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INTRODUCTION

In this paper we consider resonant elliptic problems of the form

—du=4iu+ glu) in 2, u=0on 08, (P)

where 2 = R" is a bounded smooth domain, 4, is the first eigenvalue of the
problem —Au=4iu in 2, u=0 on ¢Q, and the nonlinearity g: R—> R is a
continuous function satisfying the growth condition

lg(s) <als|”+b  VseR, (*)s

where a, »>0 and ¢ >0 are constants. When g is bounded, (P) is a
resonant problem at 4, in the sense that hm,  , f(s)/s=4, where
f(s)= 4,5+ g(s). If, in addition, one has

lim g(s)=0  and lim G(s)=PeR,

15| = oC |s| = x

where G(s)=[{ g(7)dt, then (P) is called (cf. [6]) a strong resonant
problem at A,. :

In [6] the authors consider some situations of strong resonance,
including the case of higher eigenvalues. Here, it is our objective to
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412 COSTA AND SILVA

study other situations in which one has one-sided strong resonance, more
precisely, we assume that the nonlinearity g satisfies

lim g(s)=0 and lim G(s)=0. (g,)

s 4+ §—= +a

Denoting by g(+ oc) and G(+o0) the corresponding limits lim, _, , . g(s)
and lim,_ , G(s), we are therefore assuming that g(+00)=0,
B=G(+0)=0 and we consider various cases depending on the value of
G(—xc)=ae[—o00,+oc] In a previous paper [12] the case x = +oc was
considered and, therefore, we restrict our attention to the other situations.

In Theorems 1 to 3 below, we will be assuming that the nonlinearity g
has subcritical growth, that is, (x), holds with 6 < (N+2)/(N—-2)if N=3
ando<xx if N=1, 2.

THEOREM 1. Assume (g,) and — oo < a<0. In addition, assume
G(s)=0 if 0<s<d (or —0<s5<0), for some 5> 0, (G))

if —o0 <a<0. Then, problem (P) possesses a nonzero solution ue H (£2).
When o is positive we need to impose further restrictions on the non-
linearity g.
THEOREM 2. Assume (g,), 0 <a < co, and
g(—x)=0, (22)
G(s) < M4, — 4y)s? Vse R. (G,)
Then, problem (P) possesses a nonzero solution ue H})(Q).

Regarding multiplicity, we are able to show existence of two nonzero
solutions when the nonlinearity g satisfies

g(—x)=G6(—-x)=0, (£>)
namely, we have the following
THEOREM 3 (Multiplicity). Under conditions (g,), (£,), (G,), and (G,),
problem (P) has at least two nonzero solutions.

These results extend and complement some of the results in [6, 15, 21,
27, 30]. We observe that the solutions u€ H ] obtained in Theorems | to
3 are weak solutions in H |, in the sense that

| Vu-Voax—{ rubdx—[ gwodx=0 voeH).
Q 2

2
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In fact, since we are assuming that g has subcritical growth, the functional
I: Hj— R given by
1

1<u)=[9 5(|Vu12—/:.u2)¢x—fg G(u) dx

1 > . 2
=5(Hu|| — Ay |ul3) = N(u),

is of class C'! and the solutions we obtain are critical points of 7.
On the other hand, if g: R — R is only assumed to satisfy the supercriti-
cal growth condition (*), with 7 =2%* namely

lg(s)| <als|**+b  VseR (and some a, b>0), (g3)

where 2*=2N/(N —2) (N =3} is the limiting exponent for the Sobolev
embedding H)<=Lf, then the functional I: Hy—[—o0,+0] is not
necessarily differentiable and, in this case, we look for weak solutions
ue H| in the sense of distributions, that is, functions € H such that

[ Vu-voax-| hubdx— | gw)fdx=0 vheCy.
2 Q Q2

THEOREM 4. Assume (g3) and —oc < <0, —c0 <a<0. If (G)) holds,
then problem (P) has a nonzero solution ue H\ in the sense of distributions,
which minimizes the functional I.

It should be noticed that solely under the hypotheses (g,), fe [ — o0, 0],
a€[ —o0,0] and without a local sign condition such as (G,) problem (P)
could have =0 as the unique minimum of the functional /.

