’ solution (145 mM NaCl; 4.6 mM KCl; 1.2 mM

MgCl2; 1.6 mM CaCl2; 10 mM; 10 mM glucose; 5 mM NaHCO3;

pH 7.4). Recording pipettes were filled with (mM): 150 KCl; 1 MgCl2;

5 HEDTA; 10 HEPES (pH 7.3 adjusted with KOH); 10�7 M CaCl2 and

had resistance R12 MU. At first, channels were observed with the cell-

attached configuration, and then the pipette was retracted to achieve the

inside-out configuration. A holding potential of þ60 mV was applied and

single channel events recorded. Under these conditions, the steady-state

open probability is well above 0.95, so that recordings with more than

one channel could be easily discarded. If only one channel was present,

then the bath solution was changed to the same solution inside the pipette,

but having free calcium concentration of 10�7 M, 5 � 10�7 M, 10�6 M,

3 � 10�6 M, and 10�5 M as desired. Free calcium concentrations were

calculated by using the program Webmax Extended (www.stanford.edu/

~cpatton/webmax/webmaxcE.htm). Single channel activity was now re-

corded at þ30 mV. This potential was chosen because most of the single

channel modeling concerning the Ca2þ modulation of BK channel kinetics

was done at þ30 mV, and this also gives a suitable signal/noise ratio for the

analysis with hidden Markov models. Current was measured with Axopatch

200B (Axon Instruments, Foster City, CA), filtered at 10 KHz (�3 dB,

eight-pole Bessel filter), sampled at 100 KHz via a Digidata 1200 interface

(Axon Instruments) and stored on hard disk for off-line analysis. Five data

sets, each at one Ca2þ concentration mentioned above, were simultaneously

used for the global analysis described in the modeling section. Each data set

contained 40 � 106 samples.

As an example, Fig. 2 presents few brief segments of the raw data used in

the global analysis. This figure also displays the corresponding sequence of

hidden states predicted in one of the iterations of the MCMC sampler. Close

inspection of these realizations may be used to identify the transitions

involved in particular features such as fast flickers.

RESULTS

Model ranking

Five data sets containing the activity of a single BK channel

at different Ca2þ concentrations were simultaneously

analyzed. The analysis was made by considering several

gating mechanisms already reported in the literature, shown
Biophysical Journal 96(10) 3987–3996
FIGURE 2 Noisy traces from top to bottom present brief data segments at

1 � 10�7, 3 � 10�6, and 1 � 10�5 M Ca2þ, respectively. Channel openings

correspond to upward deflections. Straight-line traces display a possible real-

ization of the underlying gating process. The hidden realization drawn by the

MCMC sampler corresponds to just one of 15,000 realizations produced

while iterating the MCMC algorithm by using the KNF model. Different

conductances were artificially assigned to each state as an aid to enhance

visualization (data was, however, analyzed by assuming just two conduc-

tances in accordance to the KNF model).

http://www.stanford.edu/~cpatton/webmax/webmaxcE.htm
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in Fig. 1. The first model, referred here to as scheme I, corre-

sponds to scheme VII in Rothberg and Magleby (12). This

scheme was chosen because it represents one of the simplest

mechanisms that was initially able to reproduce a fair amount

of the properties found while analyzing single channel data

(1–3). Interestingly, the reaction scheme of this model is

also consistent with the standard MWC model. Despite of

its qualities, scheme I failed to reproduce the kinetics at

high Ca2þ such as the presence of fast flickers. To overcome

these problems Rothberg and Magleby (13) proposed the

two-tiered model, represented by scheme II in Fig. 1. This

model may be seen as a simplified version of the initial 55-

state mechanism for a homotetramer with a Ca2þ binding

site per subunit, in which every closed conformation could

lead to opening. This model was able to predict an excess

of brief open intervals adjacent to longer closed intervals

observed at high Ca2þ conditions. Scheme III presents

A

B

FIGURE 3 (A) MCMC samples for the Qd matrix obtained by the global

analysis of single channel data at five different Ca2þ concentrations for the

KNF gating scheme. The shaded area shows the iterations discarded to allow

for the relaxation period of the MCMC sampler. The nondiagonal entries of

the Qd matrix are not displayed. (B) Cross-correlation matrix for the MCMC

samples obtained by the global analysis performed with the KNF scheme.

