

Journal of Pure and Applied Algebra 161 (2001) 167-176

JOURNAL OF PURE AND APPLIED ALGEBRA

www.elsevier.com/locate/jpaa

Self-orthogonal modules over coherent rings

Zhaoyong Huang^{a,*}, Gaohua Tang^b

^aDepartment of Mathematics, Beijing Normal University, Beijing 100875, People's Republic of China ^bDepartment of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

> Received 17 June 1999; received in revised form 10 February 2000 Communicated by G.M. Kelly

Abstract

Let *R* be a left coherent ring, *S* any ring and $_{R}\omega_{S}$ an (R, S)-bimodule. Suppose ω_{S} has an ultimately closed FP-injective resolution and $_{R}\omega_{S}$ satisfies the conditions: (1) ω_{S} is finitely presented; (2) The natural map $R \to \text{End}(\omega_{S})$ is an isomorphism; (3) $\text{Ext}_{S}^{i}(\omega, \omega) = 0$ for any $i \ge 1$. Then a finitely presented left *R*-module *A* satisfying $\text{Ext}_{R}^{i}(A, \omega) = 0$ for any $i \ge 1$ implies that *A* is ω -reflexive. Let *R* be a left coherent ring, *S* a right coherent ring and $_{R}\omega_{S}$ a faithfully balanced self-orthogonal bimodule and $n \ge 0$. Then the FP-injective dimension of $_{R}\omega_{S}$ is equal to or less than *n* as both left *R*-module and right *S*-module if and only if every finitely presented left *R*-module and every finitely presented right *S*-module have finite generalized Gorenstein dimension at most *n*. \bigcirc 2001 Elsevier Science B.V. All rights reserved.

MSC: 16E10; 16G30; 16G50

1. Preliminaries

Throughout this paper, we assume that all rings are associative with identity elements, and that all modules considered are unital.

Let *R* be a ring and *M* a left (resp. right) *R*-module. Recall that *M* is called finitely presented if there is a finitely generated projective left (resp. right) *R*-module *P* and a finitely generated submodule *N* of *P* such that $P/N \cong M$. We use mod *R* (resp. mod R^{op}) to denote the category of finitely presented left (resp. right) *R*-modules. *R* is called a left (resp. right) coherent ring if every finitely generated submodule of a finitely presented left (resp. right) *R*-module also is finitely presented. A left (resp. right) *R*-module *A* is called FP-injective if $\operatorname{Ext}^1_R(F,A) = 0$ for every finitely presented left (resp. right) *R*-module *F*. Let $\operatorname{l.FP-id}_R(A)$ (resp. r.FP-id_R(*A*)) denote the smallest

^{*} Corresponding author.

^{0022-4049/01/}\$-see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: \$0022-4049(00)00109-2

integer $n \ge 0$ such that $\operatorname{Ext}_{R}^{n+1}(F, A) = 0$ for every finitely presented left (resp. right) *R*-module *F* (see [9] for a reference).

Let *R* and *S* be rings and $_{R}\omega_{S}$ an (R,S)-bimodule. Suppose *A* is a left *R*-module (resp. right *S*-module). We call $\operatorname{Hom}_{R}(_{R}A_{,R}\omega_{S})$ (resp. $\operatorname{Hom}_{S}(A_{S,R}\omega_{S})$) the dual module of *A* with respect to ω , and denote either of these modules by A^{ω} . For a homomorphism *f* between *R*-modules (resp. S^{op} -modules), we put $f^{\omega} = \operatorname{Hom}(f_{,R}\omega_{S})$. Let $\sigma_{A} : A \to A^{\omega\omega}$ via $\sigma_{A}(x)(f) = f(x)$ for any $x \in A$ and $f \in A^{\omega}$ be the canonical evaluation homomorphism. If σ_{A} is an isomorphism, then *A* is called a ω -reflexive module.

An (R, S)-bimodule $_R\omega_S$ is called a cotilting bimodule if it satisfies the following conditions (cf. [7]):

- (C1*l*) $_{R}\omega$ is finitely presented;
- (C1r) ω_S is finitely presented;
- (C21) The natural map $S^{\text{op}} \to \text{End}(_R\omega)$ is an isomorphism;
- (C2r) The natural map $R \to \text{End}(\omega_S)$ is an isomorphism;
- (C3*l*) $\operatorname{Ext}_{R}^{i}(\omega, \omega) = 0$ for any $i \geq 1$;
- (C3r) $\operatorname{Ext}_{S}^{i}(\omega, \omega) = 0$ for any $i \geq 1$;
- (C4*l*) 1.FP-id_{*R*}(ω) < ∞ ;
- (C4r) r.FP-id_S(ω) < ∞ .

