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Abstract

We study the maximum size and the structure of sets of natural numbers which contain no
solution of one or more linear equations. Thus, for every natural i and k>2, we find the
minimum o = «(i, k) such that if the upper density of a strongly k-sum-free set A =N is at least
o, then A is contained in a maximal strongly k-sum-free set which is a union of at most i
arithmetic progressions. We also determine the maximum density of sets of natural numbers
without solutions to the equation x = y + az, where « is a fixed integer.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

For a given subset 4 of an abelian group G and an integer k=2, let

where id = A+ --- + A (i times), and S;(4) = A. We say that 4 is strongly k-sum-
free if AnSi(A) = 0. In particular, the fact that 4 is strongly 2-sum-free means that
AN (A+ A) = 0; in this case we say that 4 is sum-free.
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The structure and the size of large k-sum-free subsets of abelian groups has been
extensively studied for k= 2; much less is known about the case k>=3. In the
following section we find an upper bound for the size of strongly k-sum-free subsets
of a finite abelian group G and characterize the structure of strongly k-sum-free
subsets which are, in a way, “extremal’ ones.

Then we use this result to study the structure of sets of natural numbers which
contain no solution to one or more linear equations. We first consider the structure
of strongly k-sum-free subsets 4 of N, showing that if the upper density d(4) of 4 is
larger than i/((2k — 1)i — k — 1) for some natural ;e N, then A4 is a union of at most
i — 1 arithmetic progression of the same difference. We also give a characterization
of sets for which this estimate is sharp. In the last section of the note we find a sharp
estimate for the upper density of sets 4=N which contain no solution to the
equation x = y + az for a given integer a#0.

2. Strongly sum-free subsets of abelian groups

Most of results which deal with the structure of large sum-free subsets of abelian
groups are based on the following well-known theorem proved by Kneser in [4].

Theorem 1. Let A, BS G, where G is a finite abelian group. Then
|4+ B|=|A4| + |B| — |I'(4 + B)|, (1)
where I'(X) is the stabilizer of a set X =G.
A direct application of Theorem 1 yields
|Sk(A)|Zk|A| = (k = DT (Sk(A))],

but if 4 is strongly k-sum-free we can prove a considerable better estimate for
|Sk(A)]-

Lemma 2. Let A= G be a strongly k-sum-free set, where G is a finite abelian group.
Then

S/(A)|Z2(¢ = D|A| = (¢ = D|T(S,(4))], (2)
for each ¢ such that 2</<k.

We deduce Lemma 2 from a slightly more general result. For a natural numbers d,
k, and A= G, we define Sy 4(A) setting S} 4(4) = A and

[ (k=1)/d]
Sca= |J (id+1)A.

i=1
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Hence, in particular, Sk 1(A4) = Si(4). We shall show the following generalization of
Lemma 2.

Lemma 3. Let ASG be a strongly k-sum-free set of an abelian group G, and let
{ = du+ 1<k for some natural numbers d and u. Then

Sud+1.a(A)| = (d + VulA] = (d = Vuyg(A) = u|l(Suar1.a(A))]; (3)
where y,(A) = 0 and for d=2 we put y;(A) = |I'(dA)|.
We start with the following observation.

Fact 4. Let A be a subset of abelian group and k=2. Then for all { = du+ 1<k — d,
we have

I'(Sra(A) =T (Srvaa(A)) (4)
and
r(ZA)sr((¢+d)A). (5)

Furthermore, if d =1 and A is a strongly k-sum-free set which is maximal, (i.e.,
which is not properly contained in any other strongly k-sum-free set), then in (4) the
equality holds.

Proof. In order to verify (4) it is enough to show that
F(S/,d(A)) + (f + d)A ES/+d7d(A).

Let geI'(S;q4(A4)). Then, from the definition of I'(S;4(A4)), we have g+ S, 4(4) =
S/,d(A)7 MY

g+l +d)A=g+/lA+dA<s g+ Sra(A)+dA
c S/d(A) +dA ES/er,d(A).
Hence (4) holds. The same argument with S;;(A4) replaced by id for i =/,/ +d,
gives (5).
Now assume that d = 1, 4 is a maximal strongly k-sum-free set, and
T(A)#I(Sk1(A)) = I'(Sk(4)).