Labels denoted by q1, q2, ., q48 correspond to the following ordering of

the allowed transitions between the states in scheme III: q1 ¼ O1/O1,

q2 ¼ O1/O2, q3 ¼ O1/C7, q4 ¼ O2/O2, . (i.e., O precedes C).

Note that panel B includes the cross-correlations for all the entries in the

Qd matrix, including the diagonal.
a model introduced by Cox et al. (4). This model is a direct

extension of the 10-state MWC model for which the confor-

mations that correspond to a channel with two bound Ca2þ in

adjacent or diagonal subunits can now be distinguished

(states C9, C10 and O3, O4, see scheme III in Fig. 1). The

same as in Cox et al. (4), we will refer to scheme III as the

KNF model, which actually stands as an abbreviation for

Khosland-Nemethy-Filmer. This terminology was presum-

ably used because this model has extra Ca2þ-dependent

concerted transitions, not present in the MWC model.

Scheme IV in Fig. 1 was proposed in Rothberg and Magleby

(14) as an extension to scheme II, to account for both Ca2þ

and voltage regulation of BK gating.

The transition rates for schemes I–IV were estimated as

described in Theory and Methods via MCMC. The traces

in Fig. 3 A show the actual samples for the 36 transition rates

of scheme III (diagonal entries are not shown). The MCMC

sampler seems to converge after approximately the first 1500

iterations, a value that was quantitatively assessed by means

of several convergence tests mentioned in Theory and

Methods. Fig. 3 B displays the cross-correlation matrix for

the transition rates computed directly by using the MCMC

samples after convergence. This matrix shows that there

are quite a few significant positive and negative correlations.

For example, the entry (q16, q29) has a correlation of 0.8, and

the entry (q18, q42) has a correlation of �0.8. This suggests

that the KNF model does provide a sensible parameterization

for the underlying dynamics.

The rate estimates for schemes I–IV were used to rank

these models according to their BIC values. Models with

smaller values are preferred, being the smallest value equal

to 354118975.798 the one corresponding to scheme III.

To facilitate the comparison, denote by DBICi the difference

of the BIC value for the ith model minus the BIC for

scheme III. So as a result from our analysis we found that

DBICIV ¼ 2038.779, DBICII ¼ 28454.068, and DBICI ¼
173797.626. These values yield thus the rank order

III > IV > II > I:

Interestingly, this order is consistent with the results in the liter-

ature (12–14), namely: IV > II > I. All results reported here-

after will refer to those obtained by the estimates for the best

model, that is, scheme III. The actual estimate for the transition

rate matrix is shown in Table 1. These values were computed

by taking the average of the last 13,500 samples out of a total of

15,000 MCMC iterations (displayed in Fig. 1). Ca2þ-depen-

dent transition rates are given in ms�1 � 10�7 M�1, whereas

Ca2þ-independent rates are in ms�1.

This matrix constitutes the basis for all further analyses

and model predictions presented next.

KNF model predictions

Predictions made with scheme III can be described in several

ways. To facilitate the presentation, results shown hereafter
Biophysical Journal 96(10) 3987–3996
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will be restricted to tree representative Ca2þ concentrations:

low corresponding to 1 � 10�7 M, intermediate correspond-

ing to 3 � 10�6 M, and high to 1 � 10�5 M.

An essential characterization of the dynamics of single

channels is given by the distributions of the time spent at

a given set of states, for instance in the closed and the open

classes. Fig. 4 shows the dwell-time densities in the open

class O ¼ {O1, ., O6} and the closed class L ¼ {C7, .,

C12} for the KNF model. At low Ca2þ, the closed class

density is essentially dominated by the sojourns in state C8,

followed then by those in state C7. The excess of dwell times

in these two states is determined by the two maxima of the

density in Fig. 4. The density for the open class at this condi-

tion is dominated by sojourns in state O1. At the intermediate

Ca2þ condition, the closed density lost its slowest compo-

nent. The component with highest area corresponds now to

dwell times in C10. The open class density is now character-

ized by the appearance of two fast components, O5 and O6.

This density is, however, still characterized by a predominant

component corresponding to sojourns in O3. At the highest

Ca2þ concentration, the slowest components of the closed

density have been further shifted toward the left; meaning

that most of the long-lasting sojourns at low Ca2þ concentra-

tions have now disappeared. The most important components

for the open class are O3 and O4, but now two very fast

components O5 and O6 have also a substantial proportion

of the dwell times. All these results are also reinforced by

the values for the stationary distribution and the single-state

mean lifetimes presented in Tables 2 and 3. These quantities

are computed directly from the MCMC Q-matrix estimate.