Remark. (1) $_R\omega_S$ is called a faithfully balanced self-orthogonal bimodule if it satisfies conditions (C1*l*), (C1*r*), (C2*l*), (C2*r*), (C3*l*) and (C3*r*).

(2) If $_R\omega_S$ satisfies condition (C2r) (resp. (C2l)), then P and P^{ω} are ω -reflexive for every finitely generated projective left R-module (resp. right S-module) P.

We showed in [5] that if *R* is an artin algebra (that is, *R* is an algebra over a commutative artin ring *T* and *R* is finitely generated as a *T*-module) and $_{R}\omega_{R}$ is a cotilting bimodule then a module *M* in mod *R* is ω -reflexive provided $\operatorname{Ext}_{R}^{i}(M, \omega) = 0$ for any $i \geq 1$. In Section 2 we generalize this result and prove that if *R* is a left coherent ring and *S* any ring and an (*R*, *S*)-bimodule $_{R}\omega_{S}$ satisfies conditions (C1*r*), (C2*r*) and (C3*r*) and ω_{S} has an ultimately closed FP-injective resolution, then a module *A* in mod *R* satisfying $\operatorname{Ext}_{R}^{i}(A, \omega) = 0$ for any $i \geq 1$ implies that *A* is ω -reflexive. Some known results by Miyashita [8] and Iwanaga [6] are obtained as corollaries. In Section 3 we prove that if *R* is a left coherent ring and *S* is a faithfully balanced self-orthogonal bimodule, then 1.FP-id_{R}(\omega) \leq n and r.FP-id_{S}(ω) $\leq n$ if and only if every module in mod *R* and every module in mod S^{op} have finite generalized Gorenstein dimension at most *n*, where *n* is a negative integer. This result generalizes a result by Auslander and Reiten [2].

2. Dual modules

In the following, R and S are rings, $_R\omega_S$ is a given (R, S)-bimodule, n is a positive integer.

Suppose $A \in \text{mod } R$ (resp. mod S^{op}) and there is an exact sequence $P_1 \xrightarrow{f} P_0 \to A \to 0$ with P_0, P_1 finitely generated projective. Then we have an exact sequence $0 \to A^{\omega} \to P_0^{\omega} \xrightarrow{f^{\omega}} P_1^{\omega} \to X \to 0$, where $X = \text{Coker } f^{\omega}$.

Lemma 2.1. Suppose $\operatorname{Ext}^1_{\mathcal{S}}(\omega, \omega) = 0 = \operatorname{Ext}^2_{\mathcal{S}}(\omega, \omega)$.

(1) Let A be in mod R and X in mod S^{op} as above. If $_R\omega_S$ satisfies condition (C2r), then we have the following exact sequence:

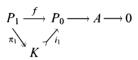
$$0 \to \operatorname{Ext}^1_S(X, \omega) \to A \xrightarrow{\sigma_A} A^{\omega \omega} \to \operatorname{Ext}^2_S(X, \omega) \to 0.$$

(2) Let A be in mod S^{op} and X in mod R as above. If $_R\omega_S$ satisfies condition (C21), then we have the following exact sequence:

$$0 \to \operatorname{Ext}^1_S(A, \omega) \to X \xrightarrow{\sigma_X} X^{\omega \omega} \to \operatorname{Ext}^2_S(A, \omega) \to 0.$$

Proof. (1) The proof is analogous to that of [5, Theorem 2.3]. For the sake of completeness, we give here the proof.

Suppose $A \in \text{mod } R$ and suppose

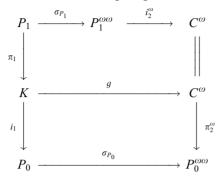


is a projective resolution of A in mod R. From the exact sequence

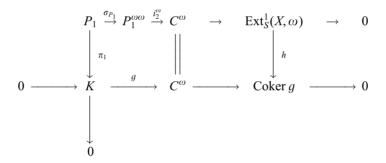
we have a long exact sequence $0 \to X^{\omega} \to P_1^{\omega\omega} \xrightarrow{t_2^{\omega}} C^{\omega} \to \operatorname{Ext}^1_S(X, \omega) \to 0 \to \operatorname{Ext}^1_S(C, \omega) \to \operatorname{Ext}^2_S(X, \omega) \longrightarrow 0$ and the following exact commutative diagram:

where σ_{P_0} is an isomorphism and g is an induced homomorphism. By the snake lemma we have Ker $\sigma_A \cong \operatorname{Coker} g$ and Coker $\sigma_A \cong \operatorname{Ext}^1_S(C, \omega) \cong \operatorname{Ext}^2_S(X, \omega)$.

