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Abstract

We show that the Neumann problem for Laplace’s equation in a convex domain Ω with boundary data in
Lp(∂Ω) is uniquely solvable for 1 < p < ∞. As a consequence, we obtain the Helmholtz decomposition
of vector fields in Lp(Ω,R

d).
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1. Introduction

The main purpose of this paper is to prove the following.

Theorem 1.1. Let Ω be a bounded convex domain in R
d , d � 2. Let 1 < p < ∞. Then the

Lp Neumann problem for �u = 0 in Ω is uniquely solvable. That is, given any f ∈ Lp(∂Ω)

with mean value zero, there exists a harmonic function u in Ω , unique up to constants, such
that (∇u)∗ ∈ Lp(∂Ω) and ∂u

∂n
= f n.t. on ∂Ω . Moreover, the solution satisfies the estimate

‖(∇u)∗‖p � C‖f ‖p , where C depends only on d , p and the Lipschitz character of Ω .
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Here and thereafter (∇u)∗ denotes the nontangential maximal function of ∇u and n the unit
outward normal to ∂Ω . By ∂u

∂n
= f n.t. on ∂Ω we mean that for a.e. P ∈ ∂Ω , 〈∇u(x), n(P )〉

converges to f (P ) as x → P nontangentially. We remark that for a harmonic function u and
p � 2, (∇u)∗ ∈ Lp(∂Ω) implies that u is in the Sobolev space L

p

1+ 1
p

(Ω) [8]. The solutions in

Theorem 1.1 satisfy the estimate ‖∇u‖L
p
1/p(Ω) � C‖f ‖p for 2 � p < ∞.

It is known that the Lp Neumann problem for �u = 0 in a bounded C1 domain is uniquely
solvable for any p ∈ (1,∞) [2]. However, if Ω is a general Lipschitz domain, the sharp range
of p’s, for which the Lp Neumann problem in Ω is solvable, is 1 < p < 2 + ε, where ε > 0
depends on Ω (see [7,15,1]; also see [9] for references on related work on boundary value prob-
lems in Lipschitz domains). In [10], for any given Lipschitz domain Ω and p > 2, Kim and Shen
established a necessary and sufficient condition for the solvability of the Lp Neumann problem
in Ω . More precisely, it is shown in [10] that the Lp Neumann problem for �u = 0 in Ω is
solvable if and only if there exist positive constants C0 and r0 such that for any 0 < r < r0 and
Q ∈ ∂Ω , the following weak reverse Hölder inequality on ∂Ω ,

{
1

rd−1

∫
B(Q,r)∩∂Ω

∣∣(∇v)∗
∣∣p dσ

}1/p

� C0

{
1

rd−1

∫
B(Q,2r)∩∂Ω

∣∣(∇v)∗
∣∣2

dσ

}1/2

, (1.1)

holds for any harmonic function v in Ω satisfying (∇v)∗ ∈ L2(∂Ω) and ∂v
∂n

= 0 on B(Q,3r) ∩
∂Ω (see [10, Theorem 1.1]). Using this condition, Kim and Shen [10] obtained the solvability of
the Lp Neumann problem for �u = 0 in bounded convex domains in R

d for 1 < p < ∞ if d = 2;
for 1 < p < 4 if d = 3; and for 1 < p < 3 + ε if d � 4 (see [10, Theorem 1.2]). Theorem 1.1
extends the results in [10] in the case d � 3 and completely solves the Lp Neumann problem for
Laplace’s equation in convex domains.

Our approach to Theorem 1.1 follows the proof of Theorem 1.2 in [10]. To establish the weak
reverse Hölder inequality (1.1), we use the square function estimates for harmonic functions in
Lipschitz domains and the local W 2,2 estimate in convex domains. This reduces the problem to
the estimate of

sup
x∈B(P,r)

∣∣∇2v(x)
∣∣p−2[

δ(x)
]p−1−t

, (1.2)

where t ∈ (0,1), δ(x) = dist(x, ∂Ω), and v is a harmonic function in Ω such that ∂v
∂n

= 0 on
B(P,3r) ∩ ∂Ω and (∇v)∗ ∈ L2(∂Ω). In [10] the authors used the interior estimates and the
local W 2,2 to obtain that for any x ∈ B(P, r) ∩ Ω ,

∣∣∇2v(x)
∣∣ � C

r

[
r

δ(x)

] d
2
{

1

rd

∫
B(P,3r)∩Ω

∣∣∇v(y)
∣∣2

dy

}1/2

. (1.3)

By a reflection argument the classical De Giorgi–Nash estimate implies that for any x ∈
B(P, r) ∩ Ω ,

∣∣∇2v(x)
∣∣ � C

r

[
r

δ(x)

]2−α{
1

rd

∫ ∣∣∇v(y)
∣∣2

dy

}1/2

, (1.4)
B(P,3r)∩Ω
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where α > 0 depends on Ω . Substituting (1.3) for d = 2,3 and (1.4) for d � 4 into (1.2) and
choosing t sufficiently close to 0, we see that the exponent of δ(x) would be positive for any
p > 2 if d = 2; for p < 4 if d = 3; and for p < 3 + ε if d � 4. This leads to the restriction of p

for d � 3 in [10, Theorem 1.2]. In this paper we will show that if d � 3, for any x ∈ B(P, r)∩Ω ,

∣∣∇2v(x)
∣∣ � Cη

r

[
r

δ(x)

]1+η{ 1

rd

∫
B(P,3r)∩Ω

∣∣∇v(y)
∣∣2

dy

}1/2

(1.5)

for any η > 0. Substituting (1.5) into (1.2), we see that the exponent of δ(x) is −η(p−2)+1− t ,
which would be positive for any p > 2 if η > 0 is sufficiently small.

