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Abstract

We study the maximum size and the structure of sets of natural numbers which contain no

solution of one or more linear equations. Thus, for every natural i and kX2; we find the

minimum a ¼ aði; kÞ such that if the upper density of a strongly k-sum-free set ADN is at least

a; then A is contained in a maximal strongly k-sum-free set which is a union of at most i

arithmetic progressions. We also determine the maximum density of sets of natural numbers

without solutions to the equation x ¼ y þ az; where a is a fixed integer.
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1. Introduction

For a given subset A of an abelian group G and an integer kX2; let

SkðAÞ ¼
[k
i¼2

iA;

where iA ¼ A þ?þ A (i times), and S1ðAÞ ¼ A: We say that A is strongly k-sum-

free if A-SkðAÞ ¼ |: In particular, the fact that A is strongly 2-sum-free means that

A-ðA þ AÞ ¼ |; in this case we say that A is sum-free.
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The structure and the size of large k-sum-free subsets of abelian groups has been
extensively studied for k ¼ 2; much less is known about the case kX3: In the
following section we find an upper bound for the size of strongly k-sum-free subsets
of a finite abelian group G and characterize the structure of strongly k-sum-free
subsets which are, in a way, ‘‘extremal’’ ones.

Then we use this result to study the structure of sets of natural numbers which
contain no solution to one or more linear equations. We first consider the structure

of strongly k-sum-free subsets A of N; showing that if the upper density %dðAÞ of A is
larger than i=ðð2k � 1Þi � k � 1Þ for some natural iAN; then A is a union of at most
i � 1 arithmetic progression of the same difference. We also give a characterization
of sets for which this estimate is sharp. In the last section of the note we find a sharp
estimate for the upper density of sets ADN which contain no solution to the
equation x ¼ y þ az for a given integer aa0:

2. Strongly sum-free subsets of abelian groups

Most of results which deal with the structure of large sum-free subsets of abelian
groups are based on the following well-known theorem proved by Kneser in [4].

Theorem 1. Let A;BDG; where G is a finite abelian group. Then

jA þ BjXjAj þ jBj � jGðA þ BÞj; ð1Þ

where GðXÞ is the stabilizer of a set XDG:

A direct application of Theorem 1 yields

jSkðAÞjXkjAj � ðk � 1ÞjGðSkðAÞÞj;

but if A is strongly k-sum-free we can prove a considerable better estimate for
jSkðAÞj:

Lemma 2. Let ADG be a strongly k-sum-free set, where G is a finite abelian group.

Then

jScðAÞjX2ðc� 1ÞjAj � ðc� 1ÞjGðScðAÞÞj; ð2Þ

for each c such that 2pcpk:

We deduce Lemma 2 from a slightly more general result. For a natural numbers d;
k; and ADG; we define Sk;dðAÞ setting S1;dðAÞ ¼ A and

Sk;d ¼
[Jðk�1Þ=dn

i¼1

ðid þ 1ÞA:
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Hence, in particular, Sk;1ðAÞ ¼ SkðAÞ: We shall show the following generalization of

Lemma 2.

Lemma 3. Let ADG be a strongly k-sum-free set of an abelian group G; and let

c ¼ du þ 1pk for some natural numbers d and u: Then

jSudþ1;dðAÞjXðd þ 1ÞujAj � ðd � 1ÞugdðAÞ � ujGðSudþ1;dðAÞÞj; ð3Þ

where g1ðAÞ ¼ 0 and for dX2 we put gdðAÞ ¼ jGðdAÞj:

We start with the following observation.

Fact 4. Let A be a subset of abelian group and kX2: Then for all c ¼ du þ 1pk � d;
we have

GðSc;dðAÞÞDGðScþd;dðAÞÞ ð4Þ

and

GðcAÞDGððcþ dÞAÞ: ð5Þ

Furthermore, if d ¼ 1 and A is a strongly k-sum-free set which is maximal, (i.e.,
which is not properly contained in any other strongly k-sum-free set), then in (4) the

equality holds.

Proof. In order to verify (4) it is enough to show that

GðSc;dðAÞÞ þ ðcþ dÞADScþd;dðAÞ:

Let gAGðSc;dðAÞÞ: Then, from the definition of GðSc;dðAÞÞ; we have g þ Sc;dðAÞ ¼
Sc;dðAÞ; so

g þ ðcþ dÞA ¼ g þ cA þ dAD g þ Sc;dðAÞ þ dA

DSc;dðAÞ þ dADScþd;dðAÞ:

Hence (4) holds. The same argument with Si;dðAÞ replaced by iA for i ¼ c; cþ d;
gives (5).