Consider the following diagram:



By Diagram (2.1) $\sigma_{P_0} \cdot i_1 = \pi_2^{\omega} \cdot g$, so $(\sigma_{P_0} \cdot i_1) \cdot \pi_1 = (\pi_2^{\omega} \cdot g) \cdot \pi_1$ and hence $\sigma_{P_0} \cdot f = \pi_2^{\omega} \cdot g \cdot \pi_1$. Since $\sigma_{P_0} \cdot f = f^{\omega \omega} \cdot \sigma_{P_1}$ and $f^{\omega \omega} = \pi_2^{\omega} \cdot i_2^{\omega}$, it follows that $\pi_2^{\omega} \cdot i_2^{\omega} \cdot \sigma_{P_1} = \pi_2^{\omega} \cdot g \cdot \pi_1$. Since π_2^{ω} is a monomorphism, $i_2^{\omega} \cdot \sigma_{P_1} = g \cdot \pi_1$. Hence $\operatorname{Im}(i_2^{\omega} \cdot \sigma_{P_1}) \subseteq \operatorname{Im} g$ and there is an induced commutative diagram:



It follows from the snake lemma that h is an isomorphism. So Ker $\sigma_A \cong$ Coker $g \cong$ Ext¹_S(X, ω) and we obtain the required exact sequence.

(2) Suppose $A \in \text{mod } S^{\text{op}}$ and suppose $P_1 \xrightarrow{f} P_0 \to A \to 0$ is a projective resolution of A in mod S^{op} . Then we have an exact sequence $0 \to A^{\omega} \to P_0^{\omega} \xrightarrow{f^{\omega}} P_1^{\omega} \to X \to 0$ and the following exact commutative diagram:

It is easy to see that $A \cong \text{Coker } f^{\omega\omega}$. Noting that P_1^{ω} and P_0^{ω} are ω -reflexive, it is not difficult to see that the proof of (2) is analogous to that of (1). So we omit it. \Box

Theorem 2.2. Suppose $_R\omega_S$ satisfies conditions (C2r) and (C3r) and $P_n \xrightarrow{d_n} P_{n-1} \xrightarrow{d_{n-1}} \cdots \rightarrow P_1 \xrightarrow{d_1} P_0 \rightarrow A \rightarrow 0$ is an exact sequence in mod R with all P_i finitely generated projective. If $\operatorname{Ext}^i_R(A, \omega) = 0$ for any $1 \le i \le n-1$, then we have the following exact

sequence:

$$0 \to \operatorname{Ext}^n_S(X, \omega) \to A \xrightarrow{\sigma_A} A^{\omega \omega} \to \operatorname{Ext}^{n+1}_S(X, \omega) \to 0$$

where $X = \operatorname{Coker} d_n^{\omega}$.

Proof. The case for n = 1 follows from Lemma 2.1(1). Now suppose $n \ge 2$. Consider the given exact sequence

 $P_n \xrightarrow{d_n} P_{n-1} \xrightarrow{d_{n-1}} \cdots \longrightarrow P_1 \xrightarrow{d_1} P_0 \longrightarrow A \longrightarrow 0,$

where all P_i are finitely generated projective. Since $\text{Ext}_R^i(A, \omega) = 0$ for any $1 \le i \le n-1$, we have the following exact sequence:

$$0 \to A^{\omega} \to P_0^{\omega} \xrightarrow{d_1^{\omega}} P_1^{\omega} \to \dots \to P_{n-1}^{\omega} \xrightarrow{d_n^{\omega}} P_n^{\omega} \to X \to 0,$$
(2.2)

where $X = \operatorname{Coker} d_n^{\omega}$.

By Lemma 2.1(1), there is an exact sequence

$$0 \to \operatorname{Ext}^{1}_{S}(Y, \omega) \to A \xrightarrow{\sigma_{A}} A^{\omega \omega} \to \operatorname{Ext}^{2}_{S}(Y, \omega) \to 0,$$

$$(2.3)$$

where $Y = \text{Coker } d_1^{\omega}$. By the exactness of (2.2) and the assumption that ${}_R\omega_S$ satisfies condition (C3*r*), we have $\text{Ext}_S^i(Y,\omega) \cong \text{Ext}_S^{i+n-1}(X,\omega)$. Then we get the desired exact sequence from (2.3), which completes the proof. \Box

Lemma 2.3. Suppose $_{R}\omega_{S}$ satisfies condition (C2r) and $A \in \text{mod } R$ with $\text{Ext}_{R}^{i}(A, \omega)=0$ for any $1 \leq i \leq n$. If $P_{n+1} \xrightarrow{d_{n+1}} P_{n} \to \cdots \to P_{0} \to A \to 0$ is an exact sequence with all P_{i} finitely generated projective, then $\text{Ext}_{S}^{i}(\text{Coker } d_{n+1}^{\omega}, \omega)=0$ for any $1 \leq i \leq n$.

