Journal of Combinatorial Theory, Series A 113 (2006) 380-383

Journal of Combinatorial Theory

Series A
www.elsevier.com/locate/jcta

Note

Covering a square of side $n+\varepsilon$ with unit squares

Alexander Soifer ${ }^{\text {a,b }}$
${ }^{a}$ University of Colorado at Colorado Springs, P. O. Box 7150, Colorado Springs, CO 80933, USA
${ }^{\mathrm{b}}$ DIMACS, Rutgers University

Received 4 May 2005
Communicated by Victor Klee
Available online 11 October 2005

Abstract

In [Covering a triangle with triangles, Amer. Math. Monthly 112 (1) (2005) 78; Cover-up, Geombinatorics XIV (1) (2004) 8-9], Conway and I showed that in order to cover an equilateral triangle of side length $n+\varepsilon$, $n^{2}+2$ unit equilateral triangles suffice while obviously $n^{2}+1$ are wanted. (The latest "triangular" results can be found in [D. Karabash, A. Soifer, On covering of trigons, Geombinatorics XV (1) (2005) 13-17].) Here I pose an analogous problem for squares and show that in order to cover a square of side length $n+\varepsilon$, $n^{2}+o(1) n+O$ (1) unit squares suffice. This problem is dual to the one solved by Erdös and Graham 30 years ago [On packing squares with equal squares, J. Combin. Theory (A) 19 (1975) 119-123], which dealt with packing unit squares in a square. And as in Erdös-Graham, in our problem a natural upper bound of $(n+1)^{2}$ provided by a square lattice can be much improved.

© 2005 Elsevier Inc. All rights reserved.
Keywords: Combinatorial; Discrete geometry; Optimal covering; Packing

Naturally, a square of side n can be covered by n^{2} unit squares. When, however, the side length increases to $n+\varepsilon$, we obtain a new open problem:

The Problem. Find the smallest number $\Pi(n)$ of unit squares that can cover a square of side length $n+\varepsilon$.

This problem, in a sense, is dual to the one solved by Erdös and Graham 30 years ago [EG], which dealt with packing unit squares in a square. And as in Erdös-Graham, in our problem a natural upper bound of $(n+1)^{2}$ provided by a square lattice can be much improved. Let us do it.

[^0]

Fig. 1.

The Bound. Given a $(n+\varepsilon) \times(n+\varepsilon)$ square. To cover it with unit squares we will use a square grid in the lower left $(n-k) \times(n-k)$ subsquare, and $1 \times(k+1)$ polyominos in covering one (upper) side of the remaining L-shaped molding and then doubling the result to account for the right-hand side of the molding (Fig. 1).

Let us look closer at this polyomino covering. Observe that in fact the circle on AD as the diameter would have B and C on it. The close-up is shown in Fig. 2.

Denote $\mathrm{AE}=x$, then $\mathrm{ED}=(k+\varepsilon) x$, and from the triangle ABE by Pythagoras we get a quadratic in x :

$$
1+[(k+1)-(k+\varepsilon) x]^{2}=x^{2}
$$

i.e.,

$$
\left[(k+\varepsilon)^{2}-1\right] x^{2}-2(k+1)(k+\varepsilon) x+\left(k^{2}+2 k+2\right)=0 .
$$

Thus,

$$
x=\frac{(k+1)(k+\varepsilon) \pm \sqrt{2 k+2-2 k \varepsilon-\varepsilon^{2}}}{\left(k^{2}-1\right)+2 k \varepsilon+\varepsilon^{2}} .
$$

Fig. 2.

Observing that ours is the root with the minus (for with plus x becomes unseemly large for $k=1$ and small ε), and noticing that $\sqrt{2 k+2-2 k \varepsilon-\varepsilon^{2}}<\sqrt{2 k+2}-\frac{k}{\sqrt{2 k+2}} \varepsilon$, we get

$$
\begin{aligned}
x & >\frac{(k+1)(k+\varepsilon)-\sqrt{2 k+2}-\frac{k}{\sqrt{2 k+2}} \varepsilon}{\left(k^{2}-1\right)+2 k \varepsilon+\varepsilon^{2}}=\frac{\left(k^{2}+k-\sqrt{2 k+2}\right)+\left(k+1+\frac{k}{\sqrt{2 k+2}}\right) \varepsilon}{\left(k^{2}-1\right)+2 k \varepsilon+\varepsilon^{2}} \\
& >\frac{k^{2}+k-\sqrt{2 k+2}}{k^{2}+k \varepsilon-1},
\end{aligned}
$$

where the last inequality is true for any $k \geqslant 2$. Observe (Fig. 1) that x is precisely the "horizontal width" of a $1 \times(k+1)$ polyomino; thus, in our covering we need at most $2\left\lceil\frac{n+\varepsilon}{x}\right\rceil$ of such polyominos (we double to account for two parts of the L-shape to be covered). From this we get the desired upper bound (we can-but will not-slightly improve it by eliminating duplication in the covering of the upper right square in Fig. 1 and throwing away squares at the ends of "L" that are completely outside the square we cover):

$$
\Pi(n)<(n-k)^{2}+2(k+1)\left\lceil\frac{k^{2}+k \varepsilon-1}{k^{2}+k-\sqrt{2 k+2}}(n+\varepsilon)\right\rceil .
$$

Choosing $\varepsilon=o(k)$ and introducing the symbol $\lceil\lceil a\rceil\rceil$ to denote the lowest integer strictly greater than a, we get

$$
\Pi(n)<(n-k)^{2}+2(k+1)\left\lceil\left\lceil\frac{k^{2}-1}{k^{2}+k-\sqrt{2 k+2}} n\right\rceil\right\rceil \text {. }
$$

For $k=4999$, for example, this gives the upper bound $\Pi(n)<n^{2}+0.04 n+4999^{2}+10000$ for $n>4999$. In fact, it is easy to see that the upper bound we found is asymptotically equivalent to $n^{2}+o(1) n+O(1)$. This upper bound is asymptotically the best possible, and so I have accomplished the stated goal. I have a conjecture for the lower bound.

Asymptotic Upper Bound Result:. $n^{2}+o(1) n+O$ (1).
Asymptotic Lower Bound Conjecture:. $n^{2}+O(1)$.

For small values of n the problem of determining exact values of $\Pi(n)$ is open and not easy. To colleagues interested in pursuing this direction, I can offer a few numbers they can start with: $\Pi(1)=3 ; 5 \leqslant \Pi(2) \leqslant 7$; and $10 \leqslant \Pi(3) \leqslant 14$.

I thank Col. Dr. Robert Ewell for converting my scribbles into clean computer-aided illustrations, and Victor Klee and Mitya Karabash for a helpful critique of the manuscript.

References

[CS1] J.H. Conway, A. Soifer, Covering a triangle with triangles, Amer. Math. Monthly 112 (1) (2005) 78.
[CS2] J.H. Conway, A. Soifer, Cover-up, Geombinatorics XIV (1) (2004) 8-9.
[EG] P. Erdös, R.L. Graham, On packing squares with equal squares, J. Combin. Theory (A) 19 (1975) 119-123.
[KS] D. Karabash, A. Soifer, On covering of trigons, Geombinatorics XV (1) (2005) 13-17.

[^0]: E-mail address: asoifer@uccs.edu.
 URL: http://www.uccs.edu/~ asoifer.