Now assume that d ¼ 1; A is a maximal strongly k-sum-free set, and

GðAÞaGðSk;1ðAÞÞ ¼ GðSkðAÞÞ:

Then, for some aAA and hAGðSkðAÞÞ; we have a þ heA: We shall show that then
the set A,fa þ hg+! A is strongly k-sum-free, and so A is not maximal.

Indeed, note that

SkðA þ hÞDSkðAÞ þ fh; 2h;y; khgDSkðAÞ þ GðSkðAÞÞ ¼ SkðAÞ;
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so that

SkðA,fa þ hgÞ ¼ SkðAÞ:

Moreover,

A-ðSkðAÞ � hÞDA-ðSkðAÞ � GðSkðAÞÞÞ ¼ A-SkðAÞ ¼ |:

Thus, ðA þ hÞ-SkðAÞ ¼ |; i.e., ðA,fa þ hgÞ-SkðAÞ ¼ |; and so the set A,fa þ hg
is strongly k-sum-free. &

Proof of Lemma 3. We use induction on u: For u ¼ 1 we have Sdþ1;dðAÞ ¼ ðd þ 1ÞA:
From Theorem 1 it follows that

jðd þ 1ÞAj ¼ jdA þ AjXjdAj þ jAj � jGððd þ 1ÞAÞj:

Furthermore, using once again Kneser’s theorems (d � 1 times) and (5) (with d ¼ 1)
we infer that

jdAjXdjAj � ðd � 1ÞgdðAÞ: ð6Þ

Hence

jSdþ1;dðAÞjXðd þ 1ÞjAj � ðd � 1ÞgdðAÞ � jGðSdþ1;dðAÞÞj;

which verifies the assertion for u ¼ 1:
Now suppose that uX2: Observe that

Sudþ1;dðAÞ ¼
[u
i¼1

ðid þ 1ÞA ¼
[u�1

i¼0

ðid þ 1ÞA
 !

þ A

¼ðA,Sðu�1Þdþ1ðAÞÞ þ A:

Thus, Kneser’s theorem, (6), and the fact that A-ScðAÞ ¼ |; give

jSudþ1;dðAÞjX jA,Sðu�1Þdþ1;dðAÞj þ jdAj � jGðSudþ1;dðAÞÞj

X ðd þ 1ÞjAj þ jSðu�1Þdþ1;dðAÞj

� ðd � 1ÞgdðAÞ � jGðSudþ1;dðAÞÞj :

Now (3) follows from the induction hypothesis and (4). &

Our next result characterizes a special class of ‘‘large’’ sets for which in (2) the
equality holds.

Lemma 5. Let A; jAj ¼ r; be a maximal strongly k-sum-free subset of a finite abelian

group G of order m ¼ ð2k � 1Þr � ðk � 1Þ; and let jGðAÞj ¼ 1: Then there is an
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isomorphism f : G-Zm such that

fðAÞ ¼ fr; r þ 1;y; 2r � 1g:

The proof of Lemma 5 relies on the well-known result of Kemperman [3], which
describes the sets A;B for which in (1) the equality holds. We say that a subset C of
an abelian group G is quasi-periodic if there exists a subgroup F of G; with
2pjF jojGj; such that C can be partition into two sets C0 and C00; where C0 is a non-
empty union of F -cosets and a residual set C00 is contained in a F -coset.
Kemperman’s theorem can be stated as follows.

Theorem 6. Let A and B be subsets of an abelian group G such that jAj; jBjX2;
jGðA þ BÞj ¼ 1 and jA þ Bj ¼ jAj þ jBj � 1: Then either A þ B is an arithmetic

progression, or A þ B is quasi-periodic.

Proof of Lemma 5. Let A fulfill the assumption of Lemma 5. Then, from Fact 4, we
get jGðSkðAÞÞj ¼ jGðAÞj ¼ 1: Note also that Lemma 2 implies that G ¼ A,SkðAÞ:

If A ¼ fag; then G ¼ A,SkðAÞ is a cyclic group generated by a and the assertion
easily follows. Thus, we assume that jAj ¼ rX2: We show first that SkðAÞ is not
quasi-periodic.