Proof. Suppose $P_{n+1} \xrightarrow{d_{n+1}} P_n \to \cdots \to P_0 \to A \to 0$ is an exact sequence in mod R with all P_i projective. Since $\operatorname{Ext}_R^i(A, \omega) = 0$ for any $1 \le i \le n, 0 \to A^\omega \to P_0^\omega \to \cdots \to P_n^\omega \xrightarrow{d_{n+1}^\omega} P_{n+1}^\omega \to \operatorname{Coker} d_{n+1}^\omega \to 0$ is exact. Since $_R\omega_S$ satisfies condition (C2r), every P_i is ω -reflexive. So we have an induced exact sequence $0 \to (\operatorname{Coker} d_{n+1}^\omega)^\omega \to P_{n+1} \xrightarrow{d_{n+1}} P_n \to \cdots \to P_0 \to A \to 0$ and hence $\operatorname{Ext}_S^i(\operatorname{Coker} d_{n+1}^\omega, \omega) = 0$ for any $1 \le i \le n$. \Box

Let $M \in \text{mod } S^{\text{op}}$. Suppose

$$0 \to M \xrightarrow{\delta_0} I_0 \xrightarrow{\delta_1} I_1 \xrightarrow{\delta_2} \cdots \to I_i \to \cdots$$
(2.4)

is an exact sequence with all I_i FP-injective S^{op} -modules. Such an exact sequence is called an FP-injective resolution of M. If there is a positive integer n, such that $\text{Im } \delta_n$ has a decomposition $\bigoplus_{j=1}^m W_j$ with each W_j isomorphic to a direct summand of some $\text{Im } \delta_{i_j}$ with $i_j < n$, then (2.4) is called an FP-injective resolution of M ultimately closed at n. An ultimately closed FP-injective resolution of M means an FP-injective resolution of M ultimately closed at n for some n. This notion extends the one given by Colby and Fuller [4, p. 345].

Remark. For an S^{op} -module A it is easy to see that $r.FP\text{-id}_S(A) \leq n$ if and only if there is an exact sequence $0 \rightarrow A \rightarrow I_0 \rightarrow I_1 \rightarrow \cdots \rightarrow I_n \rightarrow 0$ with all I_i FP-injective

 S^{op} -modules. It is clear that such an exact sequence is an FP-injective resolution of A ultimately closed at n + 1.

Theorem 2.4. Let R be a left coherent ring. Suppose $_R\omega_S$ satisfies the conditions (C1r), (C2r) and (C3r) and ω_S has an FP-injective resolution ultimately closed at n. If $A \in \text{mod } R$ satisfies $\text{Ext}_R^i(A, \omega) = 0$ for any $1 \le i \le n$, then A is ω -reflexive.

Proof. Suppose $A \in \text{mod } R$ satisfies $\text{Ext}_{R}^{i}(A, \omega) = 0$ for any $1 \leq i \leq n$. Since R is a left coherent ring, there is an exact sequence

$$P_{n+1} \xrightarrow{d_{n+1}} P_n \xrightarrow{d_n} \cdots \to P_1 \xrightarrow{d_1} P_0 \to A \to 0,$$

with all P_i finitely generated projective. Set $X = \operatorname{Coker} d_{n+1}^{\omega}$.

By Lemma 2.3, $\operatorname{Ext}_{S}^{i}(X,\omega) = 0$ for any $1 \leq i \leq n$. Since ω_{S} is finitely presented and every P_{i}^{ω} is a direct summand of finite direct sum of copies of ω_{S} , every P_{i}^{ω} is finitely presented in mod S^{op} . So X is finitely presented in mod S^{op} by [3, Proposition 1.6].

Let

$$0 \to \omega_S \xrightarrow{\delta_0} I_0 \xrightarrow{\delta_1} I_1 \xrightarrow{\delta_2} \cdots \xrightarrow{\delta_i} I_i \to \cdots$$