When considered together, they allow us to draw a detailed

picture for the changes induced by Ca2þ. At low Ca2þ, the

channel prefers to dwell in states C7, C8, and O1. The state

TABLE 1 Estimated Q-matrix for scheme III

Transition Rate constant Transition Rate constant

O1 /
V

O2 0.423e�4 O1/C7 0.541

O2/O1 0.128e�2 O2 /
V

O3 0.73e�4

O2 /
V

O4 0.581e�3 O2/C8 1.956

O3/O2 0.229e�4 O3 /
V

O5 0.32e�4

O3/C10 0.352 O4/O2 0.163e�3

O4 /
V

O5 0.821e�4 O4/C9 0.912

O5/O3 1.229 O5/O4 0.134

O5 /
V

O6 0.512e�2 O5/C11 13.41

O6/O5 0.442 O6/C12 12.352

C7/O1 9.13 C7 /
V

C8 0.823e�2

C8/O2 0.11e�1 C8/C7 0.1e�2

C8 /
V

C9 0.418e�2 C8 /
V

C10 0.422e�6

C9/O4 8.051 C9/C8 1.194

C9 /
V

C11 0.46e�2 C10/O3 8.137

C10/C8 0.193e�1 C10 /
V

C11 0.337e�3

C11/O5 1.08 C11/C9 0.453e�1

C11/C10 0.39e�3 C11 /
V

C12 0.99e�4

C12/O6 8.262 C12/C11 0.108e�2

Transitions marked with V are calcium-dependent. Ca2þ-dependent rates are

given in ms�1 � 10�7 M�1. Ca2þ-independent rates are in ms�1. Diagonal

entries are not shown. Rates corresponding to nonallowed transitions are

equal to 0.
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C7 has quite a long expected mean lifetime, and is respon-

sible for the long closed data stretches. Long closures are

briefly interrupted by transitions to O1 via C8 and O2. As

Ca2þ rises, the channel now spends most of the time at states

C10, and O3, and, less frequently, at C10 and O4. At the high-

est Ca2þ concentration, the channel still prefers O3 and O4,

but the closed dwell times are almost all from sojourns in

C11. The intermediate open dwell times in O3 are interrupted

by very fast closures and openings associated to the transi-

tions C124O6 and C114O5. The actual identity of the

transitions is readily available from the MCMC sampler, as

shown by the hidden realization in Fig. 2.

The information provided by the dwell-time distributions

and the stationary distribution is complemented by the corre-

lations between subsequent open-closed dwell-time pairs.

FIGURE 4 Predicted single-class log dwell-time densities at several Ca2þ

concentrations for scheme KNF. Single state components are shown as

dashed lines. Graphs at the left column display the densities for the open

class, O, and those at the right column the densities for the closed class,

L. Rows from top to bottom present the densities at 1 � 10�7 M, 3 �
10�6 M, and 1 � 10�5 M Ca2þ, respectively. Numbers associated to each

component indicate the actual state within the class, for instance ‘‘1’’ corre-

sponds to O1, ‘‘7’’ to C7, and so on (see scheme III). Plots actually show the

square-root of the density.
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TABLE 2 KNF stationary probability distribution (h) and single-state mean lifetime (t, ms) at several Ca2þ concentrations for the

closed class

[Ca2þ] (M) C7 C8 C9 C10 C11 C12

1 � 10�7 hCi
0.368e�1 0.325 0.113e�2 0.132e�3 0.42e�4 0.22e�6

tCi
63.954 0.109 0.888 0.108 0.123 0.121

3 � 10�6 hCi
0.381e�3 0.1 0.101e�1 0.319e�1 0.175e�1 0.879e�3

tCi
8.253 0.107 0.106 0.886 0.122 0.121

1 � 10�5 hCi
0.22e�4 0.019 0.621e�2 0.035 0.047 0.008

tCi
2.657 0.1 0.102 0.882 0.122 0.121
These correlations constitute useful means in the determina-

tion of the connectivity between the states of a gating mech-

anism from the data. The estimation of these correlations

were fundamental for the approaches that lead to schemes

I, II, and IV (see (12–14)). In fact, it was the failure of

scheme I to predict a large correlation between open dwell

times followed by fast closures (flickers), that lead Rothberg

and Magleby (13,14) to consider both mechanisms II and IV.