Indeed, suppose to the contrary that there is a proper subgroup F of G such that
all but one F -cosets are contained in either A or SkðAÞ; and the residual F -coset, say,
h þ F ; contains elements of both A and SkðAÞ:

First we exclude the possibility AD! h þ F : Note that from the fact that A is
strongly k-sum-free and A,SkðAÞ ¼ G; it follows that h þ F is a generator of the
quotient group G=F and kADF : Let d ¼ jGj=jF jX2 be the rank of the element
h þ F in G=F : Then k ¼ du for some uX2: Note also that

A,Sðu�1Þdþ1;dðAÞ ¼ h þ F and A-Sðu�1Þdþ1;dðAÞ ¼ |: ð7Þ

We shall use Lemma 3 to show that

jAj þ jSðu�1Þdþ1;dðAÞj4jF j;

to get a contradiction.
Observe that (7) and the fact that the sets A and Sðu�1Þdþ1;dðAÞ are non-empty

imply that jGðSðu�1Þdþ1;dðAÞÞj ¼ jGðAÞj ¼ 1: Thus, by (4),

jGðSdþ1;dðAÞÞj ¼ jGððd þ 1ÞAÞj ¼ 1;

and so from (5) we infer that for dX2 we have jGðdAÞj ¼ 1: Hence, Lemma 3 gives

jA,Sðu�1Þdþ1;dðAÞjX r þ ðd þ 1Þðu � 1Þr � ðd � 1Þðu � 1Þ � ðu � 1Þ

¼ dru � dr þ ru � du þ d:
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Furthermore, since rX2;

jF j ¼ jGj
d

¼ ð2du � 1Þr � ðdu � 1Þ
d

o2ur � u:

Thus,

jA,Sðu�1Þdþ1;dðAÞj � jF j4 dru � dr � ru � du þ d þ u

¼ uðd � 1Þðr � 1Þ � dðr � 1Þ

X 2ðd � 1Þðr � 1Þ � dðr � 1Þ

¼ ðd � 2Þðr � 1Þ

X 0;

and so A cannot be properly contained in any coset h þ F :

Therefore, there exist g; hAF such that g þ FDA; ðh þ FÞ-Aa| and ðh þ
FÞ-SkðAÞa|: Without loss of generality, we may also assume that hASkðAÞ; so that
for some c; 2pcpk; there are elements a1;y; acAA; such that h ¼ a1 þ?þ ac:
Note that if a1 þ F ¼ h þ F ; then a2 þ?þ acAF ; which is impossible because in
such a case we would have both

g þ a2 þ?þ ac þ F ¼ g þ FDA

and

g þ a2 þ?þ ac þ FDa2 þ?þ ac þ ADcADSkðAÞ;

contradicting the assumption that A-ScðAÞ ¼ |: Since clearly ða1 þ FÞ-Aa|; and
h þ F is the unique coset sharing points with both A and SkðAÞ; it follows that
a1 þ FDA: The same argument shows that a2 þ FDA: Hence

h þ F ¼ ða1 þ FÞ þ ða2 þ FÞ þ ða3 þ?þ acÞDA þ A þ ðc� 2ÞADSkðAÞ;

contradicting the fact that ðh þ FÞ-Aa|: Consequently, SkðAÞ is not quasi-
periodic.

Observe now that from the proof of Lemma 3 it follows that

jSkðAÞj ¼ jðA,Sk�1ðAÞÞ þ Aj ¼ jA,Sk�1ðAÞj þ jAj � 1:

Hence, Kemperman’s theorem implies that SkðAÞ ¼ ðA,Sk�1ðAÞÞ þ A is an
arithmetic progression.

Let SkðAÞ ¼ fa; a þ b;y; a þ ðm � 1Þbg; and let H denote the subgroup
generated in G by b: Since G ¼ A,SkðAÞ and SkðAÞDa þ H; G is a cyclic
group generated by b (note that either H ¼ G; or jSkðAÞj ¼ jHj ¼ jGj=2
which implies k ¼ 2; G ¼ Z2; A ¼ f1g). Thus, a ¼ nb for some nAN and SkðAÞ ¼
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fnb; ðn þ 1Þb;y; ðn þ m � 1Þbg: Define an isomorphism f : G-Zm by setting
fðbÞ ¼ 1: Then

fðAÞ ¼ Zm\fðSkðAÞÞ ¼ ft; t þ 1;y; t þ r � 1g

for some t; 0ptpm � 1: Now let B ¼ ft; t þ 1;y; t þ r � 1g: Then SkðBÞ ¼
f2t; 2t þ 1;y; kðt þ r � 1Þg and, since B,SkðBÞ ¼ Zm and B-SkðBÞ ¼ |; we must
have t þ r ¼ 2t ðmod mÞ; i.e., t ¼ r: &

For k ¼ 2 Lemma 5 can be restated in the following particularly appealing form;
for this case it was proved by Rhemtulla and Street [7].