be an FP-injective resolution of ω_S ultimately closed at *n*. Then $\operatorname{Im} \delta_n = \bigoplus_{j=1}^m \operatorname{Im} \delta_{i_j}$ with $0 \leq i_j \leq n-1$. Since *X* is finitely presented in mod S^{op} , $\operatorname{Ext}_S^i(X, I_i) = 0$ for any $j \geq 1$ and $i \geq 0$. So $\operatorname{Ext}_S^{n+1}(X, \omega) \cong \operatorname{Ext}_S^1(X, \operatorname{Im} \delta_n) = \operatorname{Ext}_S^1(X, \bigoplus_{j=1}^m \operatorname{Im} \delta_{i_j}) \cong$ $\bigoplus_{j=1}^m \operatorname{Ext}_S^1(X, \operatorname{Im} \delta_{i_j}) \cong \bigoplus_{j=1}^m \operatorname{Ext}_S^{i_j+1}(X, \omega) = 0$ (since $1 \leq i_j + 1 \leq n$). We conclude that $\operatorname{Ext}_S^i(X, \omega) = 0$ for any $1 \leq i \leq n+1$. Similar to the above argument we show that $\operatorname{Ext}_S^{n+2}(X, \omega) \cong \bigoplus_{j=1}^m \operatorname{Ext}_S^{i_j+2}(X, \omega) = 0$.

Since $\operatorname{Ext}_{R}^{i}(A, \omega) = 0$ for any $1 \leq i \leq n$, by Theorem 2.2 we have the following exact sequence:

 $0 \to \operatorname{Ext}_{S}^{n+1}(X, \omega) \to A \xrightarrow{\sigma_{A}} A^{\omega \omega} \to \operatorname{Ext}_{S}^{n+2}(X, \omega) \to 0.$

But $\operatorname{Ext}_{S}^{n+1}(X, \omega) = 0 = \operatorname{Ext}_{S}^{n+2}(X, \omega)$, so A is ω -reflexive. The proof is complete. \Box

Remark. [5, Theorem 3.8] is an immediate corollary of Theorem 2.4.

Corollary 2.5. Under the assumptions of Theorem 2.4, if $A \in \text{mod } R$ satisfies $\text{Ext}^{i}_{R}(A, \omega) = 0$ for any $0 \leq i \leq n$, then A = 0.

Proof. By Theorem 2.4. \Box

Theorem 2.6. Under the assumptions of Theorem 2.4, suppose $_{R}\omega$ is flat. If $A \in \text{mod } R$ satisfies $\text{Ext}_{R}^{i}(A, R) = 0$ for any $0 \le i \le n$, then A = 0.

Proof. The proof is analogous to that of [5, Theorem 3.10]. For the sake of completeness, we give here the proof.

Suppose $A \in \text{mod } R$ satisfies $\text{Ext}_R^i(A, R) = 0$ for any $0 \le i \le n$. We use $\Omega^i(A)$ to denote the *i*th syzygy module of A for any $i \ge 0$ and $(-)^*$ to denote $\text{Hom}_R(-, R)$.

Since *R* is a left coherent ring and $A \in \text{mod } R$, $\Omega^i(A) \in \text{mod } R$. So there is an exact sequence $P_1 \to P_0 \to \Omega^i(A) \to 0$ with P_0 , P_1 finitely generated projective. By [1, Theorem 2.8], for any $i \ge 0$ we have the following exact sequence

 $\operatorname{Ext}^{i}_{R}(A,R) \otimes_{R} \omega \to \operatorname{Ext}^{i}_{R}(A,\omega) \to \operatorname{Tor}^{R}_{1}(X,\omega),$

where $X = \text{Coker}(P_0^* \to P_1^*)$. Because $_R\omega$ is flat, $\text{Tor}_1^R(X, \omega) = 0$. So $\text{Ext}_R^i(A, \omega) = 0$ for any $0 \le i \le n$, which implies A = 0 by Corollary 2.5. The proof is complete. \Box

Recall from [4] that the strong Nakayama conjecture is true for a ring R if the condition of $\operatorname{Ext}_{R}^{i}(A, R) = 0$ for a finitely generated left R-module A and any $i \ge 0$ implies A = 0. We know that a left noether ring is a left coherent ring, and if R is a left noether ring then a left R-module is finitely generated if and only if it is finitely presented.

In completely similar proofs to those of Theorems 2.4 and 2.6, we get a generalization of [5, Theorem 3.10] (also cf. [4, Theorem 2]) as follows.

Corollary 2.7. Let *R* be a left noether ring and *S* any ring. If there is an (R, S)bimodule $_{R}\omega_{S}$ which satisfies conditions (C1r), (C2r) and (C3r) and $_{R}\omega$ is flat and ω_{S} has an ultimately closed injective resolution, then the strong Nakayama conjecture holds over *R*.

Let \mathscr{A} be an abelian category and \mathscr{B} a full subcategory of \mathscr{A} . An object $X \in \mathscr{A}$ is called an embedding cogenerator for \mathscr{B} if every object in \mathscr{B} admits an injection to some direct product of copies of X in \mathscr{A} , that is, $\operatorname{Rej}_Y(X) (= \bigcap \{\operatorname{Ker} h | h : Y \to X\}) = 0$ for any $Y \in \mathscr{B}$.