Then, for some ae 4 and he'(Sk(A)), we have a + h¢ A. We shall show that then
the set Au{a+ h}=24 is strongly k-sum-free, and so A is not maximal.
Indeed, note that

Se(A + h) S Se(A) + {h,2h, ..., kh} = Si(A) + T(Sk(A)) = Sk(A),
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so that
Si(AU{a+h}) = Sk(A).
Moreover,
A (Sp(A) — h) S AN (Sp(A) — T(Sk(A))) = AnSi(A) = 0.

Thus, (4 + h)nSk(4) =0, i.e., (Au{a+h})nSk(4) = 0, and so the set AU {a + h}
is strongly k-sum-free. [

Proof of Lemma 3. We use induction on u. For u = 1 we have Sg.14(4) = (d + 1)4
From Theorem 1 it follows that

[(d+ 1)A| = |dA+ A|=|dA| + |4| — [T ((d + 1)A4)].

Furthermore, using once again Kneser’s theorems (d — 1 times) and (5) (with d = 1)
we infer that

|dA| = d|A| = (d — 1)p4(A4). (6)
Hence
ISav1,a(A)| = (d + 1)|A] = (d = 1)y4(4) — [I'(Sas1.4(4))],

which verifies the assertion for u = 1.
Now suppose that u>2. Observe that

u u—1
Sud+14(A4 U (id +1 (U (id + 1)A> +4

= i=0
=(AUSu-1)a+1(4)) + A.

Thus, Kneser’s theorem, (6), and the fact that AnS,(4) = 0, give
|Sud+1.4(A) = |40 Su-1yas1.a(A)| + |dA] = |T (Suar1.4(4))|
= (d+ DA + |Su-1)a+1,4(A4)]
= (d = Dpg(4) = [T (Sua+1.4(4))] -
Now (3) follows from the induction hypothesis and (4). O

Our next result characterizes a special class of “large’ sets for which in (2) the
equality holds.

Lemma 5. Let A, |A| = r, be a maximal strongly k-sum-free subset of a finite abelian
group G of order m = 2k — 1)r — (k= 1), and let |I'(A)| = 1. Then there is an
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isomorphism ¢ : G— Z,, such that
¢o(A4)=Ar,r+1,...,2r —1}.

The proof of Lemma 5 relies on the well-known result of Kemperman [3], which
describes the sets 4, B for which in (1) the equality holds. We say that a subset C of
an abelian group G is quasi-periodic if there exists a subgroup F of G, with
2<|F|<|G], such that C can be partition into two sets C' and C”, where C’ is a non-
empty union of F-cosets and a residual set C” is contained in a F-coset.
Kemperman’s theorem can be stated as follows.

Theorem 6. Let A and B be subsets of an abelian group G such that |A|,|B|=2,
[IF'(A+B)|=1 and |A+ B|=|A|+|B|— 1. Then either A+ B is an arithmetic
progression, or A + B is quasi-periodic.

Proof of Lemma 5. Let A fulfill the assumption of Lemma 5. Then, from Fact 4, we
get |['(Sk(A))| = |I'(4)] = 1. Note also that Lemma 2 implies that G = 4 U Sy(4).

If A = {a}, then G = AU Si(A) is a cyclic group generated by a and the assertion
easily follows. Thus, we assume that |4| = r>2. We show first that Si(4) is not
quasi-periodic.

Indeed, suppose to the contrary that there is a proper subgroup F of G such that
all but one F-cosets are contained in either 4 or S (4), and the residual F-coset, say,
h+ F, contains elements of both 4 and Sy.(4).

First we exclude the possibility A<h + F. Note that from the fact that A is
strongly k-sum-free and 4 U Si(4) = G, it follows that s + F is a generator of the
quotient group G/F and kA<F. Let d =|G|/|F|>2 be the rank of the element
h+ F in G/F. Then k = du for some u>2. Note also that

A US(M,I)CJ+174(A) =h+F and 4 mS(ufl)d+l,d<A) =0. (7)
We shall use Lemma 3 to show that
|A| + |S(u71)d+l.d(A)| > |F|7

to get a contradiction.
Observe that (7) and the fact that the sets 4 and S(,_1)4414(A4) are non-empty
imply that |[I'(Sq-1)a+1,4(4))| = [I'(4)| = 1. Thus, by (4),

I (Sav1a(A)| = [I((d +1)4)[ =1,
and so from (5) we infer that for d >2 we have |I'(d4)| = 1. Hence, Lemma 3 gives
AU S st = r 4+ (d+ D= Dr = (d = )(u—1) — (- 1)

=dru—dr+ru—du+d.
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Furthermore, since r>2,

@: 2du— 1)r — (du—1)

Fl| =
Fl =~ p

<2ur — u.

