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Taurine, an endogenous sulfur-containing amino acid, is found in millimolar concentrations in
mammalian tissue, and its tissue content is altered by diet, disease and aging. The effectiveness of taurine
administration against obesity and its related diseases, including type 2 diabetes, has been well docu-
mented. However, the impact of taurine depletion on glucose metabolism and fat deposition has not
been elucidated. In this study, we investigated the effect of taurine depletion (in the taurine transporter
(TauT) knockout mouse model) on blood glucose control and high fat diet-induced obesity. TauT-
knockout (TauTKO) mice exhibited lower body weight and abdominal fat mass when maintained on
normal chow than wild-type (WT) mice. Blood glucose disposal after an intraperitoneal glucose injection
was faster in TauTKO mice than in WT mice despite lower serum insulin levels. Islet beta-cells (insulin
positive area) were also decreased in TauTKO mice compared to WT mice. Meanwhile, overnutrition by
high fat (60% fat)-diet could lead to obesity in TauTKO mice despite lower body weight under normal
chow diet condition, indicating nutrition in normal diet is not enough for TauTKO mice to maintain body
weight comparable to WT mice. In conclusion, taurine depletion causes enhanced glucose disposal
despite lowering insulin levels and lower body weight, implying deterioration in tissue energy
metabolism.
© 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. on behalf of Japanese

Pharmacological Society. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Taurine (2-aminoethanesulfonic acid) is widely distributed in
nature and in mammals is present in millimolar concentrations in
most tissues. Taurine is clinically approved in Japan for the treat-
ment of patients with both chronic heart failure and hepatic dis-
orders (1,2). Moreover, evidence from human clinical and animal
studies suggests a beneficial effect of taurine against a variety of
other diseases, including diabetes and obesity (3,4). Human taurine
content is derived from its biosynthesis in liver, fat, brain etc. and
from dietary intake of meat. Seafood is especially rich in taurine
(5e7). Tissue taurine content is influenced by diet, as well as by
disease and aging (8e11). Dietary taurine insufficiency causes a
decrease in plasma taurine levels, which leads to various disorders,
such as retinal degeneration, dilated cardiomyopathy and the
rmacological Society.
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reduction in reproductive performance in cats which have a low
synthetic capacity for taurine (12e14). Importantly, urinary taurine
excretion, a marker of taurine intake from the diet, is inversely
correlated with mortality rate caused by ischemic heart disease in
humans (15,16), indicating the nutritional importance of taurine to
prevent lifestyle-related diseases. Moreover, it has been demon-
strated that taurine supplementation attenuates obesity, diabetes
and hypercholesterolemia in diet-induced and inherent obesity
experimental models (17e20).

The taurine transporter (TauT), which transports taurine from
the extracellular space into cells to help maintain a high intracel-
lular taurine content, is widely expressed in various tissues. The
taurine transporter knockout (TauTKO) mouse exhibits extensive
taurine depletion in several tissues (21,22). Especially noteworthy is
the 98% decrease in taurine content in heart and skeletal muscle of
the TauTKO mice, compared to about 1e2% in WT mice. By com-
parison, taurine levels in other tissues of the TauTKOmouse, such as
brain, kidney and liver, falls to 10e30% of those found in WT mice,
indicating a very low capacity of taurine biosynthesis in the heart
r B.V. on behalf of Japanese Pharmacological Society. This is an open access article
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and skeletal muscle. TauTKO mice exhibit lower body weight than
WT mice although the amount of food intake is identical (21e23).
TauTKOmice also exhibit decreased skeletal muscle weight and cell
size, indicating that muscle atrophy contributes to body weight
loss. Endurance running time of TauTKO mice is lower than that of
the control mice. Moreover, blood glucose is cleared faster during
treadmill running in TauTKOmice than inWTmice (23), whichmay
contribute to a reduction in exercise capacity. Taurine depletion
alters the respiratory quotient during exercise (21,24), implying
that taurine depletion affects the balance in energy metabolism.
Taurine has been recently implicated in the regulation of mito-
chondrial function through various actions, such as modulation of
mitochondrial transfer RNA, buffer action and calcium movement
(25e27), supporting the idea that taurine might play an important
role in energy production. Additionally, several lines of evidence
reveal a crucial role of taurine in b cell function. It has been reported
that taurine treatment attenuates cell injury induced by several
stresses in the islets (28e30). Moreover, long-term taurine sup-
plementation of mice fed a normal diet of taurine reduces plasma
glucose during a glucose tolerance test concomitant with an in-
crease in islet size of the pancreas. Therefore, it is logical to assume
that taurine depletion may affect the regulation of blood glucose.