We have the following result which is better than results by Miyashita [8, Corollary in Section 6] and Iwanaga [6, Theorem 2].

Proposition 2.8. Under the assumptions of Theorem 2.4, suppose $0 \to {}_{R}\omega \to E_0 \xrightarrow{f_1} E_1$ $\xrightarrow{f_2} \cdots \xrightarrow{f_i} E_i \xrightarrow{f_{i+1}} \cdots$ is an FP-injective resolution of ${}_{R}\omega$. Then $\bigoplus_{i=0}^{n} E_i$ is an embedding FP-injective cogenerator for mod R.

Proof. By [9, Corollary 2.4], $\bigoplus_{i=0}^{n} E_i$ is an FP-injective *R*-module.

By Corollary 2.5, for any $0 \neq A \in \text{mod } R$, $\text{Ext}_R^t(A, \omega) \neq 0$ for some t with $0 \leq t \leq n$ (otherwise A = 0). From the given exact sequence

 $0 \longrightarrow {}_{R}\omega \longrightarrow E_0 \xrightarrow{f_1} E_1 \xrightarrow{f_2} \cdots \xrightarrow{f_i} E_i \xrightarrow{f_{i+1}} \cdots$

we get the exact sequences

 $\operatorname{Hom}_{R}(A,\operatorname{Im} f_{i}) \to \operatorname{Ext}_{R}^{i}(A,\omega) \to 0,$ $0 \to \operatorname{Hom}_{R}(A,\operatorname{Im} f_{i}) \to \operatorname{Hom}_{R}(A,E_{i})$ for any $i \ge 1$. Because $\operatorname{Ext}_{R}^{t}(A, \omega) \neq 0$, $\operatorname{Hom}_{R}(A, \operatorname{Im} f_{t}) \neq 0$ and $\operatorname{Hom}_{R}(A, E_{t}) \neq 0$. Therefore, we conclude that $\operatorname{Hom}_{R}(A, \bigoplus_{i=0}^{n} E_{i}) \neq 0$ for any $0 \neq A \in \operatorname{mod} R$.

Let $0 \neq x \in A$. Since *R* is a left coherent ring and $A \in \text{mod } R$, the finitely generated submodule Rx of *A* is also in mod *R*. By the above argument we have $\text{Hom}_R(Rx, \bigoplus_{i=0}^n E_i) \neq 0$. Let $0 \neq h \in \text{Hom}_R(Rx, \bigoplus_{i=0}^n E_i)$. Since $\bigoplus_{i=0}^n E_i$ is FP-injective, so *h* can be extended to a homomorphism $\overline{h} : A \to \bigoplus_{i=0}^n E_i$ with $\overline{h}(x) = h(x) \neq 0$. Thus $\text{Rej}_A(\bigoplus_{i=0}^n E_i) = 0$. We conclude that $\bigoplus_{i=0}^n E_i$ is an embedding cogenerator for mod *R*. \Box

3. Generalized Gorenstein dimension

The following definitions are cited from [2]. But, *R* and *S* here are not necessarily artin algebras. In the following, we assume that *R* is a left coherent ring and *S* is a right coherent ring, and that $_R\omega_S$ is a faithfully balanced self-orthogonal (*R*, *S*)-bimodule.

Definition 3.1. A module M in mod R is said to have generalized Gorenstein dimension zero (with respect to ω), denoted by $G\text{-dim}_{\omega}(M) = 0$, if the following conditions hold: (1) M is ω -reflexive.

(2) $\operatorname{Ext}_{R}^{i}(M, \omega) = 0 = \operatorname{Ext}_{S}^{i}(M^{\omega}, \omega)$ for any $i \ge 1$.

Definition 3.2. For any $n \ge 0$, M in mod R is said to have generalized Gorenstein dimension at most n (with respect to ω), denoted by $\operatorname{G-dim}_{\omega}(M) \le n$, if there is an exact sequence $0 \to M_n \to \cdots \to M_1 \to M_0 \to M \to 0$ in mod R with $\operatorname{G-dim}_{\omega}(M_i) = 0$ for any $0 \le i \le n$.

Remark. For any $N \in \text{mod } S^{\text{op}}$, we may give a similar definition of $\operatorname{G-dim}_{\omega}(N)$ as above.

