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a b s t r a c t

Various macroscopic models to describe instability pattern formation are discussed in this paper. They
are similar to the Ginzburg–Landau envelope equation, but they can remain valid away from the bifur-
cation and are based on the technique of Fourier series with slowly varying coefficients. We focus on
two questions: the need to take phase changes into account and the boundary conditions to be associated
with macroscopic models. The analysis is carried out on the basis of numerical simulations for the prob-
lem of a compressed beam on a nonlinear foundation that is quite similar to the well known Swift–
Hohenberg equation. The first macroscopic model involves a real envelope so that the phase is assumed
to be constant. The second model is also macroscopic and it is a sort of Ginzburg–Landau equation with a
complex envelope. The third one follows from a multi-scaled approach with a numerical bridging
between the full model near the boundary and a macroscopic model in the bulk.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

This work is devoted to macroscopic descriptions of cellular
instabilities such as wrinkling of membranes (Lecieux and Bouzidi,
2010; Rossi et al., 2005; Trouffard et al., in press), buckling of long
structures (Potier-Ferry, 1983; Abdelmoula et al., 1992; Boucif
et al., 1991; Cochelin et al., 1994), Rayleigh-Bénard convection
(Newell and Whitehead, 1969; Segel, 1969), buckling of thin elastic
films bound to a compliant substrate (Audoly and Boudaoud, 2008;
Chen and Hutchinson, 2004; Wang et al., 2008), fiber microbuckling
that is the initiating mechanism of the compressive failure of long
fiber composites (Drapier et al., 2001; Kyriakides et al., 1995; Waas
and Schultheisz, 1996) and a lot of others instabilities arising in var-
ious scientific fields (Cross et al., 1983; Cross and Hohenberg, 1993;
Dawes, 2010; Hoyle, 2006; Leotoing et al., 2002; Pomeau and Zales-
ki, 1981; Hunt et al., 1988; Hunt and Wadee, 1998; Wadee and
Gardner, 2012). In all these cases, the response of the system looks
like a slowly modulated spatial oscillation. That is why the consid-
ered macroscopic models will be based on functions that are slowly
variable with respect to this oscillation.

Classically the macroscopic evolutions of these instability pat-
terns are governed by the famous Ginzburg–Landau equation
(Abdelmoula et al., 1992; Damil and Potier-Ferry, 1986, 1992; Hunt
et al., 2000; Iooss et al., 1989; Newell and Whitehead, 1969; Segel,
1969) that is generally deduced by an asymptotic analysis of the
bifurcation problem. This Ginzburg–Landau approach has several
ll rights reserved.
drawbacks. First this is a bifurcation equation valid only close to
the critical state. Second this equation is not able to account for
the coupling between a global nonlinear behavior and the appear-
ance of local undulations, for instance for structures that can
undergo both local and global buckling. Third within the
Ginzburg–Landau bifurcation approach, it is not very easy to
deduce consistent boundary conditions.

Recently a new approach has been presented (Damil and Potier-
Ferry, 2006, 2008, 2010) that is based on the concept of Fourier ser-
ies with slowly varying coefficients. In this technique, the Fourier
coefficients are the unknowns of the macroscopic problem. It has
been established that the models obtained in this way are consis-
tent with the Ginzburg–Landau technique, but they may remain
also valid beyond the bifurcation point and the coupling between
global and local instabilities can be taken into consideration (Damil
and Potier-Ferry, 2006). One can find in Budd et al. (2001), Budd
and Kuske (2005) some sophisticated extensions of the asymptotic
Ginzburg–Landau approach with destabilising-restabilising non-
linearities that are therefore valid relatively away from the bifurca-
tion point. Nevertheless a clear and secure account of boundary
conditions that was the third aforementioned drawback cannot
be obtained because this drawback is intrinsically linked to the
use of any model reduction. The present paper is mainly concerned
with the treatment of boundary conditions within reduced macro-
scopic models like the asymptotic Ginzburg–Landau approach or
those deduced from the method of references (Damil and Potier-
Ferry, 2006, 2008, 2010).

Several models can be built according to this principle,
especially depending on the number of considered harmonics.

