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Abstract

Let R be a left coherent ring, S any ring and R!S an (R; S)-bimodule. Suppose !S has an
ultimately closed FP-injective resolution and R!S satis3es the conditions: (1) !S is 3nitely pre-
sented; (2) The natural map R → End(!S) is an isomorphism; (3) ExtiS(!;!) = 0 for any
i ≥ 1. Then a 3nitely presented left R-module A satisfying ExtiR(A; !) = 0 for any i ≥ 1 im-
plies that A is !-re9exive. Let R be a left coherent ring, S a right coherent ring and R!S

a faithfully balanced self-orthogonal bimodule and n ≥ 0. Then the FP-injective dimension
of R!S is equal to or less than n as both left R-module and right S-module if and only if
every 3nitely presented left R-module and every 3nitely presented right S-module have 3nite
generalized Gorenstein dimension at most n. c© 2001 Elsevier Science B.V. All rights re-
served.

MSC: 16E10; 16G30; 16G50

1. Preliminaries

Throughout this paper, we assume that all rings are associative with identity elements,
and that all modules considered are unital.

Let R be a ring and M a left (resp. right) R-module. Recall that M is called 3nitely
presented if there is a 3nitely generated projective left (resp. right) R-module P and
a 3nitely generated submodule N of P such that P=N ∼= M . We use mod R (resp.
mod Rop) to denote the category of 3nitely presented left (resp. right) R-modules. R
is called a left (resp. right) coherent ring if every 3nitely generated submodule of a
3nitely presented left (resp. right) R-module also is 3nitely presented. A left (resp.
right) R-module A is called FP-injective if Ext1R(F; A) = 0 for every 3nitely presented
left (resp. right) R-module F . Let l.FP-idR(A) (resp. r.FP-idR(A)) denote the smallest
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integer n ≥ 0 such that Extn+1
R (F; A) = 0 for every 3nitely presented left (resp. right)

R-module F (see [9] for a reference).
Let R and S be rings and R!S an (R; S)-bimodule. Suppose A is a left R-module

(resp. right S-module). We call HomR(RA;R!S) (resp: HomS(AS;R!S)) the dual module
of A with respect to !, and denote either of these modules by A!. For a homomorphism
f between R-modules (resp. Sop-modules), we put f! = Hom(f;R!S). Let �A : A →
A!! via �A(x)(f) = f(x) for any x ∈ A and f ∈ A! be the canonical evaluation
homomorphism. If �A is an isomorphism, then A is called a !-re9exive module.

An (R; S)-bimodule R!S is called a cotilting bimodule if it satis3es the following
conditions (cf. [7]):

(C1l) R! is 3nitely presented;
(C1r) !S is 3nitely presented;
(C2l) The natural map Sop → End(R!) is an isomorphism;
(C2r) The natural map R → End(!S) is an isomorphism;
(C3l) ExtiR(!;!) = 0 for any i ≥ 1;
(C3r) ExtiS(!;!) = 0 for any i ≥ 1;
(C4l) l.FP-idR(!) ¡∞;
(C4r) r.FP-idS(!) ¡∞.

Remark. (1) R!S is called a faithfully balanced self-orthogonal bimodule if it satis3es
conditions (C1l), (C1r), (C2l), (C2r), (C3l) and (C3r).

(2) If R!S satis3es condition (C2r) (resp. (C2l)), then P and P! are !-re9exive
for every 3nitely generated projective left R-module (resp. right S-module) P.

We showed in [5] that if R is an artin algebra (that is, R is an algebra over a
commutative artin ring T and R is 3nitely generated as a T -module) and R!R is a
cotilting bimodule then a module M in mod R is !-re9exive provided ExtiR(M;!) = 0
for any i ≥ 1. In Section 2 we generalize this result and prove that if R is a left
coherent ring and S any ring and an (R; S)-bimodule R!S satis3es conditions (C1r),
(C2r) and (C3r) and !S has an ultimately closed FP-injective resolution, then a module
A in mod R satisfying ExtiR(A;!) = 0 for any i ≥ 1 implies that A is !-re9exive.
Some known results by Miyashita [8] and Iwanaga [6] are obtained as corollaries. In
Section 3 we prove that if R is a left coherent ring and S is a right coherent ring
and R!S is a faithfully balanced self-orthogonal bimodule, then l.FP-idR(!) ≤ n and
r.FP-idS(!) ≤ n if and only if every module in mod R and every module in mod Sop

have 3nite generalized Gorenstein dimension at most n, where n is a negative integer.
This result generalizes a result by Auslander and Reiten [2].