To show (1.5), we will prove that if Ω is a convex domain with smooth boundary, then for
any q > 2,

{
1

rd

∫
B(Q,r)∩Ω

|∇v|q dx

}1/q

� C

{
1

rd

∫
B(Q,2r)∩Ω

|∇v|2 dx

}1/2

, (1.6)

whenever v is harmonic in Ω and v ∈ C2(Ω), ∂v
∂n

= 0 in B(Q,3r)∩ ∂Ω . The constant C in (1.6)
depends only on d , q and the Lipschitz character of Ω . Our proof of (1.6) is inspired by a re-
cent paper of V. Maz’ya [12] (also see [11]), in which he established the L∞ gradient estimate
for solutions of the Neumann–Laplace problem in convex domains. More precisely, it is proved
in [12] that if q > d and f ∈ Lq(Ω) with mean value zero, then ‖∇u‖L∞(Ω) � C‖f ‖Lq(Ω),

where −�u = f in Ω and ∂u
∂n

= 0 on ∂Ω . Although the proof of (1.6) does not rely on this esti-
mate, the formulation of our main technical lemma, Lemma 2.2, as well as its proof, is motivated
by [12].

With Theorem 1.1 at our disposal, following the potential approach developed by Fabes,
Mendez, Mitrea [3] in Lipschitz domains, we may study the solvability of the Poisson equa-
tion with Neumann boundary conditions in convex domains. In particular, consider the boundary
value problem ⎧⎪⎪⎨

⎪⎪⎩
�u = f ∈ L

p

−1,0(Ω),

∂u

∂n
= g ∈ B

p

−1/p(∂Ω),

u ∈ W 1,p(Ω).

(1.7)

Here L
p

−1,0(Ω) is the dual of L
q

1(Ω) = W 1,q (Ω) and B
p

−1/p(∂Ω) the dual of the Besov space

B
q

1/p(∂Ω) on ∂Ω , where q = p
p−1 . We will call u ∈ W 1,p(Ω) a solution to (1.7) with data (f, g),

if ∫
Ω

∇u · ∇φ dx = −〈f,φ〉Lp
−1,0(Ω)×L

q
1 (Ω) + 〈

g,Tr(φ)
〉
B

p
−1/p(∂Ω)×B

q
1/p(∂Ω)

(1.8)

for any φ ∈ W 1,q (Ω), where Tr(φ) denotes the trace of φ on ∂Ω .

Theorem 1.2. Let Ω be a bounded convex domain in R
d , d � 2. Let 1 < p < ∞. Then for

any f ∈ L
p

(Ω) and g ∈ B
p

(∂Ω) satisfying the compatibility condition 〈f,1〉 = 〈g,1〉,
−1,0 −1/p
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the Poisson problem (1.7) has a unique (up to constants) solution u. Moreover, the solution u

satisfies the estimate

‖∇u‖Lp(Ω) � C
{‖f ‖L

p
−1,0(Ω) + ‖g‖B

p
−1/p(∂Ω)

}
, (1.9)

where C depends only on d , p and the Lipschitz character of Ω .

We remark that for bounded Lipschitz or C1 domains, the inhomogeneous Neumann problem,
�u = f ∈ L

p

1/p−s−1,0(Ω) in Ω , ∂u
∂n

= g ∈ B
p
−s(∂Ω) and u ∈ L

p

1−s+1/p(Ω) with s ∈ (0,1) and
p ∈ (1,∞), was studied in [3], where the authors obtained the solvability for the sharp ranges
of p and s. Analogous results for the inhomogeneous Dirichlet problem in Lipschitz or C1 do-
mains may be found in [8]. In particular, it follows from [3] that the boundary value problem (1.7)
is solvable for p ∈ ((3/2) − ε,3 + ε) if Ω is Lipschitz; and for p ∈ (1,∞) if Ω is C1.

Let L
p
σ (Ω) denote the subspace of functions v in Lp(Ω,R

d) such that
∫
Ω

v · ∇φ dx = 0
for any φ ∈ C1(Rd). As a corollary of Theorem 1.2, we establish the Helmholtz decomposition
of Lp vector fields on convex domains for 1 < p < ∞.

Theorem 1.3. Let Ω be a bounded convex domain in R
d , d � 2 and 1 < p < ∞. Then

Lp
(
Ω,R

d
) = gradW 1,p(Ω) ⊕ Lp

σ (Ω). (1.10)

That is, given any u ∈ Lp(Ω,R
d), there exist φ ∈ W 1,p(Ω), unique up to a constant, and a

unique v ∈ L
p
σ (Ω) such that u = ∇φ + v. Moreover,

max
{‖∇φ‖Lp(Ω),‖v‖Lp(Ω)

}
� Cp‖u‖Lp(Ω), (1.11)

where Cp depends only on d , p and the Lipschitz character of Ω .

A useful tool in the study of the Navier–Stokes equations, the Helmholtz decomposition (1.10)
is well known for smooth domains (see e.g. [4]). It was proved in [3] that (1.10)–(1.11) hold for
p ∈ ((3/2) − ε,3 + ε) if Ω is Lipschitz; and for p ∈ (1,∞) if Ω is C1. The range (3/2) − ε <

p < 3 + ε is known to be sharp for Lipschitz domains in R
d , d � 3 (see [3]).

2. Estimates on smooth convex domains

The purpose of this section is to establish the following.

Theorem 2.1. Let Ω be a bounded convex domain in R
d , d � 3 with C2 boundary. Let u ∈

C3(Ω). Suppose that �u = 0 in Ω and ∂u
∂n

= 0 on B(Q,3r) ∩ ∂Ω for some Q ∈ ∂Ω and 0 <

r < r0. Then for any q > 2,

{
1

rd

∫
B(Q,r)∩Ω

|∇u|q dx

}1/q

� C

{
1

rd

∫
B(Q,2r)∩Ω

|∇u|2 dx

}1/2

, (2.1)

where C depends only on d , q and the Lipschitz character of Ω .
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The summation convention will be used in this section.
The proof of Theorem 2.1 relies on the following lemma. As we mentioned in Introduction,

the formulation of Lemma 2.2 as well as its proof is inspired by a paper of Maz’ya [12].

