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A b s t r a c t - - I n  this paper, a q uniqueness theorem is proved for a hyperbolic boundary problem with 
data on the characteristic cone. 

1. I N T R O D U C T I O N  AND S T A T E M E N T  OF T H E  RESULT 

Consider the problem 

Utt -- AU + q(x)u = O, z E It 3, --r < t < r, 

u = 0 at t = +r,  

//? lira lur T utl 2 d tds  = O. 
R-.+ e,o R 

Isl=R 

r = I 1, (1) 
(2) 

(3) 

The boundary data  are given on the characteristic cone t = +r .  Condition (3) is a condition at 
infinity. Assume that  q(z) E L~o¢(113). No assumptions are made concerning the behavior of q(z) 
at infinity. The main result of this paper is the following uniqueness theorem. 

THEOREM 1. Problem (1)-(3) has only the trivial solution u(z , t )  = 0 in the class of func- 
tions u ( x , t )  which are locally C~,t and such that 

,im//? 
R - - ~  R 

I,l=R 

]utr + uttl 2 dt ds = O. (3') 

Theorem 1 is of importance in inverse scattering theory [1-3]. In [2] a uniqueness theorem 
similar to Theorem 1 is formulated. However, the proof in [2] requires that  the solution u(x, t) 
be infinitely differentiable in t, that  u and all its derivatives go to zero as r --* e¢, and that q(x) 
and Vq vanish at a certain rate as r --+ o¢. 

Moreover, the proof uses some formal arguments which need a justification (the class which 
belongs to the kernel and the solution of equation (4) in [2] is not defined, function (7) is a 
distribution, and the meaning of the integral in (8) is not explained; also, the argument below 
formula (3) is not clear). 

The purpose of this paper is to give a simple proof of Theorem 1 based on the result from [1]. 
More general results than in [1] are given in [4]. The results in [4] allow one to formulate an 
analogue for Theorem 1 for operator equations. In Section 2, a proof of Theorem 1 is given. 

A. G. Ramm thanks ONR, NSF and the USIEF for support. This paper was written while A. G. Ramm was a 
Fulbright Research Professor at the Technion, 1991-92. 
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2. P R O O F  OF T H E O R E M  1 

In [1] the following result is proved: if u solves (1) and satisfies conditions 

u=0 att=0 and t=r (4) 

and (3) (with the minus sign) holds, then u(z, t) = 0, z E R a, 0 < t < r. 
If u(z , t )  solves (1)-(3), then its even and odd parts .(~,t)+~(~,-t) and .(=,t)-~(~,-t) 2 2 

solve (1)-(3). The odd part of u(z , t )  solves also (4) and, by the cited result from [1], vanishes, 
so one can assume that  

= (*) 

Define w ( z , t ) : =  u t ( x , t ) .  From (*), it follows that  w ( z , t )  = - w ( z , - t ) .  Therefore, 

t o ( x , t )  = o at t = o. (5)  

Clearly, to(x,t) solves (I) since q(x) does not depend on t. Moreover, to satisfies (3) by the 
assumption (31). If one proves that 

to = 0 at t = r, ( s )  

then, by the uniqueness theorem from [I], it follows that w -- 0 for all x E R 3, 0 < t < r. 

This implies that u(x, 0) = fo w(z, r)dr = 0. Using again the uniqueness result from [1], one 
concludes that u(x, t) = 0 for all z E R 3 and all 0 < t < r. By (*) it follows that u(x,t) = 0 
for all z E R a and -r < t < r. This completes the proof of Theorem 1 as long as the following 
lemma is proved. 

LEMMA 1. Ifu solves (I), u(z,t) ---- u(x,--t), u(x,t) E C~o c, u(z,-Fr) = O, then w(z,t) := ut(z,t) 
satis/~es (6). 

