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Abstract—In this paper, a ¢ uniqueness theorem is proved for a hyperbolic boundary problem with
data on the characteristic cone.

1. INTRODUCTION AND STATEMENT OF THE RESULT
Consider the problem

uu—Au-é-q(z)u: zeR3 -—r<t<r, r=|z|, (1)
at t = +r, 2)
lim / / luy F u|® dtds = 0. (3)
R—oo
|s|=R

The boundary data are given on the characteristic cone ¢ = +r. Condition (3) is a condition at
infinity. Assume that ¢(z) € L2 _(R3). No assumptions are made concerning the behavior of ¢(z)
at infinity. The main result of this paper is the following uniqueness theorem.

THEOREM 1. Problem (1)-(3) has only the trivial solution u(x,t) = 0 in the class of func-
tions u(x,t) which are locally C2 , and such that

hm / / |ut, + U"I dtds = (3’)

R—»oo
|s|=R

Theorem 1 is of importance in inverse scattering theory [1-3]. In [2] a uniqueness theorem
similar to Theorem 1 is formulated. However, the proof in [2] requires that the solution u(z,1)
be infinitely differentiable in ¢, that u and all its derivatives go to zero as r — oo, and that g(«)
and Vg¢ vanish at a certain rate as r — oc.

Moreover, the proof uses some formal arguments which need a justification (the class which
belongs to the kernel and the solution of equation (4) in [2] is not defined, function (7) is a
distribution, and the meaning of the integral in (8) is not explained; also, the argument below
formula (3) is not clear).

The purpose of this paper is to give a simple proof of Theorem 1 based on the result from [1].
More general results than in [1] are given in [4]. The results in [4] allow one to formulate an
analogue for Theorem 1 for operator equations. In Section 2, a proof of Theorem 1 is given.
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2. PROOF OF THEOREM 1

In [1] the following result is proved: if u solves (1) and satisfies conditions
u=0 att=0 and t=r 4)
and (3) (with the minus sign) holds, then u(z,t) =0,z € R}, 0<t < r.

If u(z,t) solves (1)-(3), then its even and odd parts i(.f_-‘ﬁ;i"_“l and ﬁﬂt—.}‘"—"—q
solve (1)—(3). The odd part of u(z,t) solves also (4) and, by the cited result from [1], vanishes,
so one can assume that

u(z,t) = u(z,—t). *
Define w(z,t) := u,(z,t). From (*), it follows that w(z,t) = —w(z, —t). Therefore,
w(z,t)=0 att=0. (5)

Clearly, w(z,t) solves (1) since g(z) does not depend on t. Moreover, w satisfies (3) by the
assumption (3'). If one proves that

w=20 att=r, (6)

then, by the uniqueness theorem from [1], it follows that w = O for all z € R, 0 <t < r.
This implies that u(z,0) = [ 0 w(z,7)dr = 0. Using again the uniqueness result from (1], one
concludes that u(z,t) = 0 for all z € R? and all 0 < t < r. By (*) it follows that u(z,t) =0
for all z € R3 and —r <t < r. This completes the proof of Theorem 1 as long as the following
lemma is proved.

LEMMA 1. If u solves (1), u(z,t) = u(z, —t), u(z,t) € C3., u(z, £r) = 0, then w(z,t) := uy(z,1)
satisfies (6).
PROOF. Let € :=(r+1)/2, p:=(r—t)/2, v := ru(z,t). Then (1) becomes
Vy— Uy —r 2Av4qu=0, A=-A" (M
where A* is the angular part of the Laplacian. In the variables £, p, this equation becomes
vep+ (E+p) P Av—gqv=0. (8)
The boundary conditions (2) become
v=0 atp=0 and atf=0. ()]
Since the operator A does not act on the variables p and &, it follows from (8) and (9) that
vep=0 atp=0 and at&=0. (10)
One has ru; = v = (v¢ — v,)/2. Thus, 2v)i=r = (V¢ — Vp)lp=0 = V¢|p=0 — Vplp=0. It follows
from (9) that v¢|,=0 = 0. Therefore, 2v:{¢=, = —v,|,=0. It follows from (10) that v,[,=0 = ¢,
where ¢ does not depend on £ (¢ may depend on the angular variables). If one proves that ¢ = 0,
then the proof of Lemma 1 is complete. One has
—21‘13: lt:r = Uplp=0 =c. (11)
By the assumption, u; is a locally continuous function. Therefore, taking r — 0 in (11) yields

¢ = 0. Lemma 1 is proved.
The proof of Lemma 1 is close to an argument in [2]. This completes the proof of Theorem 1.
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REMARK 1. Condition (3) is satisfied if

R
lim / / (10 + uel?] dst =0. (3"
-R

REMARK 2. In [4], equation (7) with an abstract operator A > 0 was studied in a Hilbert space.
REMARK 3. One can give an example of nonuniqueness of the solution to a Goursat-type problem

in the class of functions which do not decay at infinity (so that condition (3) does not hold). For
instance (cf. [5, p. 238]), the function

pMcosnp pdpdyp £0,

2 )
o @l =)

J1 = pcosp, Y2 = psing,

u(zy,23,t) :=

m and n are positive integers, n > m + 1, n is even, m is odd, solves the wave equation
Ut — Uz, g, — Uzpe, = 0 in R2 x Ry, r := (22 + 22)Y/2, z; = rcosh, z = rsinb, satisfies
the conditions u =0 att =0 and u = 0 at t = r. To check the last claim, one calculates

u(z,r) = pmtlcosnpdpdp / p™+% dpcosnp dp
T — o) = 212 0 — o) — o2
32 rp coslfmg)bp<r? [2rpcos(d — ) — p?] p<27cosa [2 7 cos(8 — p) — p]
*/2+6 v m+i /2
P ’ dp m+1
= dyp cos nyp —:/ da cos[n(0 + a)] (2 r cos @)
/_x/2+0 o (=0 " J_ap2 [n( )I(

/2
(cos @)™ cos(na) da
-x/2

= ¢(2r)mH! [cos(nO)

x/2
— sin(nf) (cos a)™*! sin(na) da] .
2

-/
1 ™Yt . .
Here,a=p—0,y=2rcosa,c= fo (T—J)W Ifn > m+1, nis even, m is odd, then
x/2 x/2
/ (cos @)™ cos(na)da = 0, / (cosa)™ ! sin(na)da = 0
-x/2 -xf2

so that u(z,r) = 0. The function u(z;,3,t) # 0 since u; = 7™ cos(nf) at t = 0.
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