Lemma 2.2. Let Ω be a bounded convex domain with C2 boundary. Suppose that v =
(v1, . . . , vd) ∈ C2(Ω,R

d) and v · n = 0 on ∂Ω . Let g = |v|2. Then for a.e. t ∈ (0,∞),

∫
{g=t}

|∇g|dσ � 2
√

t

∫
{g=t}

{(∑
i,j

∣∣∣∣ ∂vi

∂xj

− ∂vj

∂xi

∣∣∣∣2)1/2

+ ∣∣div(v)
∣∣}dσ

+ 2
∫

{g>t}

{∣∣div(v)
∣∣2 − ∂vi

∂xj

· ∂vj

∂xi

}
dx, (2.2)

where σ = Hd−1 denotes the (d − 1)-dimensional Hausdorff measure and {g = t} = {x ∈ Ω:
g(x) = t}, {g > t} = {x ∈ Ω: g(x) > t}.

Proof. Let Ψ be a nonnegative Lipschitz function on [0,∞). It follows from integration by parts
that ∫

Ω

Ψ
(|v|2) ∂vi

∂xj

· ∂vj

∂xi

dx = −2
∫
Ω

Ψ ′(|v|2)vk · ∂vk

∂xj

· vi · ∂vj

∂xi

dx

−
∫
Ω

Ψ
(|v|2) · vi · ∂

∂xi

{
div(v)

}
dx

+
∫

∂Ω

Ψ
(|v|2)vinj

∂vj

∂xi

dσ

= −2
∫
Ω

Ψ ′(|v|2)vk · ∂vk

∂xj

· vi · ∂vj

∂xi

dx

+ 2
∫
Ω

Ψ ′(|v|2)vk · ∂vk

∂xi

· vi · div(v) dx

+
∫
Ω

Ψ
(|v|2){div(v)

}2
dx

+
∫

∂Ω

Ψ
(|v|2){vinj

∂vj

∂xi

− vini div(v)

}
dσ. (2.3)

This gives

∫
Ψ

(|v|2){{
div(v)

}2 − ∂vi

∂xj

· ∂vj

∂xi

}
dx
Ω
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=
∫

∂Ω

Ψ
(|v|2){vini div(v) − vinj

∂vj

∂xi

}
dσ

+ 2
∫
Ω

Ψ ′(|v|2){vk · ∂vk

∂xj

· vi · ∂vj

∂xi

− vk · ∂vk

∂xi

· vi · div(v)

}
dx. (2.4)

Using the assumptions that v · n = 0 on ∂Ω and Ω is a convex domain with C2 boundary, we
observe that

vini div(v) − vinj

∂vj

∂xi

= −β(vT ;vT ) � 0 on ∂Ω,

where vT = v − (v · n)n is the tangential component of v on ∂Ω and β(·,·) the second funda-
mental quadratic form of ∂Ω (see [6, pp. 133–134]). Hence,

2
∫
Ω

Ψ ′(|v|2) · vk · ∂vk

∂xj

· vi · ∂vj

∂xi

dx � 2
∫
Ω

Ψ ′(|v|2) · vk · ∂vk

∂xi

· vi · div(v) dx

+
∫
Ω

Ψ
(|v|2){{

div(v)
}2 − ∂vi

∂xj

· ∂vj

∂xi

}
dx. (2.5)

Let g = |v|2. Then |∇g|2 = 4vk · ∂vk

∂xj
· vi · ∂vi

∂xj
. It follows from (2.5) that

1

2

∫
Ω

Ψ ′(g)|∇g|2 dx � 2
∫
Ω

Ψ ′(g)vk · ∂vk

∂xj

· vi

{
∂vi

∂xj

− ∂vj

∂xi

}
dx

+ 2
∫
Ω

Ψ ′(g) · vk · ∂vk

∂xi

· vi · div(v) dx

+
∫
Ω

Ψ (g)

{{
div(v)

}2 − ∂vi

∂xj

· ∂vj

∂xi

}
dx. (2.6)

We now fix 0 < t < τ < ∞. Let Ψ be continuous so that Ψ (s) = 1 for s � τ , Ψ (s) = 0 for
s � t , and Ψ is linear on [t, τ ]. In view of (2.6), we obtain

1

2(τ − t)

∫
t<g<τ

|∇g|2 dx � 1

τ − t

∫
t<g<τ

|∇g||v|
{∑

i,j

∣∣∣∣ ∂vi

∂xj

− ∂vj

∂xi

∣∣∣∣2}1/2

dx

+ 1

τ − t

∫
t<g<τ

|∇g||v|∣∣div(v)
∣∣dx

+
∫

Ψ (g)

{{
div(v)

}2 − ∂vi

∂xj

· ∂vj

∂xi

}
dx. (2.7)
g>t
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By the co-area formula, we may rewrite (2.7) as

1

2(τ − t)

τ∫
t

∫
g=s

|∇g|dσ ds � 1

τ − t

τ∫
t

∫
g=s

|v|
{∑

i,j

∣∣∣∣ ∂vi

∂xj

− ∂vj

∂xi

∣∣∣∣2}1/2

dσ ds

+ 1

τ − t

τ∫
t

∫
g=s

|v|∣∣div(v)
∣∣dσ ds

+
∫

g>t

Ψ (g)

{{
div(v)

}2 − ∂vi

∂xj

· ∂vj

∂xi

}
dx. (2.8)

Letting τ → t+ in (2.8), we obtain the desired estimate by the Lebesgue’s differentiation theo-
rem. �

Next we apply Lemma 2.2 to harmonic functions in Ω with normal derivatives vanishing on
part of the boundary.

Lemma 2.3. Let Ω be a bounded convex domain with C2 boundary and Q ∈ ∂Ω . Let u ∈ C3(Ω).
Suppose that �u = 0 in Ω and ∂u

∂n
= 0 on B(Q,2r) ∩ ∂Ω for some r > 0. Then for a.e. t ∈

(0,∞),

∫
g=t

|∇g|dσ � 6
√

t

∫
g=t

|∇u||∇ϕ|dσ + 2
∫

g>t

|∇u|2|∇ϕ|2 dx, (2.9)

where g = |(∇u)ϕ|2 and ϕ ∈ C∞
0 (B(Q,2r)).