PROOF. Let ~ := ( r + t ) / 2 ,  p := ( r - t ) ~ 2 ,  v := r u ( x , t ) .  Then (1) becomes 

vtt-v~r-r-2Av+qv=O, A = - A * ,  (7) 

where A* is the angular part of the Laplacian. In the variables ~, p, this equation becomes 

v{p + ({ + p)-2 A v  - qv = O. (8)  

The boundary conditions (2) become 

v = O  a t p = 0  and a t { = 0 .  (9) 

Since the operator A does not act on the variables p and ~, it follows from (8) and (9) that  

v ~ p = 0  a t p = 0  and a t e = 0 .  (10) 

One has rut = vt = (v e - v . ) / 2 .  Thus, 2vt],=r = (v~ - %)[.=o = v{[.=o - %[.=0. It follows 
from (9) that  v~[.=0 = 0. Therefore, 2vt[t=r = -v . [ .=0.  It follows from (10) that  v.[.=0 = c, 
where c does not depend on ~ (c may depend on the angular variables). If one proves that  c = 0, 
then the proof of Lemma 1 is complete. One has 

- 2 , u ,  l,=r = v,] ,=o = c. (11) 

By the assumption, ut is a locally continuous function. Therefore, taking r -* 0 in (11) yields 
c = 0. Lemma 1 is proved. 

The proof of Lemma 1 is close to an argument in [2]. This completes the proof of Theorem 1. 
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REMARK 1. Condi t ion (3) is satisfied if 

/ F [  ] l im 1=,19. + 1=,19. dsdt = 0. (3") 
R---oo R 

I,I=R 

REMARK 2. In [4], equat ion  (7) wi th  an abs t rac t  ope ra to r  A >_ 0 was s tudied in a Hi lber t  space.  

REMARK 3. One  can give an example  of nonuniqueness  of  the solution to a Gour sa t - t ype  p rob lem 
in the class of  funct ions  which do not  decay a t  infinity (so t ha t  condit ion (3) does not  hold).  For 
ins tance (cf. [5, p. 238]), the  funct ion 

pm cos n~ p dp d~ 
U ( Z l ,  Z 2 ,  t )  : - "  ( t2 - I~ - ylg.)1/9- ' 

Ix-yl<~ 

u ~  0, Yx = p c o s ~ ,  yg. = p s i n ~ ,  

m and n are posi t ive integers, n > m + 1, n is even, m is odd,  solves the wave equat ion  
u t t - u ~ z 2 - u x 2 s 3  = 0 in R~ × Rt, r := ( z 1 2 + z 2 )  1/2, Xl = r c o s 0 ,  x2 = r s i n 0 ,  satisfies 
the  condit ions u = 0 a t  t = 0 and u = 0 a t  t = r. To check the last claim, one calculates 

u(x, r)= f pm+.___._l_l cosn~__~d___pd_..~ / pro+½ dpcosn~o d~ 
~ . -  2 ~, c ~ ( o -  ~)+,<~'_ [9. , p  cos(0 - ~ )  - p2]x/~ = , < ~ . c ~  ~ [2 ~ cos(0 - ~ )  - p]~/2 

: 7  /o r d~ cos n~o ~ pro+½ dp d~ cos[n(0 + c~)] (2 r cos c~) m+! 
J - , , 1 2 + o  (,y _ p)112 - J - , ,12  

[ r'/" - (2 ,-),,,+, L os(no) j_,,/ (cos,,,),,,+! cos(n~) d~ 

r,r l2 "] -sin(.0) j_./(cos d, J. 

t m+l dt 
Here,  r, = ~ - 0, 3' = 2 r cos ~,  c = f01 (T --- ~)q7/2" I f  n > m + 1, n is even, m is odd,  then  

(cos c~) m+l  cos(nc~) dc~ 0, (cos c~) m+l  sin(nc~) d~ = 0 
J-=12 J-,rl2 

so t h a t  u ( z , r )  = 0. T h e  funct ion U(Xl,X2,t ) ~ 0 since u, = r rn cos(n0) a t  t = 0. 
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