g

View metadata, citation and similar papers at core.ac.uk brought to you byz: CORE

provided by Elsevier - Publisher Connector

Discrete Applied Mathematics 2 (1980) 21-25
© North-Hoiiznd Publishing Company

.

A BETTER STEP-OFF ALGORITHM FOR
THE KNAPSACK PROBLEM |

Harold GREENBE:RG and Israel FELDMAN
Statistics Department, Tel Aviv University, Ramat-Aviv, Israel

Received 29 March 1978
Revised 10 January 1979 and § July 1979

The knapsack problem, maximize 3=, cx, when Y™, ax;<b for integers x, =0, can be
so}ved by the classical step-off algorithm. The algorithm develops a series of feasible solutions
with ever-increasing objective values. We make a change in the problem so that the step-off
algorithm produces a series of solutions of not necessarily increasing objective values. A poirt is
reached when no better solutions can be found and the calculation is stopped.

1. Introduction

The knapsack nroblem is: find integers x, =0, i=1,..., m, that maximize z
when

Yax=z

i=1
; ax; <b;

the ¢; are given positive reals and the a;, b, m are given positive integers.
We assume without loss of generality that the greatest common divisor
gOd(alsaZs'--sam)=1~

The popular step-off algorithms [1, 2] for the knapsack problem succeed in
enumerating all values of Y™, a,x; until the value of b is reached. At the same
time the algorithms produce the maximum of Y%, ¢;x. These algorithms are
efficient for small b. For large b there exists a periodicity in the computation; the
enumeration may be stopped before the value of b is reached. The periodicity is
recognized when any further step-off will enumerate values for one x; variable
only. This recognition occurs, however, only after extraneous computation.

In this paper we change the knapsack problem in order to improve the
efficiency of step-off methods. Problems can now be solved with a smaller number
of step-offs.

2. A step-off algorithm

In this section we consider the knapsack preblem with the indices ordered so
that index m satisfies c./a,, >c/la;, for i# m. We have x, <[b/a,,], where [y]

21

https://core.ac.uk/display/81947437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

22 H. Greenberg, I. Feldman

denotes the greatest integer less than or equal to y. If b/a,, is an integer, then the
maximum z is given by x,, =b/a,,, x, =0 for i#= m. If b/a,, is not an integer, we
make the change x,, + k =[b/a,.], and obtain the equivalent problem: maximize z
where

m-—1
Z‘: % =2 = Cu[bl A]+ Gk, (1)
m-—1
Y. ax,<b-a,[bla,]+a.k, (2
i=1

k=0,1,...,[ba,l

We need to solve only the equivalent problem for each k, 0<k<[b/a,,], and
select the solution that gives the largest z value. In fact, we can step-off using the
left-side of (2) until the value b is reached. We can do even better. We rely on the
likelihood of x,, having a positive optimal value for the knapsack problem,' with
optimal k being less than [b/a,.]. Hence, the solution will be found before b is
reached in the enumeration of (2). We are able to determine if the enumeration
may be stopped. Since the objective value is z*=c,[bla,] for k=0, x,=
0,...,x,.,=0, we want a solution where z>c.,[b/a,]. Similarly, given any
feasible solution k*, x*,...,x¥_, to (2) with resultant objective value z*, we
want a solution with z>z*,

Any z larger than z* clearly must also satisfy z = :*+d, where

d= {gcd (¢, €2 ...,Cn) all ¢ integer, G)
= 3
>0 otherwise, N

where ¢ is sufficiently small. We then have the

Theorem. A solution to the knapsack problem with z =2z*+d, where d is defined
by (3) and z* is the value of (1) given by feasible values k¥, x¥ . L xX 0 (?),
requires that the k value of the solution be k <k,,,,, where

CA— a,Sj

Konax = [b, “)

for
A=b-[blanla,., &=z*-c,[bla,]+d

and index r is defined by c,/b,=max(c/b;|jel) for the set I={i|b<c.b-
a,(z*+d), 1sism-1} for b, =c,,a —c;a,. If I is empty, then max z<z*.

Proof. If feasible k, x; values to (2) produce z =2%*+d, then from (1)

m—1

k= (Y ox +cm[b/am]—2*—d)/cm (5)

i=1

'E.g.,optimal x,, =1 for b sufficiently large.

Step-off algorithm for the knapsack problem 23

and from (2)

m-1
kz,() a;xi—b+a...[b/am])/a... (6)

Nim]

Combining (5) and (6), we obtain

m-1

2 bx<c,b—a,(z*+d))

i=1
and the maximum value possible for the right side of (5) subject to (7) is given by
X, =(Cp.b—a,(2*+d))/b,, x,=0 for i=r; (4) and the rest of the theorem follow
rapidly.

Corollary. If, for k=0,1,...,Kky,, maxz subject to (1) and (2) occurs for
2%, 5%, ..., x%_1, k*, where k., is given by (4), then z* is maximal.