In this study, we investigated the effect of taurine depletion
using TauTKO mice on blood glucose control, insulin secretion and
high fat diet-induced obesity.

2. Materials and methods

2.1. Animal care

The experimental procedures were approved by the Institu-
tional Animal Care and Use Committee of Hyogo University of
Health Sciences. TauTKO and littermate mice (C57BL/6 background)
were housed in a SPF environment, fed standard chow (MF, Oriental
Yeast, Tokyo), had access to water ad libitum and maintained on a
12-h light/dark cycle. Male WT and TauTKO mice were studied.

2.2. High fat diet

In the high fat diet group, mice were fed 60% fat-contained diet
(Oriental Yeast) beginning at 3 months of age. Body weight was
monitored each week. Sixteen weeks after HFD, mice were sub-
jected intraperitoneal glucose tolerance test. All mice were sacri-
ficed 20e22 weeks after initiation of the high fat diet and tissues
were quickly frozen in liquid nitrogen and stored at �80 �C.

2.3. Glucose and insulin tolerance tests

For the intraperitoneal glucose tolerance test, after an overnight
fast (16e17 h), mice were injected i.p. a glucose solution (1 g/10 mL
water) at 1 mg/g body weight. In the insulin tolerance test, nor-
mally fed mice were fasted for 3 h, and then administered i.p. in-
sulin (0.2 U/g body wt) (Nacalai Tesque, Kyoto, Kyoto). Blood
glucose levels before and 15, 30, 60, 90 and 120 min after injection
were measured in tail vein blood using Precision Xceed with Blood
Glucose Test Strips (Abbott Japan, Tokyo). Serum insulin levels
before and 15 and 60min after glucose injectionwas determined by
using an insulin kit (Morinaga Institute of Biological Science,
Yokohama, Kanagawa) according to manufacturer's protocol.

2.4. Measurement of tissue taurine content by HPLC

Tissues were homogenized in 100 mM HEPES (pH 7.5). Four
volume of 5% sulfosalicylic acid was added to the tissue lysate. After
centrifugation, the supernatant was filtered and neutralized with
1 M NaHCO3. Then, samples were subjected to HPLC to determine
taurine concentration, using a previous method with slight modi-
fication (31). In brief, supernatant was derivatized with an OPA
reagent (3 mg of o-phthalaldehyde with 50 mL of 95% ethanol, 10 ml
of 2-mercaptoethanol in 5 mL of 100 mM borate buffer (pH 10.4)),
and then applied to HPLC (D-2000, Hitachi High Technologies,
Tokyo) equipped with a reverse phase column (Cosmosil 5C18-MS-
II, 150 mm, Nacalai Tesque).

2.5. Westernblot

For preparation of the membrane fraction of skeletal muscle and
liver, tissues were minced and homogenized in isotonic buffer
(100 mM Sucrose, 100 mM Tris, 45 mM KCl, 10 mM EDTA, pH 7.4),
and then were centrifuged to remove debris, nuclei and the mito-
chondrial fraction. Supernatant was obtained after centrifugation at
200,000� g for 1 h (MLA-50, Beckman Coulter, Miami, FL, USA),
with the pellet defined as the membrane fraction. The membrane
pellet was dissolved in RIPA buffer.

After protein determination using the bicinconic acid assay
method (Pierce BCA assay kit, Life Technologies, Grand Island, NY,
USA), protein samples were subjected to western blots as previ-
ously described (32). Anti-glucose transporter (Glut) �1, �2, �4
(Millipore, Billerica, MA, USA; 1:500) antibodies were used as 1st
antibodies.

2.6. Histological analysis

Sections from frozen tissues were cut by cryostat (Carl Zeiss,
Jena, Germany). Sections we stained by hematoxylin & eosin
methods. For detection of insulin positive cells, pancreatic sections
were immunostained by using anti-insulin antibody (ab80, Abcam,
Cambridge, UK; 1:100) and Alexa Fluor 488-conjugated second
antibody (Life Technologies; 1:400) with Can Get Signal Immu-
nostain according to manufacturer's protocol (Toyobo, Osaka,
Osaka). Images were acquired with microscopes (BZ-9000, Key-
ence, Osaka, Osaka) equipped with imaging software (BZ-II,
Keyence).

2.7. Statistics

Each value was expressed as the mean ± standard error (SE).
Statistical analysis was performed using Statcel 2nd edition (OMS
Publishing Inc). Analysis of variance (ANOVA) was used to analyze
blood glucose and body weight changes. Student's t-test or
TukeyeKramer test was used to determine statistical significance
between groups. Differences were considered statistically signifi-
cant when the calculated p value was less than 0.05.