Correlations between adjacent open-closed dwell-time pairs

may be computed from the joint open-closed densities such

as those displayed in Fig. 5. Here, these densities correspond

to the one predicted directly by the Q-matrix estimate for the

KNF model. Consistently with the results for the single class

distributions, as Ca2þ rises, the densities concentrate toward

faster dwell-time components. Correlations obtained from

these densities may be displayed by plotting the depen-

dency-difference defined by Eq. 6. The actual significance

of these correlations can be measured by the difference given

by Eq. 7. These two quantities at the low, intermediate, and

high Ca2þ conditions are shown, respectively, in Figs. 6 and

7. The open-closed correlations are not very much affected

by Ca2þ changes. Interestingly, however, as Ca2þ increases,

the most significant correlation component seems to shift

gradually from fast-open fast-closed transitions to slower-

open fast-closed ones. It is important to remark that these

correlations are also detected by analyzing the same data

with scheme IV (Fig. S1), the best model so far proposed

by Rothberg and Magleby (12–14); however, this does not

happen with scheme I (data not shown). A standard filter

and threshold analysis at 10 KHz reveals (Fig. S2) these

correlations to be a genuine feature of our data.

Model comparison

A simple way for assessing the predictive power of both

scheme III and IV consists in a direct comparison of the asso-
ciated single class dwell-time distributions. For brevity,

results in this section are restricted to the lowest and the high-

est Ca2þ condition. Fig. 8 presents the dwell-time densities

for the open and the closed classes shown in Fig. 4 for

scheme III, superimposed on the densities for scheme IV

and also those produced by a standard filter and threshold

analysis at 7.5 KHz.

At 7.5 KHz, the threshold analysis produces an apparent

excess of brief open sojourns, presumably due to back-

ground-noise threshold crossings. At the highest Ca2þ

condition (Fig. 8, C and D), both scheme III and the

threshold analysis produced quite similar dwell-time distri-

butions. At this concentration, scheme IV detects fewer

fast open transitions and predicts an excess of long-lived

shut periods. At the lowest Ca2þ concentration, scheme IV

is closer than scheme III to the threshold analysis. All three

predict the existence of long-lived shut periods; however,

scheme III assigns the smallest weight to these events.

Although this is a substantial difference, scheme III is able

to better describe the data as a whole because: 1), the log-

likelihood values for the three higher Ca2þ conditions are

much smaller than for the other models; and 2), the

second-best-ranked model (scheme IV), with a similar total

likelihood value to scheme III, has a much larger penaliza-

tion factor because of the number of parameters associated

with it.

DISCUSSION

The evidence present in our data strongly supports a large

simplification of models previously used while analyzing

single channel data, to describe the allosteric modulation

of BK channel gating by Ca2þ. Indeed, the number of tran-

sitions rates in the model defined by scheme III, the model

with highest BIC rank, is approximately half the number
TABLE 3 KNF stationary probability distribution (h) and single-state mean lifetime (t, ms) at several Ca2þ concentrations for the open

class

[Ca2þ] (M) O1 O2 O3 O4 O5 O6

1 � 10�7 hOi
0.621 0.184e�2 0.446e�2 0.997e�2 0.305e�5 0.81e�6

tOi
1.847 0.511 1.096 2.842 0.677e�1 0.782e�1

3 � 10�6 hOi
0.641e�2 0.581e�3 0.741 0.887e�1 0.135e�2 0.584e�3

tOi
1.843 0.506 2.835 1.093 0.669e�1 0.784e�1

1 � 10�5 hOi
0.369e�3 0.12e�3 0.82 0.055 0.365e�2 0.526e�2

tOi
1.833 0.494 1.086 2.819 0.651e�1 0.787e�1
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of those present in schemes II and IV. The later have proven

to be the most successful models in the quantitative analysis

pursued by Rothberg and Magleby (13,14), being able to

describe the kinetic properties of single BK channels over

a wide range of Ca2þ conditions. Most critically, these

models are able to account for flickers and highly correlated

open-closed sojourn pairs, present at high saturating Ca2þ

conditions. The results presented here show that scheme III

is also able to describe these features. The material included

as Supporting Material shows that the findings of both

scheme III and scheme IV are in fact quite similar.