Lemma 7. Let S be a sum-free subset of a finite abelian group G with more than jGj=3
elements. Then there exist a sum-free set ADG; a natural number r; and a

homomorphism f : G-Z3r�1; such that SDA; jAj=jGj ¼ r=ð3r � 1Þ and

fðAÞ ¼ fr; r þ 1;y; 2r � 1g:

Proof. Let A be the maximal sum-free containing S: We may assume that jGðAÞj ¼
1; otherwise we consider the set of all the cosets of GðAÞ: Since A is maximal, Fact 4
implies that jGðA þ AÞj ¼ 1; and so from Theorem 1 we get

jGjXjAj þ jA þ AjX3jAj � 1:

Thus, since jAj=jGj41=3; we have jGj ¼ 3jAj � 1: Consequently, A fulfills the
assumption of Lemma 5 and the assertion follows. &

3. Dense strongly sum-free sets of natural numbers

The size and the structure of strongly k-sum-free sets were considered by the
authors in [6], where we showed the following result.

Theorem 8. For every kX2 and e40 there exists a natural number r ¼ rðk; eÞ such that

each strongly k-sum-free set ADN of the upper density %dðAÞ41=ð2k � 1Þ þ e is

contained in a strongly k-sum-free set which is a union of at most r arithmetic

progressions.

Furthermore, if %dðAÞ41=ðk þ 1Þ; then A is contained in a strongly k-sum-free

arithmetic progression.

The main result of this section improves the above result, giving the best possible
estimates for the critical densities of strongly k-sum-free sets contained in strongly k-
sum-free sets which are unions of at most i arithmetic progressions.
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Theorem 9. Let ADN be a strongly k-sum-free set such that for some natural number

iX2

%dðAÞ4 i

ð2k � 1Þi � k þ 1
: ð8Þ

Then A is contained in a strongly k-sum-free set, which is union of at most i � 1
arithmetic progressions with the same difference. Moreover, if A is a maximal strongly

k-sum-free set such that

%dðAÞ ¼ i

ð2k � 1Þi � k þ 1

then there exist rAf1;y; ð2k � 1Þi � k þ 1g; satisfying ðr; ð2k � 1Þi � k þ 1Þ ¼ 1;
such that

A ¼ fnAN: n � rsðmod ðð2k � 1Þi � k þ 1ÞÞ for some sAfi;y; 2i � 1gg:

Proof. Assume that A is a strongly k-sum-free set satisfying (8). Since

i

ð2k � 1Þi � k þ 1
4

1

2k � 1

for any iAN; Theorem 8 implies that A is contained in a maximal strongly k-sum-
free set B; which consists of arithmetic progressions with the same difference D:
Thus, there are distinct integers b1;y; bjAf0; 1;y;D � 1g such that

B ¼ fnAN: n � b1;y; bj ðmod DÞg:

Put B0 ¼ fb1;y; bjg: Then B0 is a maximal strongly k-sum-free set in ZD; hence by

Fact 4 we have GðB0Þ ¼ GðSkðB0ÞÞ: Moreover, choosing minimal possible period D of
the set B; we get 1 ¼ jGðB0Þj ¼ jGðSkðB0ÞÞj:

Thus, Lemma 2 applied to the set B0 gives

jSkðB0ÞjX2ðk � 1ÞjB0j � ðk � 1Þ;

and since B0-SkðB0Þ ¼ |; one has

jB0j þ jSkðB0ÞjpD;

so that

DXð2k � 1Þj � k þ 1:
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Hence

i

ð2k � 1Þi � k þ 1
o %dðAÞp %dðBÞ ¼ j

D
p

j

ð2k � 1Þj � k þ 1
; ð9Þ

which implies joi and the first part of the assertion follows.
Now assume that A fulfills the assumptions of the second part of Theorem 9. Then

in jB0j ¼ j ¼ i; jGðB0Þj ¼ 1; and D ¼ ð2k � 1Þi � k þ 1: Using Lemma 5 we infer that
there is an isomorphism f of Zð2k�1Þi�kþ1 which maps B0 onto the set fi; i þ
1;y; 2i � 1g: Now, to complete the proof, it is enough to observe that each
isomorphism c of Zð2k�1Þi�kþ1 can be written as cðsÞ ¼ rs; where rAf1;y; ð2k �
1Þi � k þ 1g and ðr; ð2k � 1Þi � k þ 1Þ ¼ 1: &

Let us explicitly state the important special case of Theorem 9, which improves the
second part of Theorem 8.