3. Results

3.1. Lean phenotype in TauTKO mice

When mice were fed normal chow, the body weight of TauTKO
mice was lower than that of the WT mice at both 3 months and 12
months of age (Fig. 1A) (genotype, F ¼ 27.66, p < 0.001; time,
F ¼ 55.15, p < 0.001; interaction, F ¼ 3.64, p > 0.05 by repeated
measures two-way ANOVA, p < 0.01 between 3-month-oldWT and
TauTKO, p < 0.01 between 12-month-old WT and TauTKO by
TukeyeKramer test) (22). While WT mice contained visceral adi-
pose tissue at 1 year of age, visceral fat deposition was less obvious
in TauTKOmice, as theweight of visceral fat was significantly less in
TauTKO mice at 1 year of age than in their corresponding WT co-
horts (p < 0.01 by Student's t-test) (Fig. 1B and C). Dietary intake
was not different between WT and TauTKO mice. These data



Fig. 1. Less fat deposition in TauTKO mice fed a normal diet. A) Body weight of 3- and 12-month-old WT and TauTKO mice were measured. (n ¼ 6e12). B) Representative ventral
images of 12-month-old WT and TauTKO mice. C) Weight of abdominal fat deposits of WT and TauTKO mice. n ¼ 13e16. *; p < 0.05 vs WT, ##; p < 0.01 vs 3-month-old.
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indicate that TauTKOmice are resistant to aging-dependent obesity
when maintained on normal chow.
3.2. Alteration of glucose tolerance in TauTKO mice

To test for alteration in glucose metabolism, a glucose tolerance
test was performed in young mice. After an i.p. glucose injection,
the reduction in glucose levels was faster in TauTKO mice than in
WT mice (genotype, F ¼ 11.26, p < 0.01; time, F ¼ 68.51, p < 0.001;
interaction, F ¼ 1.41, p > 0.05 by repeated measures two-way
ANOVA) (Fig. 2A). By contrast, blood glucose changes after
glucose injection was not different between WT (TauTþ/þ) and
heterozygous (TauTþ/�) mice (genotype, F ¼ 0.20, p > 0.05; time,
F ¼ 96.21, p < 0.001; interaction, F ¼ 1.04, p > 0.05 by repeated
measures two-way ANOVA) (Fig. 2B). Surprisingly, serum insulin
levels before and 15-min and 60-min after glucose injection were
lower in TauTKOmice thanWTmice (genotype, F ¼ 19.64, p < 0.01;
time, F¼ 20.21, p < 0.001; interaction, F¼ 2.70, p > 0.05 by repeated
measures two-way ANOVA) (Fig. 2C). Next, insulin sensitivity of
TauTKOmouse was tested (Fig. 2D). After an i.p. injection of insulin,
TauTKO mouse showed lower blood glucose levels than did WT
mouse, but insulin sensitivity (changes in glucose level after insulin
Fig. 2. Glucose and insulin tolerance test in normal diet-fed TauTKO mice. A,B)
Blood glucose during glucose tolerance test in 3-month-old WT and TauTKO (A) and in
3-month-old WT and hetero (tautþ/�) mice (B). C) Serum insulin levels during glucose
tolerance test in 3-month-old WT and TauTKO mice. D) Blood glucose level during
insulin resistance test. n ¼ 5e6.
injection) was not statistically different between TauTKO and WT
mice (genotype, F ¼ 0.78, p > 0.05; time, F ¼ 39.71, p < 0.001;
interaction, F ¼ 0.98, p > 0.05 by repeated measures two-way
ANOVA).
3.3. Expression of glucose transporters in TauTKO tissues

To determine the expression level of glucose transporters, he-
patic and muscular protein levels of GLUT1, 2 and 4 in membrane
fractionwere evaluated (Fig. 3). In muscle and liver, no difference in
the levels of the 3 GLUT transporters was observed between
TauTKO mice and WT mice.
3.4. Decrease in islet b-cells in TauTKO mice

Next, the morphology of the pancreas in TauTKO mice was
examined to further analyze how serum insulin was lower in
TauTKO. Pancreatic taurine content of the TauTKO mice was less
than 10% of that of theWT (Table 1). Immunohistochemical analysis
revealed that the area of insulin positive-islets was less in the
TauTKO pancreas than in the pancreas of their WT cohorts (Fig. 4A
and B), which may be associated with lower serum insulin levels.
These data indicate that taurine depletion interferes with cell
growth and/or stress resistance in islet, which in turn contributes to
lower insulin levels.
3.5. High fat diet-induced obesity in TauTKO mice