Proof. Let v = (∇u)ϕ. Then v · n = 0 on ∂Ω and

∂vi

∂xj

= ϕ
∂2u

∂xi∂xj

+ ∂u

∂xi

∂ϕ

∂xj

.

It follows that div(v) = (�u)ϕ + ∇u · ∇ϕ = ∇u · ∇ϕ and

∂vi

∂xj

− ∂vj

∂xi

= ∂u

∂xi

∂ϕ

∂xj

− ∂u

∂xj

∂ϕ

∂xi

.

Hence,

(∑
i,j

∣∣∣∣ ∂vi

∂xj

− ∂vj

∂xi

∣∣∣∣2)1/2

+ ∣∣div(v)
∣∣ = {

2|∇u|2|∇ϕ|2 − 2(∇u · ∇ϕ)2}1/2 + |∇u · ∇ϕ|

� 3|∇u||∇ϕ|. (2.10)
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Next note that

∣∣div(v)
∣∣2 − ∂vj

∂xi

∂vi

∂xj

= −ϕ2
∣∣∇2u

∣∣2 − 2ϕ · ∂2u

∂xi∂xj

· ∂u

∂xi

· ∂ϕ

∂xj

= −
∑
i,j

(
ϕ

∂2u

∂xi∂xj

+ ∂u

∂xi

∂ϕ

∂xj

)2

+ |∇u|2|∇ϕ|2

� |∇u|2|∇ϕ|2. (2.11)

In view of (2.10)–(2.11), estimate (2.9) in Lemma 2.3 now follows readily from Lemma 2.2. �
Lemma 2.4. Let Ω be a bounded convex domain in R

d , d � 3. Let f , g be two nonnegative
functions on Ω . Suppose that f ∈ C(Ω), g ∈ C1(Ω) and

∫
g=t

|∇g|dσ � C0

{√
t

∫
g=t

f dσ +
∫

g>t

f 2 dx

}
(2.12)

for a.e. t ∈ (0,∞). Then there exists C depending only on d , q , C0 and the Lipschitz character
of Ω such that

{∫
Ω

gq dx

}1/q

� C

{∫
Ω

f 2p dx

}1/p

+ C|Ω| 1
q
−1

∫
Ω

g dx, (2.13)

where p > 1 and 1
q

= 1
p

− 2
d

.

Proof. By considering gδ = g + δ and then letting δ → 0+, we may assume that g is bounded
from below by a positive constant. Using the co-area formula and (2.12), we obtain

∫
Ω

gα|∇g|2 dx =
∞∫

0

tα
∫

g=t

|∇g|dσ dt

� C0

∞∫
0

tα
{
t

1
2

∫
g=t

f dσ +
∫

g>t

f 2 dx

}
dt

� C

∫
Ω

gα+ 1
2 |∇g|f dx + C

∫
Ω

gα+1f 2 dx, (2.14)

where α > −1. By the Cauchy inequality with an ε > 0,

∫
gα+ 1

2 |∇g|f dx � ε

∫
gα|∇g|2 dx + Cε

∫
gα+1f 2 dx.
Ω Ω Ω
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This, together with (2.14), implies that∫
Ω

gα|∇g|2 dx � C

∫
Ω

gα+1f 2 dx. (2.15)

Since Ω is convex, there exists a constant C, depending only on d and [diam(Ω)]d/|Ω|, such
that

{∫
Ω

|w − wΩ | 2d
d−2 dx

} d−2
d

� C

∫
Ω

|∇w|2 dx, (2.16)

where w ∈ C1(Ω) and wΩ denotes the average of w over Ω . Let β > (1/2) and w = gβ in (2.16).
We obtain

{∫
Ω

g
2dβ
d−2 dx

} d−2
d

� C

∫
Ω

g2β−2|∇g|2 dx + C|Ω|−1− 2
d

{∫
Ω

gβ dx

}2

. (2.17)

Let α = 2β − 2. It follows from (2.15) and (2.17) that

{∫
Ω

g
2dβ
d−2 dx

} d−2
d

� C

∫
Ω

g2β−1f 2 dx + C|Ω|−1− 2
d

{∫
Ω

gβ dx

}2

, (2.18)

for any β > (1/2).
We now choose p0 > 1 so that (2β − 1)p0 = 2dβ

d−2 . By Hölder’s inequality,

∫
Ω

g2β−1f 2 dx �
{∫

Ω

g(2β−1)p0 dx

}1/p0
{∫

Ω

f 2p′
0 dx

}1/p′
0

� ε

{∫
Ω

g(2β−1)p0 dx

} p1
p0 + Cε

{∫
Ω

f 2p′
0 dx

} p′
1

p′
0
, (2.19)

where p1 = 2β
2β−1 . Note that p1

p0
= d−2

d
. Also 2p′

0 = 4dβ
d−2+4β

and
p′

1
p′

0
= d−2+4β

d
. In view of (2.18)–

(2.19), we obtain

{∫
Ω

g
2dβ
d−2 dx

} d−2
d

� C

{∫
Ω

f
4dβ

d−2+4β dx

} d−2+4β
d + C|Ω|−1− 2

d

{∫
Ω

gβ dx

}2

. (2.20)

Finally we let p = 2dβ
d−2+4β

and q = 2dβ
d−2 . It follows from (2.20) that

{∫
gq dx

}1/q

� C

{∫
f 2p dx

}1/p

+ C|Ω|− 1
2β

− 1
dβ

{∫
gβ dx

}1/β

. (2.21)
Ω Ω Ω
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Note that 1
q

= 1
p

− 2
d

and 2β = (1 − 2
d
)q . Also − 1

2β
− 1

dβ
= 1

q
− 1

β
. Since 2β < q , the desired

estimate follows from (2.21) by Hölder’s inequality. �
We are now in a position to give the proof of Theorem 2.1.