Thus,

AU Su—1yas1,a(A)| = |F|> dru —dr —ru — du +d +u
=uld—-1)(r—-1)—dr—1)
=22(d-1)(r—-1)—dr—1)
= (d-2)(r—1)
>0,

and so A cannot be properly contained in any coset &+ F.

Therefore, there exist g,heF such that g+ F<A, (h+F)nA#0 and (h+
F) N Si(A4) #0. Without loss of generality, we may also assume that 1€ Si(4), so that
for some /7, 2</ <k, there are elements ay, ...,a,€ A, such that h=a; + --- + ay,.
Note that if ) + F = h + F, then a; + --- 4+ a,€ F, which is impossible because in
such a case we would have both

g+ar+ - +a+F=g+FcA4
and
g+ar+ - +a,+Fcar+ - +a,+ A=A Si(A),

contradicting the assumption that 4" S,(4) = (. Since clearly (a; + F)n A#0, and
h+ F is the unique coset sharing points with both 4 and Si(A4), it follows that
a; + F= A. The same argument shows that a, + F = 4. Hence

h+F=(ai+F)+ (@ +F)+ (a3 + - +a)SA+ A+ (£ —2)ASSi(A),

contradicting the fact that (h+ F)nA#0. Consequently, Si(4) is not quasi-
periodic.
Observe now that from the proof of Lemma 3 it follows that

[Sk(A)| = |(AuSk—1(A4)) + A| = |[AUSk—1(A4)]| + |4]| — 1.

Hence, Kemperman’s theorem implies that S;(4) =(4USi_1(4))+ A4 is an
arithmetic progression.

Let Si(4)={a,a+b,...,a+ (m—1)b}, and let H denote the subgroup
generated in G by b. Since G=AuUSi(A) and Si(d)ca+ H, G is a cyclic
group generated by b (note that either H =G, or |Si(4)| =|H|=]G|/2
which implies k =2, G = Z,, A = {1}). Thus, a = nb for some neN and Si(4) =
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{nb,(n+ 1)b,...,(n+m —1)b}. Define an isomorphism ¢:G—Z, by setting
¢(b) = 1. Then

O(A) =Zn)\p(Sk(A)) ={t,t+1,....t +r—1}

for some ¢, 0<t<m—1. Now let B={t,t+1,...,t+r—1}. Then Si(B) =
{2¢,2t+ 1, ...,k(t +r — 1)} and, since BUSk(B) = Z,, and BN Si(B) = 0, we must
have ¢ +r =2t (mod m), ie., t=r. O

For k =2 Lemma 5 can be restated in the following particularly appealing form;
for this case it was proved by Rhemtulla and Street [7].

Lemma 7. Let S be a sum-free subset of a finite abelian group G with more than |G|/3
elements. Then there exist a sum-free set A=G, a natural number r, and a
homomorphism ¢ : G— Z3,_, such that SS A4, |A|/|G| =r/(3r —1) and

o(A)={r,r+1,...,2r—1}.

Proof. Let A be the maximal sum-free containing S. We may assume that |['(4)| =
1; otherwise we consider the set of all the cosets of I'(4). Since 4 is maximal, Fact 4
implies that [I'(4 + A)| = 1, and so from Theorem 1 we get

G|=|A] + |4 + 4] =3|4] — 1.

Thus, since |A4|/|G|>1/3, we have |G| =3|4|— 1. Consequently, A fulfills the
assumption of Lemma 5 and the assertion follows. [J

3. Dense strongly sum-free sets of natural numbers

The size and the structure of strongly k-sum-free sets were considered by the
authors in [6], where we showed the following result.

Theorem 8. For every k=2 and ¢>0 there exists a natural number r = r(k, ¢) such that
each strongly k-sum-free set AN of the upper density d(4)>1/(2k —1) +¢ is
contained in a strongly k-sum-free set which is a union of at most r arithmetic
progressions.