Theorem 4 partially complements the main result in [20], where condi-
tion (g,) was considered (a similar supercritical condition was also con-
sidered in [4]). Under the assumption (g,) (and in the x-dependent case),
existence of a solution in the sense of distributions is shown in [20],
provided that G(x, s)=_|'f, g(x, t) dr satisfies a quadratic growth condition
from above and B, (x)=limsup,, ., . 2G(x, s)/s” is such that

i(B,)zinf{f [IVe]? =B (x)v*]dx|veH]), [v],= l}>ft,.
Q

Clearly, in the situation of Theorem4 we could have B, =0, hence
i(B,)=2,. In Section 2 we will state and prove another related result of
this type where (B )= 4, is allowed.

We remark that there is a rich literature dealing with resonant problems,
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starting with a very nice result due to Landesman and Lazer [23]. Besides
the already cited papers, we refer the interested reader to, e.g., [1-5, 7-14,
16-19, 24-26, 28, 29, 31] and references therein.

1. PROOFS OF THEOREMS 1, 2, AND 3

We start recalling that a C' functional I: E—-R (E a Banach space)
satisfies the local Palais-Smale condition (PS). at the level ceR if,
whenever a sequence (u,) in E is such that

lu,)—>c,  I'(u,)—0,

then (u,) has a convergent subsequence. We need the following preliminary
results, which are inspired from [12, Lemma 7; 5, Theorem 3.4]. Their
proofs are given in Section 3.

LEMMA 1. Assume that g: R — R is bounded and there exist the limits
f=G(+x)e[—w,+x0], a=G(—x0)e[—wx, +o0]. In addition, assume
that g{(+00)=0 (resp. g(—o0)=0) in case e R (resp. xe R). Then

{ce R | I satisfies (PS) .} =R\|—a |Q2],—f |Q]}.

LEMMA 2. Assume that g: R— R has subcritical growth and satisfies
(g,). Then I satisfies (PS), for every ¢ #0 such that ¢ < —u Q.

Proof of Theorem 1. Case x= —oc. It follows from Lemma 1 that /
satisfies (PS), for all ¢#0. Now, consider the orthogonal complement W
of {(¢,) and, for each te R let m,=inf, I, where W,={t¢, + w|we W},
and notice that m,> —oc is attained in view of the coercivity of I on W.
Also, since in this case the functional [ is bounded from below, we have
that —occ<m= infﬂé I<I(0)=0 and m<m, for every teR. Fix some
T>0.

(1) I m <O then, since 7 satisfies (PS),,, it follows that m < 0= I(0)
is a critical value of 1.

(1) If m=0<m; then either we have m,=0 and, therefore,
Kuz)=0=m for some u,=T¢, + we Wy, or else we have m;>0. In this
latter case, noticing that lim, , , _ I(t¢,)=0 in view of (g,), we can apply
the Saddle Point Theorem of Rabinowitz [28, 29] to conclude that 7 has
a critical value c2m;>0=1(0).

Thus, in either one of the possibilities (i) or (ii), I has a critical point u 0.

Case — 0 <a<0. In view of Lemma 2, 7 satisfies (PS), for all ¢#0,
¢ < —nx |82]. Again, since the functional 7 is bounded from below, we have
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—~0<m<0=10). If m<O0 it follows that I satisfies (PS), and
m<0=1(Q) is a critical value of I. On the other hand, if m =0 then, by
(G,) we have

nwn=—hcu¢uuso

for t>0 (resp. t<0) small and, hence, there exists ##0 such that
Hu)=0. }

Proof of Theorem 2. Since Lemma 1 gives that [ satisfies (PS), if ¢ #0,
—a|82| and since we still have in this case that —oc <m <0, we can not
guarantee that m is attained. Instead, we consider the infimum in the
half-space H, = {1¢, +w | 1>0, we W},

—w<m,=inf I<0,
H,

and proceed to show that m, is attained at some u, € H, in case m, <0.
First of all, we notice that ¢H, = W and that my=inf,, /=0 in view of
1(0) =0 and hypothesis (G,). Now, if m, =0, we look at m,=inf, [ for
a fixed T>0, hence my=2m, =0, and proceed as in the first case of
Theorem 1, considering the possibilities m,=0 and m;> 0. On the other
hand, if m, <0, we pick a minimizing sequence u,=1t,¢, +w, (7,>0),
that is,

Hu,) = m, <0, (1)

and proceed to show that (u,) is bounded.
In fact, the sequence (w,) is bounded since

H(u,) = 30w, l1* = 4y Iw,|3) — N(u,) = g(w,) — N(u,),
where g >0 is coercive on W and N is bounded on H . But then, we must

also have 1,>0 bounded since, otherwise, Lebesgue’s dominated
convergence theorem and (g,) applied to

Ny) =] Glt,gi+w,) dx

(recall that G is bounded) would imply that N(«,)— O, hence

lim H(u,)>0,

n— x
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contradicting (1). Thus (#,) must be bounded and, for a subsequence (still
denoted by (u,)) and some jie H,, we obtain that

u,— i, u,— i ae and in L2

Now, it follows by Lebesgue’s dominated convergence theorem that
N(u,) — N(a) and, hence, by weak lower semicontinuity of g, that

I(i#)=q(d) — N(@) <lim inf g(u,) — lim N(u,) =lim inf I(u,)=m .