http://dx.doi.org/10.1016/j.ijsolstr.2012.05.033
mailto:b.braikat@gmail.com
http://dx.doi.org/10.1016/j.ijsolstr.2012.05.033
http://www.sciencedirect.com/science/journal/00207683
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Fig. 1. Beam on a foundation.
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The simplest model includes two macroscopic real variables: the
mean field and the envelope of the oscillations. It has been
evaluated in Damil and Potier-Ferry (2010), Hu et al. (2011) and
its ability to provide a rather good estimate of the pattern’s distri-
bution has been established. Unfortunately the assumption of a
real envelope of the oscillation locks the phase of the oscillation
and this leads to some inaccuracies close to the boundary. More-
over the phase locking implies also a locking of the period that is
fixed within this model with a real envelope. A multi-scaled mod-
eling has been recently proposed in order to bypass the question of
boundary conditions (Hu et al., 2011): the full model is considered
near the boundary, the envelope model in the bulk and they are
bridged by the Arlequin method (Dhia et al., 2005). This permits
to clarify the question of boundary conditions, but the numerical
implementation is not straightforward because it involves three
levels: full, reduced and bridging models. One may wonder
whether a two-scale approach is really needed and whether most
of instability phenomena could not be described only at the mac-
roscopic level. That is why a third model will be discussed that
had not yet been evaluated. The principle is very simple, which
associates a real variable for the mean field and a complex one
for the amplitude of the oscillation. The introduction of complex
amplitude allows predicting offset of both phase and period of
oscillations.

In this paper, these three models will be compared and evaluated
from several numerical tests in the case of beam on a nonlinear elas-
tic foundation that is quite similar to the Swift–Hohenberg equation
(Dawes, 2010; Swift and Hohenberg, 1977). The aim is not necessar-
ily to define a model that should be optimal in any case. Indeed the
best model depends on the requirements of the user, who some-
times is only interested by a rough estimate of the spatial distribu-
tion of the instability patterns and sometimes wants a very
accurate solution everywhere and especially near the boundary.

The paper is organized as follows. In Part 2, two macroscopic
models are deduced by the multi-scale Fourier approach in the
same way as in Damil and Potier-Ferry (2006), Damil and Potier-
Ferry (2010) and the question of macroscopic boundary conditions
is briefly re-discussed. In Part 3, we use the Asymptotic Numerical
Method (Cochelin et al., 1994, 2007) to solve the various nonlinear
differential equations established in Part 2. Several numerical tests
Table 1
Buckling of a clamped short beam under uniform compression: number of ANM steps nec

Number of ANM steps

Order Real macro (5 elements,22 dof) Complex

20 26 24
10 36 33
15 71 65
will be examined in this part, in order to assess the range of valid-
ity of the proposed macroscopic models.
2. Macroscopic modeling of instability pattern formation

2.1. Multi-scale approach

Let us consider a physical phenomenon described by a field
UðxÞ. For simplicity, we limit ourselves to one-dimensional domain
ðx 2 RÞ. We use a multi-scale approach based on the concept of
Fourier series with slowly varying coefficients (Damil and Potier-
Ferry, 2010). Let us suppose that the instability wave-number q
is known. In this way, the unknown field is written in the following
form:

UðxÞ ¼
Xþ1

j¼�1
UjðxÞeijqx: ð1Þ

where the macroscopic fields UjðxÞ slowly vary on a period

x; xþ 2p
q

h i
of the oscillation. Of course, in practice, only a finite num-

ber of Fourier coefficients will be considered. At least two functions
U0ðxÞ and U1ðxÞ are necessary to describe the nearly periodic pat-
terns: U0ðxÞ can be identified with the mean value while U1ðxÞ rep-
resents the envelope or the amplitude of the spatial oscillations. The
envelope U0ðxÞ is real valued, while the others envelopes are com-
plex. So, the envelope of the first harmonic, U1ðxÞ can be written
as U1ðxÞ ¼ rðxÞeiuðxÞ, where rðxÞ represents the amplitude modula-
tion and uðxÞ the phase modulation. If the phase varies linearly
(uðxÞ ¼ Qxþu0), this type of approach is able to describe quasi-
periodic responses whose wave-number qþ Q differs slightly from
the a priori chosen one q. Hence, the method allows accounting for a
change of wave-number. The main idea of macroscopic modeling
that is discussed in this part is to deduce some differential equa-
tions satisfied by the amplitudes UjðxÞ.

2.2. The chosen microscopic model

We consider the example of an elastic beam resting on elastic
non-linear foundation (see Fig. 1). The unknowns are the
essary to get the solution in Fig. 2 for the orders N ¼ 10;15;20.

macro (7 elements,56 dof) Reference (100 elements,303 dof)

33
94
182
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Fig. 2. Buckling of a clamped short beam under uniform compression: Load–displacement curve.
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components uðxÞ and vðxÞ of the displacement vector and the nor-
mal force nðxÞ;UðxÞ ¼ ðuðxÞ;vðxÞ;nðxÞÞ and the differential equa-
tions are (Damil and Potier-Ferry, 2010):

dn
dx
þ f ¼ 0;

n
ES
¼ du

dx
þ 1

2
dv
dx

� �2

;

d2

dx2 EI
d2v
dx2

 !
� d

dx
n

dv
dx

� �
þ cv þ c3v3 ¼ 0;