Proof of Theorem 2.1. Let 1 < ρ < τ < 2. Choose ϕ ∈ C∞
0 (B(Q, τr)) such that ϕ = 1 in

B(Q,ρr) and |∇ϕ| � C[(τ − ρ)r]−1. It follows from Lemmas 2.3 and 2.4 that

{∫
Ω

∣∣(∇u)ϕ
∣∣2q

dx

}1/q

� C

{∫
Ω

|∇u|2p|∇ϕ|2p dx

}1/p

+ C|Ω| 1
q
−1

∫
Ω

∣∣(∇u)ϕ
∣∣2

dx, (2.22)

where p > 1 and 1
q

= 1
p

− 2
d

. This yields that

{
1

rd

∫
Ω∩B(Q,ρr)

|∇u|2q dx

}1/(2q)

� C

{
1

rd

∫
Ω∩B(Q,τr)

|∇u|2p dx

}1/(2p)

(2.23)

for any p > 1 and 1
q

= 1
p

− 2
d

, where 1 < ρ < τ < 2. By a simple iteration argument, we obtain

{
1

rd

∫
Ω∩B(Q,r)

|∇u|q dx

}1/q

� C

{
1

rd

∫
Ω∩B(Q,3r/2)

|∇u|p dx

}1/p

, (2.24)

for any 2 < p < q < ∞. Estimate (2.1) follows readily from (2.24) and the reverse Hölder in-
equality,

{
1

rd

∫
Ω∩B(Q,3r/2)

|∇u|p̄ dx

}1/p̄

� C

{
1

rd

∫
Ω∩B(Q,2r)

|∇u|2 dx

}1/2

, (2.25)

where p̄ = 2 + η and η > 0 depends on the Lipschitz character of Ω . We mention that (2.25)
with p̄ close to 2 holds even for weak solutions of elliptic systems of divergence form with
bounded measurable coefficients. See e.g. [5, Chapter V] for the interior case. The boundary
case follows from the interior case by a reflection argument. �
Remark 2.5. Let Ω be a bounded Lipschitz domain in R

d , d � 2. Suppose that �u = 0 in Ω ,
(∇u)∗ ∈ L2(∂Ω) and ∂u

∂n
= 0 on B(Q,3r) ∩ ∂Ω . Then the estimate (2.1) holds for 2 < q <

3 + ε if d � 3; and for 2 < q < 4 + ε if d = 2. To show this, one uses the fact that the L2

Neumann problem in Lipschitz domains is solvable as well as the observation that u is Cα in
B(Q,2r) ∩ Ω for some α > 0 if d � 3; and for some α > (1/2) if d = 2. We refer the reader
to [14, pp. 188–189], where the same estimate was proved for a Lipschitz domain Ω , under the
Dirichlet condition u = 0 on B(Q,3r) ∩ ∂Ω . The proof in [14] extends easily to the case of
the Neumann boundary condition. We point out that if d � 3, the Cα (α > 0) estimate follows
from the De Giorgi–Nash estimate by a reflection argument. For the case d = 2, one may use
the solvability of the Lp Neumann problem in Lipschitz domains for some p = p̄ > 2 and the
square function estimates to show that ∇u ∈ L

p̄
(B(Q,2r) ∩ Ω) ⊂ L2p̄(B(Q,2r) ∩ Ω). By
1/p̄
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Sobolev imbedding, this implies that u is Cα on B(Q,2r) ∩ Ω for some α > (1/2). If Ω is C1,
the estimate (2.1) holds for any d � 2 and q > 2. This follows from the fact that the Lp Neumann
problem in C1 domains is solvable for any p > 2. Since the results in this paper do not use the
estimates mentioned above, we omit the details here.

3. Weak reverse Hölder inequality on the boundary

The goal of this section is to prove the following.

Theorem 3.1. Under the same conditions on Ω and u as in Theorem 2.1, we have

{
1

rd−1

∫
B(Q,r)∩∂Ω

∣∣(∇u)∗
∣∣p dσ

}1/p

� C

{
1

rd−1

∫
B(Q,2r)∩∂Ω

∣∣(∇u)∗
∣∣2

dσ

}1/2

, (3.1)

for any p > 2, where C depends only on d , p and the Lipschitz character of Ω .

We begin with a local W 2,2 estimate.

Lemma 3.2. Under the same conditions on Ω and u as in Theorem 2.1, we have∫
B(Q,r)∩Ω

∣∣∇2u
∣∣2

dx � C

r2

∫
B(Q,2r)∩Ω

|∇u|2 dx (3.2)

where C depends only on d .

Proof. See e.g. [10, p. 1826]. �
Let δ(x) = dist(x, ∂Ω).

Lemma 3.3. Let w be a harmonic function in a bounded Lipschitz domain Ω . Let p > 2. Fix
x0 ∈ Ω such that δ(x0) � c0 diam(Ω). Then for any t ∈ (0,1),

∫
∂Ω

∣∣(∇w)∗
∣∣p dσ � C

{
diam(Ω)

}t sup
x∈Ω

∣∣∇2w(x)
∣∣p−2[

δ(x)
]p−1−t

∫
Ω

∣∣∇2w
∣∣2

dy

+ C
∣∣∇w(x0)

∣∣p|∂Ω|, (3.3)

where C depends only on d , p, t , c0 and the Lipschitz character of Ω .

Proof. See e.g. [10, p. 1827]. �
Proof of Theorem 3.1. Since Ω is a Lipschitz domain, by rotation and translation, we may
assume that Q = 0 and

B(Q,C0r0) ∩ Ω = {(
x′, xd

)
: xd > ψ

(
x′)} ∩ B(Q,C0r0)
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where ψ : Rd−1 → R such that ψ(0) = 0 and ‖∇ψ‖∞ � M , and C0 = 10
√

d(1 + M). Let

S(r) = {(
x′,ψ

(
x′)):

∣∣x′∣∣ < r
}
.

We will show that if u ∈ C2(Ω) is harmonic in Ω and ∂u
∂n

= 0 on S(8r), then

{
1

rd−1

∫
S(r)

∣∣(∇u)∗
∣∣p dσ

}1/p

� C

{
1

rd−1

∫
S(4r)

∣∣(∇u)∗
∣∣2

dσ

}1/2

, (3.4)

where C depends only on d , p and M . Estimate (3.1) follows from (3.4) by a simple covering
argument.