Although interesting from a statistical perspective, the

results presented here may be important because they

provide a simplifying view of the underling physical mech-

anism of BK channel gating. Both mechanisms II and IV are

built on the two-tier hypothesis, an idea inspired by the initial

considerations about Ca2þ-modulated homotetramers made

by Cox et al. (4), further developed by Rothberg and

Magleby (14). In this theory, a large number of closed and

open states may be disposed into two separate planes, each

with states of the same class. Horizontal transitions between

closed conformations are assumed to be cooperative;

however, each closed conformation may lead directly to

channel opening in a highly concerted manner. The main

difficulty with these models lies in the identification of

each state with a particular conformation of the protein.

Contrary to this, scheme III may be interpreted as a simple

two-tiered version of the MWC model. All the transitions

in the closed and the open tiers are cooperative and driven

by Ca2þ binding steps. Any of the states in the closed tier

may lead to opening in a single concerted step, as in the

standard MWC model. Planes are originated because one

may distinguish the isoforms with two bound Ca2þ ions at

adjacent subunits, for instance, states C10 and O3 in scheme

III, from those where the two Ca2þ ions are bound to diag-

onal subunits of the tetramer, i.e., states C9 and O4. Fig. 9

shows a simplified version of scheme III, stressing the local-

ization of the subunit having two bound Ca2þ in the open

(O3, O4) and closed (C10, C9) conformations (Ca2þ-bound

subunits are shaded).

Although the analysis here does not allow us to distinguish

between two Ca2þ bound states (either in diagonal or adjacent

subunits), our key result is that the KNF model seems to be suffi-

cient to explain the kinetic properties of single BK channels.

Scheme III was first proposed in Cox et al. (4) for the

analysis of macroscopic BK currents. However, there the

FIGURE 5 Joint log dwell-time densities at several Ca2þ concentration predicted by the KNF mechanism. From left to right, the Ca2þ concentrations are: 1

� 10�7 M, 3� 10�6 M, and 1� 10�5 M. Plots are shown by taking the square-root of the actual densities. Densities are computed from the global Qd estimate

by using standard Q-matrix methods (see (21)).

FIGURE 6 Dependency differences at several Ca2þ concentrations predicted by the KNF mechanism. From left to right, the Ca2þ concentrations are: 1� 10�7

M, 3� 10�6 M, and 1� 10�5 M. Dependency differences are computed by using the predicted joint densities shown in Fig. 5 and their marginals, by following

Eq. 6.
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transition rates were constrained such as to reduce the number

of free parameters down to 10 to be consistent with the stan-

dard MWC concerted theory. The resulting model failed to

reproduce the conductance-voltage relations at high satu-

rating Ca2þ conditions and was superseded by a MWC

scheme in which all transition rates are allowed to vary inde-

pendently from each other. However, (4), but did not consider

an unconstrained version of scheme III. On the other hand, the

modeling work by the literature (4–6) was directed toward the

interrelation between the Ca2þ and voltage modulation of BK

gating, and did not address the dwell-time properties consid-

ered here and in the literature (12–14). It will surely be inter-

esting to see how our estimate for scheme III is able to repro-

duce some of the properties such as conductance-voltage

relations and macroscopic currents.

Recent evidences from heterologous expression of BK

channels and site-directed mutations suggest the existence

of low and high affinity Ca2þ binding sites with distinct

properties (26–28). These findings may be the reason

explaining the better performance of scheme III at high

Ca2þ, since this model assumes the existence of six binding

sites, instead of just four as done by the other models. Obvi-

ously, the different affinities of binding sites were not explic-

itly taken into consideration by the models here analyzed.

This is indeed a new and interesting open problem to be ad-

dressed in future modeling work.

FIGURE 7 Differences at several Ca2þ concentrations predicted by the KNF mechanism. From left to right, the Ca2þ concentrations are: 1� 10�7 M, 3� 10�6

M, and 1 � 10�5 M. Differences are computed by using the predicted joint densities shown in Fig. 5 and their marginals, by following Eq. 7.

A B

DC

FIGURE 8 Single class dwell-time densities for the two

models with highest BIC score, and for a standard filter

and threshold analysis at 7.5 KHz. The densities for scheme

III are shown as a continuous line, those for scheme IV with

a dashed line, and those for the filter and threshold analysis

as steps. Panels A and B present the densities that corre-

spond to the lowest Ca2þ condition, and panels C and D

those for the highest Ca2þ concentration.
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