ð2Þ

These equations will be considered as the reference model that
depends on four structural coefficients EI; ES; c; c3 and a given
axial body force f ðxÞ; where EI is the flexural modulus, ES is
the tensile modulus, c and c3 are the coefficients of the founda-
tion with c3 is positive (see (Hunt and Everall, 1999)). The beam
is subjected to an increasing end shortening uðLÞ ¼ �kL. This
system is able to describe periodic patterns. In the case of
constant coefficients EI and c and of a prescribed uniform com-
pression stress lðnðxÞ ¼ �lÞ, a relation between the critical load
l and the wave-number q of periodic patterns can be deduced
from the linearized version of (2)c: lðqÞ ¼ EIq2 þ c

q2, a critical
wave-number q ¼

ffiffiffiffiffiffiffi
EIc4
p

can be defined as the minimum of the
neutral stability curve lðqÞ. Note that the solutions of the system
(2) are stationary points of the following potential energy (Damil
and Potier-Ferry, 2006):

Pðu;vÞ ¼
Z L

0

ES
2

u0 þ v 02
2

� �2

þ EI
2

v 002 þ c
2

v2 þ c3

4
v4 � fu

 !
dx: ð3Þ
2.3. General methodology for obtaining the macroscopic models

Within the Fourier approach, the differential equations satisfied
by the amplitudes Uj ¼ ðuj;v j;njÞ are deduced from the micro-
scopic model by identifying the Fourier coefficients in each equa-
tion, the amplitudes UjðxÞ being assumed constant over a period

x; xþ 2p
q

h i
, for more details see (Damil and Potier-Ferry, 2006,

2008, 2010). However, the derivative operators are computed ex-
actly, according to the following rule:
dg
dx

� �
j

¼
dgj

dx
þ jiqgj ¼

d
dx
þ jiq

� �
gj: ð4Þ

For example, the membrane constitutive law (2)b leads to the fol-
lowing macroscopic constitutive law:

nj

ES
¼ d

dx
þ jiq

� �
ujþ

1
2

X
j1¼�1

þ1 d
dx
þ j1iq

� �
v j1

d
dx
þðj� j1Þiq

� �
v j�j1 : ð5Þ

Let us see in detail the macroscopic constitutive law for the mean
stress n0ðxÞ in the case of two real envelopes U0 ¼ ðu0;v0; n0Þ 2 R

and U1 ¼ ðu1;v1;n1Þ 2 RÞ:

n0

ES
¼ du0

dx
þ 1

2
dv0

dx

� �2

þ dv1

dx

� �2

þ q2v2
1: ð6Þ

Remark that the two last terms are always positive and correspond
to an increase of tensile stress or a decrease of compressive stress.
Thus, this macroscopic law is able to account for the membrane
stress decrease due to a local wrinkling, particularly via the last
terms of (6).

The procedure to deduce a finite number of amplitude equa-
tions is easy in the case of a simple nonlinear system as (2), see
(Damil and Potier-Ferry, 2006, 2008, 2010). Theoretically, the num-
ber of terms in the Fourier series can be very large, see (5), but in
numerical practice, it is convenient to limit the number of harmon-
ics. For example, in Damil and Potier-Ferry (2010) formulas (39), a
macroscopic model implying five harmonics has been presented
corresponding to the wave numbers 0;�q;�2q. In this case the po-
tential energy is given by:

Pðu0;u1;u2; v0;v1; v2Þ ¼
Z L

0

ES
2
ðc2

0 þ 2jc1j
2 þ 2jc2j

2Þdx
�

þ
Z L

0

EI
2
ðk2

0 þ 2jk1j2 þ 2jk2j2Þ
�

dx�
Z L

0
f0u0dxþ

Z L

0

c
2
ðv2

0

þ2jv1j2 þ 2jv2j2Þdxþ
Z L

0

c3

4
ððv2

0 þ 2jv1j2 þ 2jv2j2Þ2

þ8jv1j2jv2j2 þ 2jv2j4 þ 8jv0v1 þ v1v2j2 þ 2jv2
1

þ2v0v2j2Þdx; ð7Þ

with
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Fig. 4. Buckling of a clamped long beam under uniform compression. Load–displacement curves.
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c0 ¼
du0

dx
þ 1

2
dv0

dx

� �2

þ d
dx
þ iq

� �
v1

����
����

2

þ d
dx
þ 2iq

� �
v2

����
����
2

;

c1 ¼
d
dx
þ iq

� �
u1 þ

d
dx
� iq

� �
v�1

d
dx
þ 2iq

� �
v2 þ

dv0

dx
d
dx
þ iq

� �
v1;

c2 ¼
d
dx
þ 2iq

� �
u2 þ

dv0

dx
d
dx
þ 2iq

� �
v2 þ

1
2

d
dx
þ iq

� �
v1

� �2

;

ð8Þ
k0 ¼
d2v0

dx2

k1 ¼
d
dx
þ iq

� �2

v1;

k2 ¼
d
dx
þ 2iq

� �2

v2:

ð9Þ

In this paper, we do not try to deduce a single generic model that
would be valid in every conceivable case. For instance the model
(7) includes only few harmonics, but it may be unnecessarily intri-
cate. In this context, further simplifications are introduced in the
potential energy (7). First, we consider only three harmonics
0;�q, with a real envelope U0ðxÞ ¼ ðu0;v0;n0Þ and one complex
U1ðxÞ ¼ ðu1;v1; n1Þ, or equivalently three real envelopes
U0ðxÞ;UR

1ðxÞ;U
I
1ðxÞ; UR

1ðxÞ and UI
1ðxÞ are respectively the real and

the imaginary parts of U1ðxÞ. The second restriction concerns the
body axial force that is supposed to be invariable on each period:
in other words, the body force contains only the harmonic zero
ðf ðxÞ ¼ f0ðxÞÞ. This implies that the normal force does not fluctuate
(n1 ¼ 0) and this permits to drop the unknown u1ðxÞ. In this case,
the potential energy depends on the mean field (u0ðxÞ;v0ðxÞ) and
the envelope of the deflexion v1ðxÞ :

Pðu0;v0;v1Þ ¼
Z L

0

ES
2

c2
0 þ

EI
2
ðk2

0 þ 2jk1j2Þ � f0u0

� �
dxþ

Z L

0

c
2

�ðv2
0 þ 2jv1j2Þdxþ

Z L

0

c3

4
ðv4

0 þ 12v2
0jv1j2

þ 6jv1j4Þdx:

ð10Þ

Since v1 is a complex-valued function, the model (10) allows to pre-
dict slow phase modulations. In Part 3, this model (10) will be
tested for the first time. It will be referred as ’’complex macro’’. In
a recent paper (Damil and Potier-Ferry, 2010), further simplifica-
tions have been introduced in the model (10) to define the simplest
model coupling the membrane problem and an envelope equation
similar to the Ginzburg–Landau equation. The first new approxima-
tion is to suppose that the envelope v1ðxÞ is real, which accounts for
the amplitude modulation and disregards any evolution of the
phase. Second, we assume v0ðxÞ ¼ 0, so that the nonlinear behavior
and the instability can be considered only at a local level. Especially,
it would be no longer possible to couple local and global buckling,
as with the previous model (10). Last, the bending term k1 (9)b will
be simplified to recover an envelope equation similar to Ginzburg–
Landau equation. Roughly, the second order derivatives of v1ðxÞ are
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dropped in the bending energy. Finally, the simplified potential en-
ergy is given by the formula:

Pðu0;v1Þ ¼
Z L

0

ES
2
ðu00 þ v 021 þ q2v2

1Þ
2

� �
dx

þ
Z L

0
EIð6q2v 021 þ q4v2

1Þ þ cv2
1 þ

3c3

2
v4

1 � f0u0

� �
dx:

ð11Þ

Note that, in this approximation, the vertical displacement is given
by:

vðxÞ ¼ v0ðxÞ þ 2v1ðxÞsinðqxÞ; ð12Þ

but it could also be given by vðxÞ ¼ v0ðxÞ þ 2v1ðxÞsinðqxþ /Þ. In
other words, the phase / is more or less arbitrary, which explains
the main difference existing between this model and the previous
one (10). This very simplified model (11) is able to predict ampli-
tude modulation, but not phase modulation. In Part 3, this second
model (11) will be compared with the previous one (10) and to
the multi-scale model of Hu et al. (2011). It will be referred as ‘‘real
macro’’.

2.4. Boundary conditions associated to the macroscopic models

It is not easy to associate consistent boundary conditions with
macroscopic models like (7), (10) or (11). Indeed the assumption
of a slowly varying oscillation is generally not valid everywhere,
especially near the boundary, because of the presence of boundary
layers (Schlichting, 1979). The starting assumption (1) should be
corrected near the ends of the domain and should be replaced by
the following:

UðxÞ ¼
Xþ1
�1

UjðxÞejiqx þ UBLðxÞ: ð13Þ

where the last term UBLðxÞ accounts for the boundary layers and
vanishes away from the ends. In principle, this boundary layer term
should be included when accounting for the boundary conditions
(Daya et al., 2003). A generic procedure has been proposed in Hu
et al. (2011) to account for boundary effects in cellular instability
problems: the starting model (2) is used near the boundary, a re-
duced model as (10) or (11) in the bulk and these two models are
connected by the Arlequin method (Ben Dhia et al., 2005). In this
paper, this numerical technique will be applied in the case where
the macroscopic model is the one with a real envelope, see (11)
and it will be referred as ‘‘bridging model’’. Nevertheless, the
numerical model will be simpler if one can avoid this bridging
method and if one is able to associate consistent boundary condi-
tions to the macroscopic model. It is known (Damil and Potier-Fer-
ry, 1986; Pomeau and Zaleski, 1981) that such macroscopic
boundary conditions can be obtained, for instance with a clamped
beam or plate: vð0Þ ¼ dvð0Þ

dx ¼ 0. To do this, one can assume that
the mean value and the oscillating part of the deflection:
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v0ðxÞ;
Re½v1ðxÞeiqx� ¼ vR