For P ∈ ∂Ω , define

M1(∇u)(P ) = sup
{∣∣∇u(x)

∣∣: x ∈ Ω, |x − P | < C0δ(x) and |x − P | � c0r
}
,

M2(∇u)(P ) = sup
{∣∣∇u(x)

∣∣: x ∈ Ω, |x − P | < C0δ(x) and |x − P | > c0r
}
. (3.5)

Note that (∇u)∗ = max{M1(∇u), M2(∇u)}. The desired estimate for M2(∇u) follows readily
from the interior estimates for harmonic functions. To handle M1(∇u), we apply Lemma 3.3
to u on the Lipschitz domain Z(2r), where

Z(ρ) = {(
x′, xd

)
:

∣∣x′∣∣ < ρ and ψ
(
x′) < xd < 20

√
d(1 + M)ρ

}
.

This Yields That

1

rd−1

∫
S(r)

∣∣M1(∇u)
∣∣p dσ � 1

rd−1

∫
∂Z(2r)

∣∣(∇u)∗Z(2r)

∣∣p dσ

� Crt−d+1 sup
Z(2r)

∣∣∇2u(x)
∣∣p−2[

δ(x)
]p−1−t

∫
Z(2r)

∣∣∇2u(y)
∣∣2

dy

+ C
∣∣∇v(x0)

∣∣p, (3.6)

where δ(x) = dist(x,Z(2r)) and (∇u)∗Z(2r) denotes the nontangential maximal function of ∇u

with respect to the domain Z(2r). Note that the last term in the right-hand side of (3.6) may be
treated easily, using the interior estimates.

Let I denote the first term in the right-hand side of (3.6). By Lemma 3.2,

I � Crt−d−1 sup
Z(2r)

∣∣∇2u(x)
∣∣p−2[

δ(x)
]p−1−t

∫
Z(2r)

∣∣∇u(y)
∣∣2

dy. (3.7)

Let x ∈ Z(2r). It follows from the interior estimates that for any q > 2,
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∣∣∇2u(x)
∣∣ � C

δ(x)

{
1

[δ(x)]d
∫

B(x,δ(x))

|∇u|q dx

}1/q

� Cr
d
q

[δ(x)]1+ d
q

{
1

rd

∫
Z(2r)

|∇u|q dx

}1/q

� Cr
d
q

[δ(x)]1+ d
q

{
1

rd

∫
Z(4r)

|∇u|2 dx

}1/2

, (3.8)

where we have used estimate (2.1) in the last step. This, together with (3.7), implies that

I � Cr
t−1+ d

q
(p−2) sup

x∈Z(2r)

[
δ(x)

]p−1−t−(1+ d
q
)(p−2)

{
1

rd

∫
Z(4r)

|∇u|2 dy

}p/2

. (3.9)

Since p − 1 − t − (1 + d
q
)(p − 2) = 1 − t − d

q
(p − 2), we may choose q > 2 so large that the

exponent of δ(x) in (3.9) is positive. Using δ(x) � Cr , we then obtain

I � C

{
1

rd

∫
Z(4r)

|∇u|2 dy

}p/2

� C

{
1

rd−1

∫
S(4r)

∣∣(∇u)∗
∣∣2

dσ

}p/2

. (3.10)

Thus we have proved that

1

rd−1

∫
S(r)

∣∣M1(∇u)
∣∣p dσ � C

{
1

rd−1

∫
S(4r)

∣∣(∇u)∗
∣∣2

dσ

}p/2

.

This, together with the same estimate for M2(∇u), gives (3.4). �
Remark 3.4. Let p > 2. It follows from Theorem 3.1 and [10, Theorem 1.1] that if Ω is a
bounded convex domain with C2 boundary, the Lp Neumann problem for �u = 0 in Ω is
uniquely solvable. Moreover, the solution satisfies the estimate ‖(∇u)∗‖p � C‖ ∂u

∂n
‖p , where C

depends only on d , p and the Lipschitz character of Ω .

4. Proof of Theorem 1.1

Let Ω be a bounded convex domain in R
d , d � 2. Let p > 2. We need to show that the Lp

Neumann problem for �u = 0 in Ω is uniquely solvable. Since the case d = 2 is contained
in [10], we will assume that d � 3.

The uniqueness of the Lp Neumann problem follows directly from the uniqueness of the
L2 Neumann problem. To establish the existence, it suffices to show that if f ∈ C∞

0 (Rd) and∫
∂Ω

f dσ = 0, then the solution of the L2 Neumann problem for �u = 0 in Ω with boundary
data f |∂Ω satisfies ‖(∇u)∗‖p � C‖f ‖p .

To this end we approximate Ω from the outside by a sequence of convex domains {Ωj } with
smooth boundaries and uniform Lipschitz characters. Let uj be a solution to the L2 Neumann
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problem for Laplace’s equation in Ωj with data fj − αj , where αj is the mean value of f

on ∂Ωj . It follows from Remark 3.4 that∥∥(∇uj )
∗∥∥

Lp(∂Ωj )
� C‖fj − αj‖Lp(∂Ωj ), (4.1)

where C depends only on d , p and the Lipschitz character of Ω . By a limiting argument (see
e.g. [7]), there exists a subsequence, still denoted by {uj }, such that ∇uj → ∇v uniformly on
any compact subset of Ω , where v is a variational solution of the Neumann problem in Ω with
data f |∂Ω . Using this and (4.1), we may deduce that ‖(∇v)∗‖Lp(∂Ω) � C‖f ‖Lp(∂Ω). Since
u − v is constant by the uniqueness of the variational solutions, we obtain ‖(∇u)∗‖Lp(∂Ω) �
C‖f ‖Lp(∂Ω). This completes the proof.