In [2] Auslander and Reiten showed that if *R* is an artin algebra, then ω has finite injective dimension as a left *R*-module if and only if every module in mod *R* has finite generalized Gerenstein dimension. In this section we develop their arguments and generalize this result. Under our assumptions, for any $n \ge 0$, we prove that $1.\text{FP-id}_R(\omega) \le n$ and $r.\text{FP-id}_S(\omega) \le n$ if and only if every module in mod *R* and every module in mod *S*^{op} have finite generalized Gorenstein dimension at most *n*.

Lemma 3.3. For a positive integer n, the following statements are equivalent:

- (1) Every M in mod R with $\operatorname{Ext}_{R}^{i}(M, \omega) = 0$ for any $1 \leq i \leq n$ is ω -reflexive.
- (2) Every N in mod S^{op} with $\operatorname{Ext}_{S}^{i}(N,\omega)=0$ for any $1 \leq i \leq n$ satisfies $\operatorname{Ext}_{S}^{i}(N,\omega)=0$ for any $i \geq 1$.

Proof. (1) \Rightarrow (2) Let *N* be in mod *S*^{op} with $\operatorname{Ext}^{i}_{S}(N,\omega) = 0$ for any $1 \le i \le n$ and let $P_{n+1} \xrightarrow{d_{n+1}} P_n \xrightarrow{d_n} \cdots \xrightarrow{d_1} P_0 \to N \to 0$ be a projective resolution of *N* in mod *S*^{op}. By symmetric conclusion of Lemma 2.3, $\operatorname{Ext}^{i}_{R}(\operatorname{Coker} d^{\omega}_{n+1}, \omega) = 0$ for any $1 \le i \le n$ and

hence Coker d_{n+1}^{ω} is ω -reflexive by (1). Then by Lemma 2.1(2), $\operatorname{Ext}_{S}^{1}(\operatorname{Coker} d_{n+1}, \omega) = 0$. 0. But $\operatorname{Ext}_{S}^{n+1}(N, \omega) \cong \operatorname{Ext}_{S}^{1}(\operatorname{Coker} d_{n+1}, \omega)$, so $\operatorname{Ext}_{S}^{n+1}(N, \omega) = 0$.

Since $0 \to \text{Im } d_1 \to P_0 \to N \to 0$ is exact, $\text{Ext}^i_S(\text{Im } d_1, \omega) = 0$ for any $1 \le i \le n$. Repeating the above argument we have $\text{Ext}^{n+1}_S(\text{Im } d_1, \omega) = 0$ and hence $\text{Ext}^{n+2}_S(N, \omega) = 0$. Continuing this procedure, our assertion follows.

 $(2) \Rightarrow (1)$ Let M be in mod R with $\operatorname{Ext}_{R}^{i}(M, \omega) = 0$ for any $1 \leq i \leq n$ and let $Q_{n+1} \xrightarrow{f_{n+1}} Q_n \xrightarrow{f_n} \cdots \xrightarrow{f_1} Q_0 \to M \to 0$ be a projective resolution of M in mod R. Then we get an exact sequence $0 \to \operatorname{Coker} f_1^{\omega} \to Q_2^{\omega} \xrightarrow{f_2^{\omega}} \cdots \xrightarrow{f_{n+1}^{\omega}} Q_{n+1}^{\omega} \to \operatorname{Coker} f_{n+1}^{\omega} \to 0$ in mod S^{op} . By Lemma 2.3, $\operatorname{Ext}_{S}^{i}(\operatorname{Coker} f_{n+1}^{\omega}, \omega) = 0$ for any $1 \leq i \leq n$ and thus $\operatorname{Ext}_{S}^{i}(\operatorname{Coker} f_{n+1}^{\omega}, \omega) = 0$ for any $i \geq 1$ by (2). By the last exact sequence, $\operatorname{Ext}_{S}^{i}(\operatorname{Coker} f_1^{\omega}, \omega) = 0$ for any $i \geq 1$. It follows from Lemma 2.1(1) that M is ω -reflexive. \Box

Lemma 3.4. Suppose r.FP-id_S(ω) < ∞ . If a module M in mod R satisfies $\operatorname{Ext}^{i}_{R}(M, \omega) = 0$ for any $i \geq 1$, then $\operatorname{G-dim}_{\omega}(M) = 0$.

Proof. Suppose r.FP-id_S(ω) = $n < \infty$ and suppose $N \in \text{mod } S^{\text{op}}$ with $\text{Ext}_{S}^{i}(N, \omega) = 0$ for any $1 \le i \le n$. Then $\text{Ext}_{S}^{i}(N, \omega) = 0$ for any $i \ge 1$. By Lemma 3.3, A is ω -reflexive for any A in mod R satisfying $\text{Ext}_{R}^{i}(A, \omega) = 0$ for any $i \ge 1$.