1ðxÞcosðqxÞ � v I
1ðxÞsinðqxÞ

ð14Þ

vanish at x ¼ 0, as well as their first derivative. This implies the fol-
lowing boundary conditions for the real and imaginary part of the
envelope: vR

1ð0Þ ¼ 0; vR
1ð0Þ
dx � qv I

1ð0Þ ¼ 0. If in addition the envelope



Table 2
Buckling of a clamped long beam under uniform compression. Number of ANM steps necessary to achieve the last point in Fig. 4 for the orders N ¼ 10;15;20.

Number of ANM steps

Order Real macro (4 elements,18 dof) Complex macro (4 elements,35 dof) Reference (120 elements,363 dof)

20 21 23 83
10 29 31 111
15 55 59 219

Table 3
Buckling of a clamped beam under non uniform compression: number of ANM steps necessary to achieve the last point in Fig. 8 for the orders N ¼ 10;15;20.

Number of ANM steps

Order Real macro (21 elements,86 dof) Complex macro (21 elements,154 dof) Reference (150 elements,453 dof)

20 25 26 28
10 33 35 37
15 62 65 71
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varies more slowly than the local oscillation d
dx� q
� 	

, one deduces
that at a clamped end, the macroscopic boundary conditions are:

v0ð0Þ ¼ 0;
dv0ð0Þ

dx
¼ 0

vR
1ð0Þ ¼ 0; v I

1ð0Þ ¼ 0:
ð15Þ

In a similar way, let us consider that:

wðxÞ ¼ Re½v1ðxÞeiqx� ¼ vR
1ðxÞcosðqxÞ � v I

1ðxÞsinðqxÞ

satisfies the simply supported boundary conditions
wð0Þ ¼ d2wð0Þ

dx2 ¼ 0. By using the same approximation d
dx� q
� 	

, one
easily deduces the following boundary conditions:

v0ð0Þ ¼ 0;
d2v0ð0Þ

dx2 ¼ 0

vR
1ð0Þ ¼ 0;

dv I
1ð0Þ
dx

¼ 0:

ð16Þ

These Dirichlet–Newman boundary conditions (16)b can be applied
in the same manner at the end x ¼ L provide that qL=2p be an
integer.

Nevertheless it is difficult to get consistent macroscopic bound-
ary conditions in any case, in particular when an instability or non-
linear behaviour occurs near the boundary before the appearance
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Fig. 9. Buckling of a simply supported beam with a local
of the global instability. All these questions will be re-discussed
in the next part, by considering several numerical examples.
3. Numerical evaluations of macroscopic models

The three models will be compared and evaluated from four
numerical tests in the case of beam on a nonlinear elastic founda-
tion. The first one is a relatively short beam under uniform com-
pression, the total length being about five times the instability
wavelength. This example can be considered as a validation test.
As the second test, we choose the same example as the previous
one, except the length which is this time twenty times the instabil-
ity wavelength. The third one is a beam under non uniform com-
pression. The fourth test has been designed in such a way that
the instability starts near the boundary.
3.1. A finite element discretization

The unknowns of the three models, <r> = <u,v> for the fine
model (3), <r> = <u0,v0,vR

1,vI
1> for the macroscopic model (10),

and <r> = <u0,v1> for the macroscopic model (11), are discretized
in the classical form: frg ¼ ½N�fqg. In the case of the fine model
(3), referred as ‘‘reference model’’, the used element is a beam
2 2.5 3

lacement in [0, 6π] and [6π, L]

Complex macro in [0, 6π]
Complex macro in  [6π, L]
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Reference model in [6π, L]
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defect near the boundary. Load–displacement curves.
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Fig. 10. Buckling of a simply supported beam with a local defect near the boundary. Instability patterns for k ¼ 1:016; k ¼ 1:416; k ¼ 2:216 and k ¼ 3:016.
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element with two nodes and three degrees of freedom by node, the
matrix ½N� is represented by Lagrange shape function for u and Her-
mite shape function for v. In the case of the macroscopic model
(10), referred as ‘‘complex macro’’, the used element has two nodes
and seven degrees of freedom by node, ½N� is represented by La-
grange shape function for u0 and Hermite shape function for
v0;vR

1 and v I
1. In the macroscopic model (11), referred as ‘‘real

macro’’, the used element has three nodes and two degrees of



Table 4
Simply supported beam with a local defect near the boundary. Number of ANM steps necessary to reach the last point in Fig. 9 for the orders N ¼ 10;15;20.