5. Proof of Theorem 1.2

To establish the existence, we first reduce the problem to the case where f = 0. The argument
is standard. Let f ∈ L

p

−1,0(Ω) and w = ΠΩ(f ) =: RΩΠ(f̃ ). Here RΩ denotes the operator

restricting distributions in R
d to Ω , the map Π : E ′(Rd) → D′(Rd) is given by the convolution

with the fundamental solution for � in R
d with pole at the origin, and f̃ is defined by 〈f̃ , φ〉 =

〈f, RΩ(φ)〉 for φ ∈ C∞(Rd). Let q = p
p−1 . For any φ ∈ B

q
s (∂Ω) with s = 1

p
, define

〈
Λ(f ),φ

〉 = ∫
Ω

∇w · ∇ψ dx + 〈f,ψ〉Lp
−1,0(Ω)×L

q
1 (Ω), (5.1)

where ψ is a function in L
q

1(Ω) such that Tr(ψ) = φ and ‖ψ‖L
q
1 (Ω) � C‖φ‖B

q
1/p(∂Ω). Here we

have used the fact that the trace operator Tr :Lq

1(Ω) → B
q

1/p(∂Ω) is bounded and onto and that

‖φ‖B
q
1/p(∂Ω) ≈ inf

{‖ψ‖L
q
1 (Ω): Tr(ψ) = φ

}
.

Since ∫
Ω

∇w · ∇ψ dx + 〈f,ψ〉 = 0 for any ψ ∈ C∞
0 (Ω)

and C∞
0 (Ω) is dense in {u ∈ L

q

1(Ω): Tr(u) = 0}, it is easy to see that 〈Λ(f ),φ〉 is well defined.
Furthermore,

∣∣〈Λ(f ),φ
〉∣∣ �

{‖w‖L
p
1 (Ω) + ‖f ‖L

p
−1,0(Ω)

}‖ψ‖L
q
1 (Ω)

� C‖f ‖L
p
−1,0(Ω)‖ψ‖L

q
1 (Ω)

� C‖f ‖L
p
−1,0(Ω)‖φ‖B

q
1/p(∂Ω), (5.2)

where we have used the Calderón–Zygmund estimate ‖w‖L
p
1 (Ω) � C‖f ‖L

p
−1,0(Ω). It follows that

w is a weak solution to (1.7) with data (f,Λ(f )) and ‖Λ(f )‖B
p
−1/p(∂Ω) � C‖f ‖L

p
−1,0(Ω). Thus,

by subtracting w from u, we may always assume that f = 0.
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Next, we note that if Ω is a bounded Lipschitz domain, the solvability of the Neumann prob-
lem,

⎧⎪⎪⎨
⎪⎪⎩

�u = 0 in Ω,
∂u

∂n
= g ∈ B

p
−s(∂Ω) on ∂Ω,

u ∈ L
p

1−s+1/p(Ω),

(5.3)

was established in [3] for (s,1/p) in the (open) convex polygon P formed by the vertices,

(1 − ε,0), (1,0),
(
1, (1 + ε)/2

)
, (ε,1), (0,1),

(
0, (1 − ε)/2

)
,

where ε > 0 depends on Ω . By interpolation, this, together with Theorem 1.1, implies that the
Neumann problem (5.3) in a convex domain is uniquely solvable if (s,1/p) is the (open) convex
polygon P1 formed by the vertices

(1 − ε,0), (1,0),
(
1, (1 + ε)/2

)
, (ε,1), (0,1), (0,0).

In particular, the Neumann problem (5.3) is solvable if s = 1/p and 2 � p < ∞. As a result,
we have proved Theorem 1.2 for 2 � p < ∞. The case 1 < p < 2 will be proved by a duality
argument, given in the next section (see Remark 6.5).

6. Proof of Theorem 1.3

Note that

Lp
σ (Ω) =

{
u ∈ Lp

(
Ω,R

d
)
:

∫
Ω

u · ∇ψ dx = 0 for any ψ ∈ W 1,q (Ω)

}

= {
u ∈ Lp

(
Ω,R

d
)
: div(u) = 0 in Ω and u · n = 0 on ∂Ω

}
, (6.1)

where q = p
p−1 . Here u · n is regarded as an element in B

p

−1/p(∂Ω). Let X be a normed vector
space and S a subset of X. The set

S⊥ = {
� ∈ X∗: 〈�,f 〉 = 0 for all f ∈ S

}
is called the set of annihilators of S. If S is a closed subspace of a reflexive Banach space X, then
(S⊥)⊥ = S (see e.g. [13]). With this notation, we may write L

p
σ (Ω) = S⊥ ⊂ X = Lp(Ω,R

d),
where S = gradW 1,q(Ω) ⊂ Lq(Ω,R

d). Thus the Lp-Helmholtz decomposition (1.10) may be
written as

Lp
(
Ω,R

d
) = gradW 1,p(Ω) ⊕ {

gradW 1,q (Ω)
}⊥

. (6.2)

Lemma 6.1. Let Ω be a bounded Lipschitz domain in R
d and 1 < p < ∞. Then C∞

σ (Ω) = {v ∈
C∞(Ω,R

d): div(v) = 0} is dense in L
p
σ (Ω).
0
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Proof. Let Xp(Ω) denote the closure of C∞
σ (Ω) in Lp(Ω,R

d). Clearly, gradW 1,q(Ω) ⊂
(Xp(Ω))⊥. On the other hand, if u ∈ Lq(Ω,R

d) and
∫
Ω

u · vdx = 0 for any v ∈ C∞
σ (Ω),

then u = −∇ψ for some ψ ∈ L1
loc(Ω) (see e.g. [4, pp. 696–697] for a proof). This im-

plies that u ∈ gradW 1,q (Ω). Hence we obtain grad W 1,q (Ω) = (Xp(Ω))⊥. It follows that
Xp(Ω) = (gradW 1,q (Ω))⊥ = L

p
σ (Ω) and thus C∞

σ (Ω) is dense in L
p
σ (Ω). �

Lemma 6.2. Let Ω be a bounded Lipschitz domain in R
d and 1 < p < ∞. If the Helmholtz

decomposition (1.10) with the estimate (1.11) holds for the exponent p and constant Cp , then it
holds for the dual exponent q = p

p−1 and constant Cq = Cp .