Therefore, we obtain that /(#i)=m _ and, since we are assuming m, <0, it
necessarily follows that ¢ ¢H_, =W and 4e H, is a local minimum of 7
on H_. In particular, # is a nonzero solution of (P). The proof of
Theorem 2 is complete. [

Remark. Theorem 2 can be proved without condition (g,) as long as
we assume the local sign condition G(s)=20 if 0 <s< 4.

Proof of Theorem 3. We start recalling that, in view of Lemma 1, J
satisfies (PS), for every ¢#0. Fix T_ <0< T, and, which the notation of
Theorem 1, consider the infima m,_and m, . Also, define

m, =inf I,
£ =

where H, ={t¢, +w|1>0 (1<0), we W}. We consider various cases
depending on the values of m,_ and m, .

Case (a). my <0, my, <0. In this case we have m_ <0, m_ <0, and,
arguing as in Theorem 2, we obtain two nonzero solutions ¥ € H_ and
u,eH,.

Case (b). m;_ >0, my <0. As above, there exists a nonzero solution
u,eH, with Iu,)=m_<0. On the other hand, since 1(0)=0,
lim, . __ I(t¢,)=0 and m,_ >0, the Saddle Point Theorem gives another

critical value ¢ 2 m, >0=I0).
Case (c¢) my_ <0, my >0. This case is similar to Case (b).

Case (d) my_ >0, my, >0. We first observe that, as in Case (b) (or
Case (c)), the functional I has a critical value ¢ >0 by the Saddle Point
Theorem. On the other hand, if we define

m=inf I, where U={t¢,+w|T_<t1<T,,weW},
U

then —oc < <0=/(0) and, arguing as in Case (a), we conclude that
m <0 is a critical value of 7. In fact, if #1=0 then, again, as in the proof



RESONANT ELLIPTIC PROBLEMS 417

of Theorem 1, condition (G,) implies the existence of 0 ue U such that
Hu)=0. |

Remarks. (1) It should be noticed that, even without the local sign
condition on G(s), Theorem 3 yields multiplicity of solutions (one of which
may be the zero solution).

(2) It should be also noticed from the argument of Theorem 1 (case
a= —oc) that conditions (g,), (£,) alone are sufficient to guarantee
existence of one nonzero solution in Theorem 3.

2. PROOF OF THEOREM 4 AND SOME RELATED RESULTS

In view of (g3) and as %, B < + 00, our functional I: Hj~ (— oo, +00] is
well-defined and bounded from below. Therefore, we have —occ <m=
inf,,a I<0=[(0). If m =0, the conclusion follows from the local sign condi-
tion (G ) (cf. proof of Theorem 1). Thus, without loss of generality, we may
suppose that m <0.

Letting u,, =1t,¢, + w, be a minimizing sequence, that is,

Hu,)—»m<0, (2)

we will show that («,) is bounded. In fact, as in Theorem 2, we conclude
that the sequence (w,) is bounded since

Hu,) = 5(Iwall? = Ay Jw,l3) — N(u,) = g(w,) = N(u,),

where ¢ >0 is coercive on W and — N is bounded from below on H,
(recall that —G(s) is bounded from below). On the other hand, we must
also have |¢,| bounded since, otherwise, Fatou’s Lemma applied to — N(u,,)
would yield

lim inf /(x,) Zmin{ —o [Q|, —f |2} },

hence m >0, which contradicts (2). Thus (u,) must be bounded and, for a
subsequence (still denoted by (u,)) and some @ e H ], we obtain that

u,—~1u,, u,— i ae and in L°

n

In particular, Fatou’s lemma gives us — N(#)<lim inf[ — N(u,)] which,
together with the weak lower semicontinuity of ¢, yields

(i) = g(it) — N(4) < lim inf g(u,,) + lim inf[ — N(x,)] < lim inf I(u,) = m.