Furthermore, if d(A)>1/(k + 1), then A is contained in a strongly k-sum-free
arithmetic progression.

The main result of this section improves the above result, giving the best possible
estimates for the critical densities of strongly k-sum-free sets contained in strongly k-
sum-free sets which are unions of at most i arithmetic progressions.
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Theorem 9. Let A< N be a strongly k-sum-free set such that for some natural number
i=z2

_ i
Ry ®)

Then A is contained in a strongly k-sum-free set, which is union of at most i — 1
arithmetic progressions with the same difference. Moreover, if A is a maximal strongly
k-sum-free set such that

- i

d(A):(Zk—l)i—k+1

then there exist re{l,...,(2k — 1)i — k + 1}, satisfying (r, 2k—1)i—k+1)=1,
such that

A ={neN: n=rs(mod ((2k — 1)i — k + 1)) for some se{i,...,2i — 1}}.

Proof. Assume that A is a strongly k-sum-free set satisfying (8). Since

i I
Qk—1)i—k+1 2k—1

for any ie N, Theorem 8 implies that A is contained in a maximal strongly k-sum-
free set B, which consists of arithmetic progressions with the same difference D.
Thus, there are distinct integers by, ...,b;€{0,1,...,D — 1} such that
B={neN: n=b,...,b; (mod D)}.
Put B' = {bi, ..., b;}. Then B’ is a maximal strongly k-sum-free set in Zp, hence by
Fact 4 we have I'(B') = I'(Sx(B')). Moreover, choosing minimal possible period D of
the set B, we get 1 = [I'(B')| = [I'(Sk(B))].
Thus, Lemma 2 applied to the set B’ gives
|Sk(B)|=2(k — 1)|B| = (k- 1),
and since B'nSi(B') = 0, one has
|B'| + |Sk(B)|<D,

so that

D=2k —1)j —k+1.
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Hence

i g J
=ik 1 dASAB) = s T g ®)

which implies j<i and the first part of the assertion follows.

Now assume that A fulfills the assumptions of the second part of Theorem 9. Then
in|B|=j=1i|I'(B) =1,and D = (2k — 1)i — k + 1. Using Lemma 5 we infer that
there is an isomorphism ¢ of Ziy 1)1 which maps B’ onto the set {i,i+
I,...,2i — 1}. Now, to complete the proof, it is enough to observe that each
isomorphism  of Z(5_1)i_+1 can be written as y(s) = rs, where re{l, ..., (2k —
li—k+1}and (r,2k—1i—-k+1)=1. O

Let us explicitly state the important special case of Theorem 9, which improves the
second part of Theorem 8.

Corollary 10. Let A=N be a strongly k-sum-free set of the upper density larger than
2/(3k — 1). Then A is contained in a strongly k-sum-free arithmetic progression.

For k =2 in the proof of Theorem 9 instead of Lemma 5 one can use a more
precise Lemma 7 and obtain the following complete characterization of sum-free
subsets of N of the upper density larger than 1/3. This result settles in the affirmative
a conjecture of Calkin [1] (see also [2]).

Theorem 11. If set ASN is sum-free and d(A) > 1/3, then there exist natural numbers
kandje{l,....3k— 1}, (j,3k — 1) = | such that

A< {neN: n=ji(mod (3k — 1)) for some ie{k,...,2k — 1}}.

4. The equation x = y + az

Let a#0 be an integer and let Q(a) denote the family of all subsets of N containing
no solutions to the equation x = y + az. In this part of the note we investigate the
maximum upper density of sets from Q(a), i.e., we study the behaviour of the
function

For a#0 we define A(a) =1 if neither a + 1, nor a — 1, has a positive divisor
congruent to 2 modulo 3, and

A(a) = min{neN: n divides a+1 or « — 1 and n =2 (mod 3)}

if such a divisor exists. The main result of this section states that the value of A(a)
determines the behaviour of u(a).
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Theorem 12. Let a#0 be a given integer. Then

for all a with 2(a) =1, and

~ Aa)+1
ula) == 2@

whenever A(a)>1.