To determine the influence of a high fat diet on body weight of
taurine depleted mice, WT and TauTKO mice were fed a diet con-
taining 60% fat (HFD). Sixteen weeks after starting the HFD, the
body weight of the TauTKO mouse had increased to a level com-
parable to that of theWTmice (Fig. 5A). Comparison bodyweight of
6-month-old WT and TauT mice fed normal diet (ND) or HFD for 16
weeks revealed that body weight between WT and TauTKO mice
after HFD is not statistically different, although body weight be-
tween ND-fed WT and TauTKO mice at same age is significantly
different (genotype, F ¼ 82.99, p < 0.001; diet, F ¼ 13.28, p < 0.01;
interaction, F < 0.001, p > 0.05 by repeated measures two-way
ANOVA, p < 0.01 between 6-month-old ND WT and ND TauTKO,
p > 0.05 between HFDWTand HFD TauTKO by TukeyeKramer test)
(Fig. 5B). The amount of food consumed by the animals was not
different between the two genotypes (average (g/10 g body weight/
day); 1.28 (WT) vs 1.43 (TauTKO) at 0 week and 0.55 (WT) vs 0.63
(TauTKO) at 16 week after starting HFD, n ¼ 6 (WT) and 5
(TauTKO)). Growth of abdominal fat in TauTKO mice was dramati-
cally enhanced by the end of the HFD period (Fig. 5C), although
TauTKO mice which were fed a normal diet had smaller amounts of
abdominal fat than its WT cohorts.



Fig. 3. Glucose transporters in muscle and liver of TauTKO mice. A) Representative western blots for GLUT1, 2 and 4 protein from muscle and liver membrane. Representative
images were shown. B) Plot-based graph for GLUT level is shown. Relative GLUTs content were quantified and normalized by a band from ponso S stain. n ¼ 4e6.

Table 1
Taurine content in tissues of WT and TauTKO mice.

NFD (3-month-old) HFD 22 wk (8-month-old)

WT TauTKO WT TauTKO

Pancreas 2.99 ± 0.12 0.24 ± 0.067* e e

Fat e e 1.45 ± 0.20 0.32 ± 0.033*

mmol/g tissue weight.
e; not detected.
Data are mean ± SE, n ¼ 3e6.
*p < 0.05 vs WT.

T. Ito et al. / Journal of Pharmacological Sciences 129 (2015) 59e6462
4. Discussion

In the present study, we identified unexpected phenotype of
TauTKO mice; TauTKO mice displayed lower fasting blood glucose
and were more tolerant against glucose injection, although serum
insulin level was not higher, rather lower, than WT mice. Next, we
investigated the influence of HFD on the TauTKO phenotype. In the
case of HFD, body weight gain after HFD was faster in TauTKO mice
thanWTmice, and body weight in TauTKOmice was comparable to
WT mice at the end of experiment.

Mechanism for enhancement of glucose disposal in TauTKO
mice has not been clarified, so far. We also observed serum insulin
level both before and after glucose injection was much lower in
TauTKO mouse. However, insulin sensitivity is not different be-
tween TauTKO and WT mice, although we expected that TauTKO
mouse is susceptible to insulin to dispose blood glucose. On the
Fig. 4. Pancreas islet in TauTKO mice. A) Representative fluoromicroscopic images of pancr
pancreas. Scale bars indicate 200 mm. B) Insulin positive area relative to total area was calc
other hand, it has previously reported that skeletal muscle lactate
content was higher in TauTKO mice than WT mice (23), which
suggest that anaerobic glycolytic pathway may be accelerated in
TauTKO muscle. Therefore, it is assumable that acceleration of
glycolysis in skeletal muscle enhances glucose disposal from blood.
Importantly, we have previously found that both nuclear peroxi-
some proliferator-activated receptor a (PPARa) amount and its
target transcription are reduced in TauTKO muscle (23). PPARa is
responsible for the transcriptional activation of fatty acid
oxidation-related genes (33). Importantly, it has been reported that
transgenic mouse overexpressing PPARa in muscle was impaired
glucose disposal concomitant with an increase in fatty acid oxida-
tion rates (34,35), suggesting that muscle PPARa level can deter-
mine peripheral glucose disposal capacity. These observations
indicate that the reduction in PPARa deteriorates glucose and fatty
acid utilization in TauTKO muscle, thereby glucose disposal is
enhanced as compensatory mechanism.