Number of ANM steps

Order Real macro (5 elements,22 dof) Complex macro (43 elements,308 dof) Reference (240 elements,723 dof)

20 35 40 44
10 48 55 59
15 91 105 114

K. Mhada et al. / International Journal of Solids and Structures 49 (2012) 2978–2989 2987
freedom by node, ½N� is represented by Lagrange shape functions
for u0 and v1.

The three models, the reference model defined by the potential
energy (3), the real macro model defined by the potential energy
(11) and the complex macro model defined by the potential energy
(10) are solved by the Asymptotic Numerical Method algorithm. In
this algorithm (Cochelin et al., 1994, 2007), the solution is deter-
mined step by step. At each step, from a given starting point, we
seek an approximation of the solution branch in the form of a
power series truncated at an order N. A simple formula permits
to calculate the range of the validity of this representation and to
define the starting point for the following step. Thus, the solution
is determined branch by branch. Each branch is calculated by
inverting only one tangent stiffness matrix. The calculations were
also done point by point using the method of Newton–Raphson.
For convenience, the model with bridging was solved only with
Newton–Raphson method.
3.2. Buckling of a clamped short beam under uniform compression

We consider a clamped beam of length 10p and characteristics
ES ¼ EI ¼ 1; c ¼ 1; c3 ¼ 1=3 and we choose the instability wave-
number q ¼ 1. The beam is subjected to an increasing global end
shortening uðLÞ ¼ �kL and the body force is zero: f0 ¼ 0.

For the reference model, the boundary conditions are: vð0Þ ¼
vðLÞ ¼ 0; v 0ð0Þ ¼ v 0ðLÞ ¼ 0. The macroscopic boundary conditions
for the real macro model are: v1ð0Þ ¼ v1ðLÞ ¼ 0 and for the com-
plex macro model are: v0ð0Þ ¼ v0ðLÞ ¼ 0; v 00ð0Þ ¼ v 00ðLÞ ¼ 0;
vR

1ð0Þ ¼ vR
1ðLÞ ¼ 0; v I

1ð0Þ ¼ v I
1ðLÞ ¼ 0.

We choose 100 fine elements for the reference model, five
macro elements for the real macro model and seven macro ele-
ments for the complex macro model. Several tests were conducted
to select the optimal number of elements for each macro model,
the chosen mesh being the less fine mesh that provides a correct
solution.

To ensure a transition from the fundamental branch to the
bifurcated branch, the beam is perturbed by a force gpert along
the third degree of freedom vR

1 and the fourth degree of freedom
v I

1 in the case of complex macro model and the second degree of
freedom in the case of the two others models (real macro, refer-
ence). The values of the perturbation force are gpert ¼ 5� 10�4 for
the reference model, gpert ¼ 2� 10�5 for the real macro model
and gpert ¼ 8� 10�5 for the complex macro model.

The bifurcation branch ðvmax; kÞ and the instability pattern for
k ¼ 2:055 and k ¼ 2:305 are respectively given in Figs. 2 and 3.
We also represented the solution obtained by the method with
bridging. From this first test, one can conclude that the three mac-
roscopic models are generally very good, even in this case where
the domain is too short for the two spatial scales should be distinct.

All three models correctly predict the size and the spatial distri-
bution of the instability patterns, the bifurcation point and the
shape of the post buckling solution, see Figs. 2 and 3. Nevertheless
there is a phase shift near the boundary between the real macro-
scopic model and the others. Clearly in this real macroscopic model,
there is a relation between the phase locking and the deficiencies of
this model near the boundary. Note that these gaps do not exist
near the bifurcation threshold ðk ¼ 2:055Þ: indeed it is well known
that the wave-number is about equal to its critical value q near the
bifurcation and it can vary with the parameter k (Boucif et al., 1991;
Cross et al., 1983; Damil and Potier-Ferry, 1986; Pomeau and Zales-
ki, 1981) and the real macroscopic model is not able to account for
this change of wave-number.

The numbers of elements necessary for the three models (refer-
ence, real macro, complex macro) are reported in Table 1. The most
remarkable feature is the very small number of elements needed
with the two macroscopic models: here only five elements and
22 dof’s for the real macro model and 7 elements and 56 dof’s
for the complex macro model as compared with about 303 dof’s
with the fine model.

The curves given on Fig. 2 were obtained by the ANM algorithm.
On Table 1, we give the number of ANM steps necessary to com-
pute the solution branch of Figs. 2, for various orders and for each
model (reference, real macro, complex macro). This number of
ANM steps can be considered as a measure of the nonlinearity of
the problems: clearly the macroscopic models are rather easier
to be solved than the fine model. Last let us remark the small num-
ber of ANM steps, about 30 for an order N ¼ 20. This means that
the calculation will be done with only 30 tangent matrices while
about 300 matrices are necessary with Newton–Raphson methods
(about hundred steps and two iterations per step).
3.3. Buckling of a clamped long beam under uniform compression

We consider the same example as in the Section 3.2, and we use
the same data except for the length that is chosen equal to 30p.
After several tests, we choose to use 120 microscopic elements
for the reference model, 4 macroscopic elements for the two mac-
roscopic models.