Thus, we obtain I(ii)=m <0 and u #v 1s a minimizer for the functional /.
Finally, the fact that i is a solution of (P) in the sense of distributions will



418 COSTA AND SILVA

follow using the hypothesis (g;) and an argument as in [20] (cf. also
[4,22]) based on Fatous Lemma, which we omit here. The proof of
Theorem 4 is complete. |

Theorems 1 to 4 could be naturally extended to allow an x-dependence
on the nonlinearity g. In fact, we now prove a further related result for
such a resonant problem. More precisely, we will consider problems of the
form

—Au=A,u+ g(x, u) in 2, u=0 on 092, (P)

where g: Q2 x R — R satisfies the supercritical growth condition (g,) (with

b>0 replaced by b(x)e L'(2)) and the primitive G(x, s)= ff] glx, t)dr

satisfies the following subquadratic growth conditions from above:
G(x,s)<3A|s|* + B(x) ae xef, VseR,

for some 4>0, B(x)e L'(2), and 1 <2 <2; (g4)

G(x,s) < —13 |s|# + By(x) ae. xeQ,, VseR,
for some 6 >0, By(x)e L'(2), I <a<f<?2, and Q,cQ

of positive measure. (g5)

THEOREM 5. Under conditions (g;)~(gs), problem (P) has a solution
ue H} in the sense of distributions, which minimizes the functional I.

As already mentioned in the Introduction, in [20] it is assumed that
g(x, s) satisfies (g;) and then shown existence of a solution of (£} in the
sense of distributions provided that G(x, s) is quadratic from above (that is,
satisfies (g,) with a=2) and B, (x)=limsup , . 2G(x, s)/s* is such that

i(B,»)=inf{f [IVol>— B, (x)v*)dx | veH), [o],= 1}>;.,.

We notice that the above condition i(B, ) > 4, implies that one must have
B_.(x) <0 on some set of positive measure. Thus, Theorem 4 complements
the aforementioned result since conditions (g,), (gs) clearly imply that
B (x)<0 and, in fact, one could have situations for which (g,), (g5) hold
and where B, =0, so that i(B, )= 4, and the result of [20] could not be
used.

Proof of Theorem 5. We claim that our functional

1
Hu)=3 (el =4, lul3) = | Gl w) d
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is coercive, that is, I(u) » + o0 as |u| — oo. Indeed, suppose by contradic-
tion that

1 5 .
) =35 (e = Ay 11yl = | Glxwy) <€, (3)

for some constant C and some sequence (u,) with [u,| — oc. Letting
v, =u,/|u,l, and dividing (3) by |u,|3, we obtain in view of (g,) and of the
continuous embedding H )< L* that

1 2 a A |Unlz J.QB C
S (o= i) <5 T 8
2 VT2 w3 a3 |l
vl N
|ual 37 il

Now, (3) implies that |u,|, — oo since, otherwise, we would obtain
Il < Ay a3+ Ayl 3+2 | B+2C<D,
as o < 2. Therefore, estimate (4) yields |[v,|> — A, < M, [v,|*+ N, for all n
large, hence
v, !l < constant,
again using x < 2. Passing to a subsequence if necessary, we obtain
v, =0, v,—vae and in L?
for some ve H| with [v[,=1 (since |v,|,=1). But then, (4) gives
SUlol* = 2,) < Sliminf(Jo,)1* — 4,) <0,
so that necessarily v = ¢, i1s a 4,-eigenfunction with [v|, = 1. Now, writing
Uy =1,6;+w,,
with w, orthogonal to ¢, and recalling that v, — v in L% we obtain that

Ly

51 and  220in L2 (5)

'un|2 tn

On the other hand, using (g,) and (g;) to estimate the two integrals in

1 ,
It =5 (P =4y e = Glew)de—[  Glxw,) dx,

2 0202
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we obtain

PR S
I(“n)?i l“"l|2+§ |un|;3.{20_3 lu,,l:—",’,

where A=1,—4,>0,yeR, and ||, ,, denotes the L"-norm in Q,. We can
rewrite the above expression as

/ d 11" .
1(un)>§ |W,,‘%+ 2 ‘¢1+wn!£‘,flo
Al l”

- 2 '¢l+‘;'n|;_'}" (6)
where w, =w,/t, >0 in LAQ,) and in L*(2) in view of (5) and the fact
that 1 <a, f<2. Therefore, since a<f and |u,|3=12+|w,|2— oc, (6)
implies that

I(u,) > +oc,

which is a contradiction to (3). Thus, the functional 7 is coercive.