Suppose $\dots \to Q_n \xrightarrow{f_n} Q_{n-1} \to \dots \to Q_0 \to M \to 0$ is a projective resolution of Min mod R. Since $\operatorname{Ext}_R^i(M, \omega) = 0$ for any $i \ge 1$ by assumption, M is ω -reflexive and there is an induced exact sequence $0 \to M^{\omega} \to Q_0^{\omega} \to \dots \to Q_{n-1}^{\omega} \xrightarrow{f_n^{\omega}} Q_n^{\omega} \to \dots$ in mod S^{op} with all Q_i^{ω} in add ω_S (the full subcategory of mod S^{op} consisting of the modules isomorphic to the direct summands of finite direct sums of copies of ω_S). Because r.FP-id_S(ω) = n, $\operatorname{Ext}_S^i(M^{\omega}, \omega) \cong \operatorname{Ext}_S^{i+n}(\operatorname{Im} f_n^{\omega}, \omega) = 0$ for any $i \ge 1$. So $\operatorname{G-dim}_{\omega}(M) = 0$. \Box

Now we prove the main result of this section, which is a generalization of [2, Theorem 4.4].

Theorem 3.5. For any $n \ge 0$, $1.\text{FP-id}_R(\omega) \le n$ and $r.\text{FP-id}_S(\omega) \le n$ if and only if every module in mod *R* and every module in mod S^{op} have finite generalized Gorenstein dimension at most *n*.

Proof. "Only if" part. Suppose $1.\text{FP-id}_R(\omega) \leq n$ and $r.\text{FP-id}_S(\omega) \leq n$. Let $M \in \text{mod } R$ and $0 \to K \to P_{n-1} \to \cdots \to P_1 \to P_0 \to M \to 0$ be an exact sequence in mod R with all P_i projective. Since $\text{Ext}_R^i(K, \omega) = \text{Ext}_R^{n+i}(M, \omega) = 0$ for any $i \geq 1$, $G-\dim_{\omega}(K) = 0$ by Lemma 3.4. So $G-\dim_{\omega}(M) \leq n$. Similarly we show that $G-\dim_{\omega}(N) \leq n$ for any $N \in \text{mod } S^{\text{op}}$.

"If" part. Let $M \in \text{mod } R$. Then $\operatorname{G-dim}_{\omega}(M) \leq n$ by assumption. So there is an exact sequence $0 \to M_n \to \cdots \to M_1 \to M_0 \to M \to 0$ in mod R with $\operatorname{G-dim}_{\omega}(M_i) = 0$ for any $0 \leq i \leq n$, and hence $\operatorname{Ext}_R^j(M_i, \omega) = 0$ for any $0 \leq i \leq n$ and $j \geq 1$. Therefore, $\operatorname{Ext}_R^{n+1}(M, \omega) \cong \operatorname{Ext}_R^1(M_n, \omega) = 0$ and $\operatorname{I.FP-id}_R(\omega) \leq n$. Similarly, we show that r.FP-id_S(\omega) \leq n. The proof is complete. \Box

References

- M. Auslander, M. Bridger, Stable Module Theory, Memoirs American Mathematical Society, vol. 94, American Mathematical Society, Providence, RI, 1969.
- [2] M. Auslander, I. Reiten, Cohen-Macaulay and Gorenstein artin algebras, in: G.O. Michler, C.M. Ringel (Eds.), Representation Theory of Finite Groups and Finite Dimensional Algebras, Bielefeld, 1991, Progress in Mathematics, vol. 95, Birkhäuser, Basel, 1991, pp. 221–245.
- [3] G. Azumaya, Countable generatedness version of rings of pure global dimension zero, in: H. Tachikawa, S. Brenner (Eds.), Representations of Algebras and Related Topics, Kyoto, 1990, London Mathematical Society, Lecture Note Series, vol. 168, Cambridge University Press, Cambridge, 1992, pp. 43–79.
- [4] R.R. Colby, K.R. Fuller, A note on Nakayama conjecture, Tsukuba J. Math. 14 (1990) 343-352.
- [5] Z.Y. Huang, On a generalization of the Auslander-Bridger transpose, Commun. Algebra 27 (1999) 5791-5812.
- [6] Y. Iwanaga, On rings with finite selfinjective dimension, Commun. Algebra 7 (1979) 393-414.
- [7] J. Miyachi, Duality for derived categories and cotilting bimodules, J. Algebra 185 (1996) 583-603.
- [8] Y. Miyashita, Tilting modules of finite projective dimension, Math. Zeit. 193 (1986) 113-146.
- [9] Bo Stenström, Coherent rings and FP-injective modules, J. London Math. Soc. 2 (1970) 323-329.