The bifurcation branch ðvmax; kÞ and the instability pattern for
k ¼ 2:016 and k ¼ 2:211 are given in Figs. 4 and 5. We also repre-
sented the solutions obtained by the method with bridging.

From Figs. 4 and 5, we can note that the three models are in
accordance with the reference model for this part of the branch
that corresponds to the vicinity of the bifurcation. As in the previ-
ous test, the two macroscopic models permit to describe an intri-
cate spatial pattern with a very small number of finite elements,
see Table 2. Moreover this number of elements is the same as with
the short length, which establishes that the macroscopic discreti-
zation does not depend on the number of local oscillations. In
Fig. 6, one considers the evolution of the buckling patterns a little
further from the bifurcation point. A slight discrepancy between
reference and complex macro models appears close to the left
boundary (Fig. 4-a). This means that there are boundary layer ef-
fects that become significant at some distance from the bifurcation
and the macroscopic models are not able to describe the boundary
layers. In Fig. 6-a, the bridging method gives good results, which is
consistent because the use of the fine model near the boundary
permits to account for the boundary layers. Nevertheless it has
been necessary to use the fine model in a large interval ½0;12p�
(cf Fig. 6-a) to get this correct result. Another test is presented in
Fig. 6-b, where the fine model holds only in a smaller interval
½0;4p�. Another small discrepancy appears in the left boundary re-
gion that is now the consequence of the influence of phase locking
postulated in the real macro and in the bridging model.
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To check the presence of a shift of the wave-number, the spatial

evolution of the phase atanðv
I
1

vR
1
Þ has been plotted in Fig. 7. This

shows that the phase varies slowly and linearly in the center as
predicted by the theory (Cross et al., 1983; Damil and Potier-Ferry,
1986). Last the shape of the pattern in Figs. 5 and 6 is consistent
with the basic Ginzburg–Landau theory that can be summarized
by the following equation (the constants have been omitted):

d2v1

dx2 þ ðk� kcÞv1 � v1jv1j2 ¼ 0: ð17Þ

Close to the bifurcation k� kc � p2=L2, the response with
v1ð0Þ ¼ v1ðLÞ ¼ 0 are the sine function

v1ðxÞ ¼ asin
px
L

� �
; k� kc � p2=L2 a 2 C: ð18Þ

When the parameter increases (k� kc � 1=L2), this shape evolves
and, in the left boundary layers, the solution of (17) with
v1ð0Þ ¼ 0 becomes:

v1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k� kc

p
tanh

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k� kc
p ffiffiffi

2
p

� �
: ð19Þ

The curves presented in Fig. 3 show the transition from a sine func-
tion (17) to a boundary layer type solution (19).

3.4. Buckling of a clamped beam under non uniform compression

We consider the same example as in Section 3.3, using the same
data except the length L ¼ 40p and the addition of an axial force
equal to f0 ¼ �2=L. This double loading f0 ¼ �2=L; uðLÞ ¼ �kL in-
duces a non homogeneous pre-stress and leads to a buckling that
begins near to the extremity x ¼ 0 in the most compressed zone.

As compared to these two previous tests, the obtained patterns
are concentrated in a part of the domain, this part changing with
the load k. This test had been previously treated in Damil and Po-
tier-Ferry (2010) by the real macro model.

We have chosen 150 microscopic elements and 21 macroscopic
elements for the two envelope models. The bifurcation branch
ðvmax; kÞ and the instability pattern for k ¼ 1:868 are given in the Figs.
8-a and 8-b and the number of required steps and elements in Table
3. For this case with a non homogeneous pattern, the conclusions are
similar to those of the previous tests. All the three considered models
(reference, real and complex macro) lead to the same results, except
the real macro model that is not able to predict a slight difference of
wavelength with respect to the bifurcation wavelength 2p, as in the
test of Section 3.3. The number of steps and of elements is lower with
the macroscopic models than with the full model, but the difference
is not as large as in the previous test.

Once more, one observes that the account of a complex ampli-
tude permits to get an accurate modelisation of the instability
wavelength, while this wavelength is fixed with real amplitude.
Note that the classical Ginzburg–Landau Eq. (17) is not able to pre-
dict the instability patterns in this case because the linear bifurca-
tion mode is much localized near the left boundary and the plot of
Fig. 8b shows a continuously extending pattern. As seen in Fig. 8b
the amplitude equation obtained by the Fourier approach has
permitted to describe the continuous pattern extension in this case
with a non uniform compression.