Moreover, if J(a)>1 and d(A)>1/3 for some AcQ(a), then there exists s,reN
such that a = +1 (mod (3r — 1)), (s,3r— 1) = 1 and

A<{neN: n=is(mod (3r — 1)) for some ie{r,...,2r — 1}}.

In the proof of Theorem 12 we use the following, somewhat technical, result.

Fact 13. Let A={r,...,2r — 1} =75, and ueZ3,_,. If uA< A, then either u =1 or
u=73r-—2.

Proof. Observe first that u#0. Note also that if ie 4 satisfies ui = min uA, then
i=r ori=2r—1. (10)

Indeed, if r<i<2r—1, then u(i—1),ui,u(i+ 1)eud<A. Hence, we must have
tue{l,2,...,r —1}. On the other hand, since ui— u,ui+ u>minuAd = ui and
r<ui<2r — 1, we must have ue{r, ...,2r — 1}. Contradiction. Hence (10) holds.

Now suppose, that ged(u,3r — 1) =d>2. Set s = (3r — 1)/d. Then 1<s<r—1
and r + s€ A. Moreover, ur = u(r+s) and u(2r — 1) = u(2r — 1 ), which contra-
dicts (10).

Observe also that ged(u,3r — 1) = 2 gives (3r — 1)/2€ A4, so that u(3r — 1)/2 =0,
contradicting the fact that u4< A4.

Thus, we must have ged(u, 3r — 1) = 1, so that u4 = A. Hence (10) implies that
either ur =r, or u(2r—1)=r. The former case gives u =1, the latter one
u=3r-2. 0O

Proof of Theorem 12. For a given a#0 put A = A(a). To get a lower bound for u
consider the following sets

S={neN: n=1(mod3)}
and

S'={neN:n=A+1)/3,...,2(A+1)/3 =1 (mod 2)}.
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If 2 =1 then S contains no solutions to the equation x = y + az. In order to see
it, observe that any such solution yields a =0 (mod3), while =1 implies
a =2 (mod 3).

If 2>1 then we have a = + 1 (mod ). Therefore, the set S’ is free of solutions to
X=y+tacz.

Now let us assume that pu(a)>1/3. We show that then A(a)>1 and, in fact,
characterize all sets 4 from Q(a) of the upper density larger than 1/3.

Thus, let 4€Q(a) have the upper density larger than 1/3. We show first that A4 is
sum-free. Indeed, if there are numbers by, by, b3 € A such that

by = by + b3,
then, since A4 is free of solutions to the equation x = y + az, the sets
A, A+ aby, A+ ab,,
are pairwise disjoint. Hence
d(4)<1/3,

contradicting the choice of 4.
Thus, the set 4 is sum-free. Since d(4)>1/3 from Theorem 11 it follows that for
some j,reN, (j,3r — 1) = 1 we have

A<={neN: n=ji(mod (3r — 1)) for some ie{r,...,2r — 1}}.
Without lost of the generality we may assume that j = 1, so that
Ac{neN:n=r,...,2r — 1 (mod (3r — 1))}.
Let A'<{r,...,2r — 1} be defined as
A" ={teZ3_1: n=1t(mod (3r — 1)) for some neA}.

Since d(4)>1/3 it follows that A’ = {r,...,2r — 1} and the set 4’ contains no
solutions to the equation x = y 4 az in the group Z3,_;. Furthermore, since

(A —A)YuA =75, and (4 —A)nad =0,
we have aAd’ = A'. Therefore, by Lemma 13, one has
a=+1(mod (3r — 1)), (11)

so that A(a)>1. Consequently, each maximal subset 4 from Q(a) of the upper
density larger than 1/3 has density r/(3r — 1) for some r for which (11) holds. Since
the smallest possible r which fulfills (11) is equal to (4(a)+ 1)/3, the assertion
follows. [
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We remark that the fact that the densest sets in Q(a) are very regular is strongly
related to a special form of the equation x = y + az. Consider for instance the family

Q(a) of sets of natural numbers which contains no solutions to the equation x + y =
az, and let i(a) denote the maximum upper density of the sets from Q(a). It was
shown by Lucht [5] (see also Schoen [8]), that if a is large enough the sets A4 ef)(a) for
which d(A) = p(A) are not periodic; in fact lower density of each such set is strictly
smaller than p(4).
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