Now, hypothesis (g,) implies that [ is weakly lower semicontinuous
(cf. [20], where « can be taken equal to 2) and, therefore, 7 is bounded
from below and there exists 4 € H |, such that

1) =inf 1.
Hy

Finally, using hypothesis (g3) and again a Fatou’s lemmz} argument as in
[4, 207, it follows that the minimizer # is a solution of (P) in the sense of
distributions. The proof of Theorem 5 is complete. |

Remarks. (1) In view of condition (g,) (or, more generally, a condi-
tion of the type sup , ., 1G(x, 5)| e L}(£2}), it is clear that conditions (g,)
and (gs) are implied, respectively, by the uniform conditions

lim sup 2G(x, §)/|s|* <A < +oc, uniformly for a.e. xe 2, (£4)

Isf = x

lim sup 2G(x, s)/|s/” < — <0, uniformly for a.e. xe 8,. (85)

{s] = =

However, since B(x) and B,(x) are only assumed to be in L'(£2), rather
than in L™ (Q2), conditions (g4), (gs) do not necessarily imply (£4), (£5)-

(2) Some comments on Theorem 5 are now in order. Aside from the
fact that the supercritical condition (g,) suffices to prove that minimizers
are solutions in the sense of distributions (cf. [4, 20]), both Theorem 5 and
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the main result of [20] are based on the fact that the functional / is shown
to be coercive (so that the basic minimization result of the calculus of
variations may be used). In [20], the coercivity is a consequence of
hypotheses (g,) (with «=2) and i(B,)>4,. On the other hand, in
Theorem 5 the coercivity follows from conditions (g,) and (gs), which
could hold true in situations where i(B,,) = 4,. These observations suggest
that the question of coercivity of the functional [/ should be further
explored and, hopefully, one should be able to unify and better understand
such results through more general conditions on the primitive G(x, s).

3. PROOFS OF LEMMAS 1 AND 2
We omit the prool of Lemma 1 since it is similar to that of [12,
Lemma 7].
Proof of Lemuma 2. Considering u, = H )(£2) satisfying
(i) Hu,)—c#0,
(i) I'(u,)—0,
(i) fju, | = oc,
we will show that ¢ > —a |$2]. As before, we write u,=1,4, + w, so that
](un) = q(”’n) - N(”n)*
where ¢ >0 is coercive on W and — N is bounded from below on H . So,
it follows that
w <M Yne N (1)

and, without loss of generality, we may assume that

W, —w weakly in H
W, — W strongly in L’
w,(x)->w(x) ae inQ (8)
[wa(x)|<h,(x) ae. in Q, where h,eL”

and 1 <p<2N/(N—-2)if N=3. Now, (iii) and (7) imply that Jr,| — oc.
Claim. If t,—> +o0 as n— oo then ||w,]| = 0.

Indeed, since

), w,y = w2 = 24 w2 = | gl w, =0 9)
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in view of (ii) and (7), it suffices to show that the integral term goes to zero
as n— oc. Let 55> 0 be such that |g(s)| <& Vs> s, and consider the sets

A, ={xeQ]1,4,(x)+w,(x) =5},

B,={xeQ)1,4,(x)+w,(x) <5},

so that &= A4, v B,. We clearly have

<ef wi<elml, (10)

J g(tn¢) + wn) W,
An A
where A, is given by (8). On the other hand, using (8) and (), we obtain

lg(1,01(x) + w,(x)) w,(x)] xg,(x)<(a] 1,4:(x) + w,(x)]” + b) [w,(x)]
<da, [ wo(x)” +a, 55+ b) [w,(x)|

using the fact that |w,(x)+1,4,(x)] <|w,(x)+35, if xeB, Thus,
considering £, , given by (8), we obtain the estimate

| &(1,8,(x) +w, (X)) W, ()] xp,(x) <by[(Ay 4 (x))7 7"+ 1],

where the function on the right hand side belongs to L'(2) in view of (8),
as 0+ 1 <2N/(N—2). Since 3 (x)— 0 for ae. xe£, we get by Lebesgue’s
Theorem that

j g(’n¢l+wn)wn—’0' (]1)
B,

Hence, (10), and (11) imply that |, g(u,) w, — 0 so that
w,l —0 (12)

as desired and the Claim is proved.
Next, using (g,), (8), (12), and arguments similar to those above, we
may conclude that

I(u,)—0 if ,—» +oo,

which is a contradiction to ¢#0. Thus, we must have t,~ —oc. Finally,
using (8) and the fact that — G(s) is bounded from below, we can apply
Fatou’s Lemma to obtain

.

lim inf /(u,) = lim inf[ — N(1,)] > —a |Q

since t, — —oo. The proof of Lemma 2 is complete. §
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