2. Dual modules

In the following, R and S are rings, R!S is a given (R; S)-bimodule, n is a positive
integer.
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Suppose A ∈ mod R (resp. mod Sop) and there is an exact sequence P1
f→P0 →

A → 0 with P0; P1 3nitely generated projective. Then we have an exact sequence

0 → A! → P!
0

f!

→P!
1 → X → 0, where X = Coker f!.

Lemma 2.1. Suppose Ext1S(!;!) = 0 = Ext2S(!;!).

(1) Let A be in mod R and X in mod Sop as above. If R!S satis:es condition (C2r);
then we have the following exact sequence:

0 → Ext1S(X;!) → A �A→A!! → Ext2S(X;!) → 0:

(2) Let A be in mod Sop and X in mod R as above. If R!S satis:es condition (C2l);
then we have the following exact sequence:

0 → Ext1S(A;!) → X �X→X!! → Ext2S(A;!) → 0:

Proof. (1) The proof is analogous to that of [5, Theorem 2:3]. For the sake of com-
pleteness, we give here the proof.

Suppose A ∈ mod R and suppose

is a projective resolution of A in mod R. From the exact sequence

we have a long exact sequence 0 → X! → P!!
1

i!2−→C! → Ext1S(X;!) → 0 →
Ext1S(C;!) → Ext2S(X;!) −→ 0 and the following exact commutative diagram:

0 −−−−−→ K
i1−−−−−→ P0 −−−−−→ A −−−−−→ 0





�

g






�

�P0






�

�A

0 −−−−−→ C!
�!

2−−−−−→ P!!
0 −−−−−→ A!! −−−−−→ Ext1S(C;!) −−−−−→ 0;

(2.1)

where �P0 is an isomorphism and g is an induced homomorphism. By the snake lemma
we have Ker �A

∼= Coker g and Coker �A
∼= Ext1S(C;!) ∼= Ext2S(X;!).
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Consider the following diagram:

P1

�P1−−−−−→ P!!
1

i!2−−−−−→ C!

�1






�

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

K
g−−−−−−−−−−−−−−−−−−→ C!

i1






�






�

�!
2

P0

�P0−−−−−−−−−−−−−−−−−−→ P!!
0

By Diagram (2.1) �P0 ·i1=�!
2 ·g, so (�P0 ·i1)·�1=(�!

2 ·g)·�1 and hence �P0 ·f=�!
2 ·g·�1.

Since �P0 · f = f!! · �P1 and f!! = �!
2 · i!2 , it follows that �!

2 · i!2 · �P1 = �!
2 · g · �1.

Since �!
2 is a monomorphism, i!2 · �P1 = g · �1. Hence Im(i!2 · �P1 )⊆ Im g and there is

an induced commutative diagram:

P1
�P1→ P!!

1
i!2→ C! → Ext1S(X;!) → 0





�

�1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣






�

h

0 −−−−−→ K
g−−−−−→ C! −−−−−→ Coker g −−−−−→ 0





�

0

It follows from the snake lemma that h is an isomorphism. So Ker �A
∼= Coker g ∼=

Ext1S(X;!) and we obtain the required exact sequence.

(2) Suppose A ∈ mod Sop and suppose P1
f→P0 → A → 0 is a projective resolution

of A in mod Sop. Then we have an exact sequence 0 → A! → P!
0

f!

→P!
1 → X → 0 and

the following exact commutative diagram:

P1
f−−−−−→ P0 −−−−−−−−−→ A −−−−−−−−−→ 0





�

�P1 �P0






�






�

0 → X! → P!!
1

f!!

−−−−−→ P!!
0 −−−−−−−−−→ Coker f!! → 0

It is easy to see that A ∼= Coker f!!. Noting that P!
1 and P!

0 are !-re9exive, it is not
diJcult to see that the proof of (2) is analogous to that of (1). So we omit it.