Corollary 10. Let ADN be a strongly k-sum-free set of the upper density larger than

2=ð3k � 1Þ: Then A is contained in a strongly k-sum-free arithmetic progression.

For k ¼ 2 in the proof of Theorem 9 instead of Lemma 5 one can use a more
precise Lemma 7 and obtain the following complete characterization of sum-free
subsets of N of the upper density larger than 1=3: This result settles in the affirmative
a conjecture of Calkin [1] (see also [2]).

Theorem 11. If set ADN is sum-free and %dðAÞ41=3; then there exist natural numbers

k and jAf1;y; 3k � 1g; ð j; 3k � 1Þ ¼ 1 such that

ADfnAN: n � ji ðmod ð3k � 1ÞÞ for some iAfk;y; 2k � 1gg:

4. The equation x ¼ y þ az

Let aa0 be an integer and let OðaÞ denote the family of all subsets of N containing
no solutions to the equation x ¼ y þ az: In this part of the note we investigate the
maximum upper density of sets from OðaÞ; i.e., we study the behaviour of the
function

mðaÞ ¼ max
AAOðaÞ

%dðAÞ:

For aa0 we define lðaÞ ¼ 1 if neither a þ 1; nor a � 1; has a positive divisor
congruent to 2 modulo 3; and

lðaÞ ¼ minfnAN: n divides a þ 1 or a � 1 and n � 2 ðmod 3Þg

if such a divisor exists. The main result of this section states that the value of lðaÞ
determines the behaviour of mðaÞ:
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Theorem 12. Let aa0 be a given integer. Then

mðaÞ ¼ 1
3
;

for all a with lðaÞ ¼ 1; and

mðaÞ ¼ lðaÞ þ 1

3lðaÞ ;

whenever lðaÞ41:

Moreover, if lðaÞ41 and %dðAÞ41=3 for some AAOðaÞ; then there exists s; rAN

such that a � 71 ðmod ð3r � 1ÞÞ; ðs; 3r � 1Þ ¼ 1 and

ADfnAN: n � is ðmod ð3r � 1ÞÞ for some iAfr;y; 2r � 1gg :

In the proof of Theorem 12 we use the following, somewhat technical, result.

Fact 13. Let A ¼ fr;y; 2r � 1gDZ3r�1 and uAZ3r�1: If uADA; then either u ¼ 1 or

u ¼ 3r � 2:

Proof. Observe first that ua0: Note also that if iAA satisfies ui ¼ min uA; then

i ¼ r or i ¼ 2r � 1: ð10Þ

Indeed, if roio2r � 1; then uði � 1Þ; ui; uði þ 1ÞAuADA: Hence, we must have
7uAf1; 2;y; r � 1g: On the other hand, since ui � u; ui þ uXmin uA ¼ ui and
rpuip2r � 1; we must have uAfr;y; 2r � 1g: Contradiction. Hence (10) holds.

Now suppose, that gcdðu; 3r � 1Þ ¼ d42: Set s ¼ ð3r � 1Þ=d: Then 1pspr � 1
and r þ sAA: Moreover, ur ¼ uðr7sÞ and uð2r � 1Þ � uð2r � 17sÞ; which contra-
dicts (10).

Observe also that gcdðu; 3r � 1Þ ¼ 2 gives ð3r � 1Þ=2AA; so that uð3r � 1Þ=2 ¼ 0;
contradicting the fact that uADA:

Thus, we must have gcdðu; 3r � 1Þ ¼ 1; so that uA ¼ A: Hence (10) implies that
either ur ¼ r; or uð2r � 1Þ ¼ r: The former case gives u ¼ 1; the latter one
u ¼ 3r � 2: &

Proof of Theorem 12. For a given aa0 put l ¼ lðaÞ: To get a lower bound for m
consider the following sets