3.5. Buckling of a simply supported beam with a local defect near the
boundary

We consider a beam of length 30p and characteristics
ES ¼ EI ¼ 1; c ¼ 1; c3 ¼ 1=3 and we choose q ¼ 1. A local defect
near the boundary is introduced by choosing (EI ¼ 0:2 in ½0;p�)
and EI ¼ 1 in ½p;30p�. The beam is subjected to an increasing global
end shortening uðLÞ ¼ �kL; uð0Þ ¼ 0, no axial force is applied f0 ¼ 0.

This benchmark has been introduced in Hu et al. (2011) because
it is a severe test for the macroscopic boundary conditions. Indeed
the first bifurcation for ðk � 1Þ corresponds to a mode that is local-
ized near the end x ¼ 0. Next a global bifurcation mode occurs for
k � 2. The response of the structure between ðk � 1Þ and ðk � 2Þ is
highly nonlinear and localized close to the end x ¼ 0. Therefore it is
impossible to deduce consistent macroscopic boundary conditions
because the presence of boundary layers invalidates the starting
assumptions of the macroscopic model, see (2.4). Nevertheless
we try to apply the two macroscopic models (real and complex
macro) with the boundary conditions v0ð0Þ ¼ 0, v 000ð0Þ ¼ 0,
vR

1ð0Þ ¼ 0; v I
1ð0Þ ¼ 0 (for the real macro model, v1ðxÞ ¼ iv I

1ðxÞ;
v 0I1ð0Þ ¼ 0). In the same way as in the previous test, the following
meshes have been chosen: 240 fine elements for the reference
model, 5 macro elements for real macro model and 43 macro ele-
ments for the complex macro model. The characteristics of the
numerical simulations (number of degrees of freedom, number of
ANM steps) are reported in Table 4. As in the previous tests, the
use of the real macroscopic model leads to a strong reduction
of the number of degrees of freedom, but the response of the
system near the ends is not perfectly predicted. The bifurcation
branch (vmax; k) and the instability pattern for l ¼ 1:016;
l ¼ 1:416; l ¼ 2:216 and l ¼ 3:016 are given in Figs. 9, 10. We
also represented the solutions obtained by the method with bridg-
ing. In order to visualize those phenomena, we introduce two
intervals in Fig. 9 ½0;6p� and ½6p; L�, and we plot the maximum dis-
placement versus k on each interval. The first part captures the lo-
cal instability due to the low rigidity near the end (EI ¼ 0:2 in
½0;p�), the second part captures the global buckling. From Figs. 9
and 10, one can see that the three macroscopic models permit to
qualitatively describe the first local bifurcation for k � 1 and the
second global bifurcation k � 2. As expected, the purely macro-
scopic models (real macro and complex macro) are not able to pre-
dict the behavior of the beam in the boundary layer, but the
complex macro model is much better than the real one. As for
the bridging model, it gives an accurate description far away from
the bifurcation. Hence in the absence of consistent boundary con-
ditions for the macro models, only the bridging model is able to
provide reliable results. With the macroscopic models, the number
of degrees of freedom is much reduced, with a ratio larger than 10
and the number of steps is not increased. This illustrates once more
the interest of the macroscopic models. We have carried out many
tests of the complex macro model with several meshes, from 12 up
to 50 elements. These tests illustrate the difficulty to deduce con-
sistent macroscopic boundary conditions. In any case, the ampli-
tude of the oscillations in the bulk is correctly predicted, but this
is not the same with the phase except for a very fine mesh (43 ele-
ments in Fig. 10). It is also not possible to accurately find the solu-
tion near the boundary and for large values of the load (see Figs. 9
and 10). Clearly this difficulty is only due to the strong nonlinear
behavior because of the interaction between local and global buck-
ling. Of course this difficulty does not exist with the bridging tech-
nique that permits to account for the reference model and the
reference boundary conditions in boundary layers.
4. Conclusion

In this work, we compared and evaluated three macroscopic
models from several numerical tests. The first macroscopic model
involves a real envelope so that the phase is assumed to be
constant. The second model is also macroscopic and it is a sort of
Ginzburg–Landau equation with a complex envelope. The third
one follows from a multi-scaled approach with a numerical bridging
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between the full model near the boundary and a macroscopic model
in the bulk. The key point is to associate consistent boundary condi-
tions and it has been established that only the bridging technique
permits to solve this question with a small additional computer
time. Another important point is to permit a correct and evolution-
ary account of phase and wave-number of spatial oscillations, which
can be done only with a complex envelope. The first model is simple
and cheap, but not very precise about boundary effects. The second
model, conceptually simple, treats the most boundary effects. The
third model is more complicated but still with relatively few degrees
of freedom treats exactly the boundary conditions. All these results
will be useful to introduce macroscopic models for cellular instabil-
ity problems such as membrane wrinkling and fiber microbuckling.
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