Proof. This follows from the fact that if X0, X1 are closed subspaces of X and X = X0 ⊕ X1,
then X∗ = X⊥

0 ⊕ X⊥
1 . Note that if u ∈ L

p
σ (Ω), v ∈ L

q
σ (Ω), φ ∈ W 1,p(Ω) and ψ ∈ W 1,q (Ω),

then

∫
Ω

u · (v + ∇ψ)dx =
∫
Ω

(u + ∇φ) · vdx,

∫
Ω

∇φ · (v + ∇ψ)dx =
∫
Ω

(u + ∇φ) · ∇ψ dx. (6.3)

By a simple duality argument, this shows that the estimate (1.11) holds for the exponent q and
constant Cq = Cp . �

Next we will show that the Lp-Helmholtz decomposition is equivalent to the solvability
of (5.3) for s = 1/p.

Theorem 6.3. Let Ω be a bounded Lipschitz domain in R
d and 1 < p < ∞. Then the Lp-

Helmholtz decomposition (1.10) with the estimate (1.11) holds if and only if the Neumann
problem (5.3) is uniquely solvable for s = 1/p.

Proof. Suppose that (5.3) is uniquely solvable for s = 1/p. The uniqueness of the solutions
to (5.3) implies that L

p
σ (Ω) ∩ gradW 1,p(Ω) = {0}. Given any u = (u1, . . . , ud) ∈ Lp(Ω,R

d),
let

φ(x) = ∂

∂xi

∫
Ω

Γ (x − y)ui(y) dy, (6.4)

where Γ (x) denotes the fundamental solution for � in R
d with pole at the origin. By the

Calderón–Zygmund estimate, φ ∈ W 1,p(Ω) and ‖∇φ‖Lp(Ω) � C‖u‖Lp(Ω). Since div(u −
∇φ) = 0 in Ω , it follows that Λ = (u − ∇φ) · n ∈ B

p

−1/p(∂Ω) and ‖Λ‖B
p
−1/p(∂Ω) � C‖u −

∇φ‖Lp(Ω), where Λ may be defined by

〈Λ,ϕ〉 =
∫

(u − ∇φ) · ∇ϕ̃ dx
Ω
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for ϕ ∈ B
q

1/p(∂Ω) and ϕ̃ ∈ W 1,q(Ω) such that Tr(ϕ̃ ) = ϕ on ∂Ω . We now let v = u−∇(φ+ψ) ∈
Lp(Ω,R

d), where ψ ∈ W 1,p(Ω) is a solution to (5.3) with boundary data Λ. Observe that for
any ϕ ∈ C∞(Rd),

∫
Ω

v · ∇ϕ dx = 〈Λ,ϕ〉 −
∫
Ω

∇ψ · ∇ϕ = 0.

Thus v ∈ L
p
σ (Ω). Also note that

∥∥∇(φ + ψ)
∥∥

Lp(Ω)
� C

{‖∇φ‖Lp(Ω) + ‖Λ‖B
p
−1/p(∂Ω)

}
� C

{‖∇φ‖Lp(Ω) + ‖u − ∇φ‖Lp(Ω)

}
� C‖u‖Lp(Ω).

Since u = v + ∇(φ + ψ), we obtain the Helmholtz decomposition (6.2).
Next suppose that the Lp-Helmholtz decomposition (1.10) with estimate (1.11) holds. The

uniqueness for the Neumann problem (5.3) follows from the fact that

Lp
σ (Ω) ∩ gradW 1,p(Ω) = {0}.

To show the existence, let ψ be a solution of the L2 Neumann problem in Ω with boundary
data ∂ψ

∂n
= g, where g ∈ L∞(∂Ω) and

∫
∂Ω

g dσ = 0. Given u ∈ Lq(Ω,R
d) ∩ L2(Ω,R

d), write
u = v + ∇φ, where v ∈ L

q
σ (Ω) ∩ L2

σ (Ω) and φ ∈ W 1,q (Ω) ∩ W 1,2(Ω). This is possible since
the Helmholtz decomposition holds for exponents q and 2. It follows that

∣∣∣∣
∫
Ω

∇ψ · udx

∣∣∣∣ =
∣∣∣∣
∫
Ω

∇ψ · ∇φ dx

∣∣∣∣ =
∣∣∣∣
∫

∂Ω

∂ψ

∂n
· (φ − α)dσ

∣∣∣∣
�

∥∥∥∥∂ψ

∂n

∥∥∥∥
B

p
−1/p(∂Ω)

‖φ − α‖B
q
1/p(∂Ω)

�
∥∥∥∥∂ψ

∂n

∥∥∥∥
B

p
−1/p(∂Ω)

‖φ − α‖W 1,q (Ω),

for any α ∈ R. By Poincaré inequality, this yields that

∣∣∣∣
∫
Ω

∇ψ · udx

∣∣∣∣ � C

∥∥∥∥∂ψ

∂n

∥∥∥∥
B

p
−1/p(∂Ω)

‖∇φ‖Lq(Ω).

Using ‖∇φ‖Lq(Ω) � Cq‖u‖Lq(Ω), we then obtain

‖∇ψ‖Lp(Ω) � C

∥∥∥∥∂ψ

∂n

∥∥∥∥
B

p
(∂Ω)

(6.5)

−1/p
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by duality. Since L∞(∂Ω) is dense in B
p

−1/p(∂Ω), the existence of solutions to (5.3) with data Λ,

where Λ ∈ B
p

−1/p(∂Ω) and 〈Λ,1〉 = 0, follows from the estimate (6.5) by a simple limiting
argument. This completes the proof. �

Lemma 6.2 and Theorem 6.3 lead to the following.

Theorem 6.4. Let Ω be a bounded Lipschitz domain in R
d and 1 < p < ∞. Then the solvability

of (5.3) for s = 1/p is equivalent to the solvability of (5.3) for s = 1/q , where q = p
p−1 .

Remark 6.5. We show in Section 5 that if Ω is a bounded convex domain in R
d , then the

Neumann problem (5.3) is solvable for s = 1/p and 2 < p < ∞. Thus, by Theorem 6.4, the
Neumann problem (5.3) in convex domains with s = 1/p is solvable for any 1 < p < ∞. This
completes the proof of Theorem 1.2.

Remark 6.6. Theorem 1.3 follows readily from Theorems 1.2 and 6.3.
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