S ¼ fnAN: n � 1 ðmod 3Þg

and

S0 ¼ fnAN: n � ðlþ 1Þ=3;y; 2ðlþ 1Þ=3 � 1 ðmod lÞg:
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If l ¼ 1 then S contains no solutions to the equation x ¼ y þ az: In order to see
it, observe that any such solution yields a � 0 ðmod 3Þ; while l ¼ 1 implies
a � 2 ðmod 3Þ:

If l41 then we have a � 71 ðmod lÞ: Therefore, the set S0 is free of solutions to
x ¼ y þ az:

Now let us assume that mðaÞ41=3: We show that then lðaÞ41 and, in fact,
characterize all sets A from OðaÞ of the upper density larger than 1=3:

Thus, let AAOðaÞ have the upper density larger than 1=3: We show first that A is
sum-free. Indeed, if there are numbers b1; b2; b3AA such that

b1 ¼ b2 þ b3;

then, since A is free of solutions to the equation x ¼ y þ az; the sets

A;A þ ab1;A þ ab2;

are pairwise disjoint. Hence

%dðAÞp1=3;

contradicting the choice of A:

Thus, the set A is sum-free. Since %dðAÞ41=3 from Theorem 11 it follows that for
some j; rAN; ð j; 3r � 1Þ ¼ 1 we have

ADfnAN: n � ji ðmod ð3r � 1ÞÞ for some iAfr;y; 2r � 1gg:

Without lost of the generality we may assume that j ¼ 1; so that

ADfnAN: n � r;y; 2r � 1 ðmod ð3r � 1ÞÞg:

Let A0Dfr;y; 2r � 1g be defined as

A0 ¼ ftAZ3r�1: n � t ðmod ð3r � 1ÞÞ for some nAAg:

Since %dðAÞ41=3 it follows that A0 ¼ fr;y; 2r � 1g and the set A0 contains no
solutions to the equation x ¼ y þ az in the group Z3r�1: Furthermore, since

ðA0 � A0Þ,A0 ¼ Z3r�1 and ðA0 � A0Þ-aA0 ¼ |;

we have aA0DA0: Therefore, by Lemma 13, one has

a � 71 ðmod ð3r � 1ÞÞ; ð11Þ

so that lðaÞ41: Consequently, each maximal subset A from OðaÞ of the upper
density larger than 1=3 has density r=ð3r � 1Þ for some r for which (11) holds. Since
the smallest possible r which fulfills (11) is equal to ðlðaÞ þ 1Þ=3; the assertion
follows. &
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We remark that the fact that the densest sets in OðaÞ are very regular is strongly
related to a special form of the equation x ¼ y þ az: Consider for instance the family
#OðaÞ of sets of natural numbers which contains no solutions to the equation x þ y ¼
az; and let #mðaÞ denote the maximum upper density of the sets from #OðaÞ: It was

shown by Lucht [5] (see also Schoen [8]), that if a is large enough the sets AA #OðaÞ for

which %dðAÞ ¼ mðAÞ are not periodic; in fact lower density of each such set is strictly
smaller than mðAÞ:

References

[1] N.J. Calkin, Sum-free sets and measure spaces, Ph.D. Dissertation, University of Waterloo, 1988.

[2] P.J. Cameron, On the structure of a random sum-free set, Probab. Theory Related Fields 76 (1987)

523–531.

[3] J.H.B. Kemperman, On small sumsets in abelian group, Acta Math. 103 (1960) 63–88.

[4] M. Kneser, Ein Satz über abelschen Gruppen mit Anwendungen auf die Geometrie der Zahlen, Math.

Zeit. 61 (1955) 429–434.

[5] L. Lucht, Dichteschranken für die Lösbarkeit gewisser linearer Gleichungen, J. Reine Angew. Math.

285 (1976) 209–217.

[6] T. Łuczak, T. Schoen, On the infinite sum-free sets of natural numbers, J. Number Theory 66 (1997)

211–224.

[7] A.H. Rhemtulla, A.P. Street, Maximum sum-free sets in elementary Abelian p-groups, Canad. Math.

Bull. 14 (1971) 73–80.

[8] T. Schoen, On sets of natural numbers without solutions to a noninvariant linear equation, Acta Arith.

193 (2000) 149–155.

ARTICLE IN PRESS
T. Łuczak, T. Schoen / Journal of Number Theory 102 (2003) 11–2222


	Solution-free sets for linear equations
	Introduction
	Strongly sum-free subsets of abelian groups
	Dense strongly sum-free sets of natural numbers
	The equation x=y+az
	References