It has been reported that a high fat diet causes a decrease in
blood and adipose taurine content, which is assumed to relate to
the development of obesity (17). Therefore, it is logical that the
TauTKO mice are susceptible to the development of obesity when
placed on a HFD. TauTKO mice are lean and contain few visceral fat
deposits when fed a normal diet. However, they reach a body
weight comparable to that of the WT mice when fed a HFD. Thus,
TauTKO mice appear to have less lipid to store in adipose tissue
when fed a normal chow diet, but they store large amounts of lipid
when fed a HFD. We have previously reported that TauTKO mice
exhibit a low body weight at a young age (at least up to 4 weeks of
eatic sections stained by anti-insulin antibody. Arrows indicate insulin positive islets in
ulated from 4 to 5 pancreas sections for each mouse. n ¼ 3. *; p < 0.05 vs WT.



Fig. 5. Body weight and adipose growth of TauTKO mice fed a high fat diet. A) Body weight was monitored weekly from 0 to 20 weeks after initiating the high fat diet in 3-
month-old mice. n ¼ 6(WT), 5 (TauTKO). B) Body weight of 6-month-old WT and TauT mice fed either a normal diet or a high fat diet (HFD) for 16 weeks. n ¼ 5e10. *; p < 0.05
vs WT, ##; p < 0.01 vs normal diet group. (C) Representative ventral images of WT and TauTKO mice fed a high fat diet.
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age), diminished tissue weights and a decrease in skeletal muscle
and heart cell size, indicating a deficit in growth as a result of
taurine depletion (21). A growth defect can result from excessive
consumption of substrates that produce energy, since some find-
ings from TauTKO mice indicate a stimulation in metabolic path-
ways, including enhanced blood glucose disposal. Moreover, we
and others have previously reported that lactate accumulates in
TauTKO skeletal muscle, indicating the activation of glycolytic
pathway in skeletal muscle (23). These data suggest that TauTKO
mice alter energy production, which may result in part from the
activation of glucose transport and glycolysis. Several papers have
demonstrated that an energy imbalance (production/expenditure)
causes a decrease in body weight. For example, the lack of Kir-6.2
(sarcolemmal ATP-sensitive Ca2þ channel) or a muscle specific
loss of Kir-6.2 function results in a decrease in body weight and a
reduction in fat depots accompanied with an induction in energy
expenditure, all without a change in food intake (36). Additionally,
these mice are resistant to HFD-induced obesity. Furthermore, mice
lacking SLC25A5 (mitochondrial ATP/Pi transporter) exhibit
reducedmitochondrial respiration and less body weight (37). These
reports indicate that an increase in fuel metabolism and/or a
decrease in energy production prevent body growth and fat
deposition. Therefore, it is likely that disorders of energy produc-
tion and/or expenditure may contribute to the low growth of
TauTKO mice.

Plasma insulin levels both before and after glucose injection are
lower in TauTKO mice than in WT mice, although TauTKO mice are
more tolerant to glucose. We also found that TauTKO contain fewer
b cells in the pancreas than do those of the WT mice. These data
indicate that taurine is necessary for b-cell function. Therefore, to
maintain the islet taurine content by taurine intake may be a good
strategy for prevention of diabetes due to islet b cell disorders.
Previously, it has been reported that taurine administration for 4
weeks enhances both the growth of the b islets of the pancreas and
the degree of insulin secretion (38). Furthermore, taurine protects
the b cells from death or a functional defect induced by several
stresses, such as hyperglycemia, hyperlipidemia and streptozotocin
(28e30). Moreover, taurine treatment delays the onset of diabetes
in NOD mice which genetically develop autoimmune diabetes
caused by the infiltration of the pancreatic islets by mononuclear
leukocytes (39). Meanwhile, HFD-induced islet hypertrophy was
also attenuated by taurine supplementation (40). Several mecha-
nisms are expected to underlie the protective role of taurine on b-
cell dysfunction. i) Taurine suppresses high glucose-induced reac-
tive oxygen species produced in b-cells (28). ii) Modulation of
mitochondrial calcium by taurine may be protective. Taurine
treatment improves glucose-stimulated insulin secretion in b-cells
overexpressing uncoupling protein-2, an effect associated with an
improvement in mitochondrial Ca2þ handling (25). iii) Taurine
treatment prevents the accumulation of ubiquitinated protein
induced by high glucose in b-cells, suggesting that taurine may
contribute to the stabilization of protein folding (41). Lack of these
beneficial roles of taurine in islet by taurine deficiency may be
detrimental to b cell function and survival.

In conclusion, taurine deficiency affects multiple mechanisms of
glucose metabolism. The present study suggests that taurine plays
an important role in the maintenance of normal substrate meta-
bolism and energy production. The present study also raises the
possibility that treatment of diabetic patients with taurine may be
useful by protecting pancreatic b-cell function.
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