Remark. We require c,/a,, > ¢/a;. Otherwise, b, =0 and we are unable to find a
bound for k smaller than [b/a,.]. See Section 3.

Remark. For ease of computation, it appears best to assume the index ordering
given by c,/a,<-:-<c¢,_ /a1 <Cn/a,. We then have c,/b;<"::-<c,_1/bn_;
and the index r in the theorem is the largest index in set I.

The theorem lets us solve (1) and (2) by enumerating Y7-;' a;x; while producing
the maximum of Y7*7! ¢;x;. We obtain maximum z as a function of k for increasing
values of k starting with k =0. We begin with z* = c,,[b/a,.] and save any larger z
value as new z¥, obtaining decreasing values for k., and decreasing bound for
the right side of (2). We stop the enumeration long before b is reached whenever
optimal k is small. We base our algorithm on the step-off algorithm of Gilmore
and Gomory [1).

We define F(x) as

m—1 m—1
F(x)=max(Y cx! Y ax<x, integer x,-?O).
i=1 i=1
I(x) is the usual index function; the variable with index I(x), increased by one in
the step-off to x, produces F(x). Hence, a backtrack procedure, using I(x), will
produce the optimal x; values at the conclusion of the algorithm.

Algorithm. k... and next z are determined by their appropriate subroutines.
The indices are ordered so that c¢,/a; < <Cu-1/On 1 <CulAn. d=
ged (¢, €2, . . ., C) if all ¢; are integers; d =& >0 otherwise.

Step 1. Initialize F(x)=0 for 0<x<b, y=0, A=b—[b/a,]a., L.=A, I(0)=1,
z =¢n[bla,] and k =0. Set b, =c,.a; —ca,, for i=1,..., m—1. Determine K,,.
Go to step 2a.

24 H. Greenberg, 1. Feldman

Step 2a. Let j=I(y).

Step 2b. If y +a; <A + a,,Kmax, then let v =¢; +F(y) and go to Step 2c. Other-
wise, go to Step 2d.

Step 2c. If v=F(y +a;), then let F(y +a;)=v, I(y +a,) j and go to Step 2d
Otherwise, go to Step 2d.

Step 2d. If j<m—1, thenlet j=j+1 and go to Step 2b. 0therw1se, go to Step
3a.

Step 3a. Let y=y+ 1.

Step 3b. If F(y)>F(y-1), go to Step 3c. Otherwise, let F(y)=F(y-—1) and
I(y)=m+1; go to Step 3d.

Step 3c. If y =L, obtain next z. Go to Step 2a. Otherwise, go to Step 2a.

Step 3d. If y =L, obtain next z. Go to Step 3a. Otherwise, go to Step 3a.

Routine k,,,,.

Step 1. If I ={i | b;<c,b—a,(z+d), 1 <i<m- 1} is non-empty, determine r,
the largest index in I and go to Step 2. Otherwise, stop.

Step 2. Set 8 =z —c,,[bla,,]+d and k.. =min ([(c,A —a,8)/b,], [b/a,]). If k>
kmax» stop. Otherwise, return.

Routine next z.

Step 1. If F(y)+cn.l[bla,.}—c.k<z, go io Step 2. Otherwise, set z=
F(y)+cn[blu,,]—ck and determine k,,,,; go to Step 2.

Step 2. Let k=k+1. If k> kg, stop. Otherwise, set L =L +a,, and return.

That completes the algorithm.

3. The c./a,, =cla; case

Consider the knapsack problem with cya; <c/a, = * * * = C/@n, j <s. We have
ax,+ -+ + a,x, <p[b/p] where p=gcd (a,..., a,). Making the change
(1/p) 3 aux +k =[bip], ®
we obtain the equivalent problem: maximize 2 where
g % = 2 = p(Cou/ @)[bIP]+ p(Crnl O DK, 9
4__. a.x; <b—p[b/p]+pk, (10)
k=0,...,[b/p]. We then follow the same approach as in the theorem and find an

upper bound for k. The algorithm, ther, is almost the same—stepping-off in (9)
and (10). When each k value arises we need to solve (8) before any z value
becomes allowable. Again ki, is decreasing and we stop when k >k,,,. The

Step-off algorithm jor the knapsack problem 25

solution of (8) for nonnegative x; is one of classical number theory and any good
method may be used. We use the method of [3].

References
[1] P.C. Gilmore and R.E. Goinory. The theory and computation of knapsack functions, Operations

Res. 14 (1966) 1045. s ,

[2] J.F. Shapiro and H.M. Wagner, A finite renewal algorithm for the knapsack and turnpike models,
Operations Res. 15 (1967) 319.

[3] H. Greenberg, An algorithm for a linear diophantine equation and a problem of frobenius,
Technical Report, Tel Aviv University.