Theorem 2.2. Suppose R!S satis:es conditions (C2r) and (C3r) and Pn
dn→Pn−1

dn−1→ · · ·
→ P1

d1→P0 → A → 0 is an exact sequence in mod R with all Pi :nitely generated
projective. If ExtiR(A;!) = 0 for any 1 ≤ i ≤ n− 1; then we have the following exact
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sequence:

0 → ExtnS(X;!) → A �A→A!! → Extn+1
S (X;!) → 0

where X = Coker d!
n .

Proof. The case for n = 1 follows from Lemma 2.1(1). Now suppose n ≥ 2. Consider
the given exact sequence

Pn
dn→Pn−1

dn−1−→· · · → P1
d1→P0 → A → 0;

where all Pi are 3nitely generated projective. Since ExtiR(A;!)=0 for any 1 ≤ i ≤ n−1,
we have the following exact sequence:

0 → A! → P!
0

d!
1−→P!

1 → · · · → P!
n−1

d!
n−→P!

n → X → 0; (2.2)

where X = Coker d!
n .

By Lemma 2.1(1), there is an exact sequence
0 → Ext1S(Y; !) → A �A→A!! → Ext2S(Y; !) → 0; (2.3)

where Y = Coker d!
1 . By the exactness of (2.2) and the assumption that R!S satis3es

condition (C3r), we have ExtiS(Y; !) ∼= Exti+n−1
S (X;!). Then we get the desired exact

sequence from (2.3), which completes the proof.

Lemma 2.3. Suppose R!S satis:es condition (C2r) and A ∈ mod R with ExtiR(A;!)=0

for any 1 ≤ i ≤ n. If Pn+1
dn+1−→Pn → · · · → P0 → A → 0 is an exact sequence with

all Pi :nitely generated projective; then ExtiS(Coker d!
n+1; !) = 0 for any 1 ≤ i ≤ n.

Proof. Suppose Pn+1
dn+1−→Pn → · · · → P0 → A → 0 is an exact sequence in mod R

with all Pi projective. Since ExtiR(A;!)=0 for any 1 ≤ i ≤ n, 0 → A! → P!
0 → · · · →

P!
n

d!
n+1−→P!

n+1 → Coker d!
n+1 → 0 is exact. Since R!S satis3es condition (C2r), ev-

ery Pi is !-re9exive. So we have an induced exact sequence 0 → (Coker d!
n+1)! →

Pn+1
dn+1−→Pn → · · · → P0 → A → 0 and hence ExtiS(Coker d!

n+1; !) = 0 for any 1 ≤ i ≤
n.

Let M ∈ mod Sop. Suppose

0 → M
�0→ I0

�1→ I1
�2→· · · → Ii → · · · (2.4)

is an exact sequence with all Ii FP-injective Sop-modules. Such an exact sequence
is called an FP-injective resolution of M . If there is a positive integer n, such that
Im �n has a decomposition

⊕m
j=1 Wj with each Wj isomorphic to a direct summand of

some Im �ij with ij ¡n, then (2.4) is called an FP-injective resolution of M ultimately
closed at n. An ultimately closed FP-injective resolution of M means an FP-injective
resolution of M ultimately closed at n for some n. This notion extends the one given
by Colby and Fuller [4, p. 345].

Remark. For an Sop-module A it is easy to see that r.FP-idS(A) ≤ n if and only if
there is an exact sequence 0 → A → I0 → I1 → · · · → In → 0 with all Ii FP-injective
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Sop-modules. It is clear that such an exact sequence is an FP-injective resolution of A
ultimately closed at n + 1.

Theorem 2.4. Let R be a left coherent ring. Suppose R!S satis:es the conditions
(C1r); (C2r) and (C3r) and !S has an FP-injective resolution ultimately closed at n.
If A ∈ mod R satis:es ExtiR(A;!) = 0 for any 1 ≤ i ≤ n, then A is !-re>exive.

Proof. Suppose A ∈ mod R satis3es ExtiR(A;!) = 0 for any 1 ≤ i ≤ n. Since R is a
left coherent ring, there is an exact sequence

Pn+1
dn+1−→Pn

dn→· · · → P1
d1→P0 → A → 0;

with all Pi 3nitely generated projective. Set X = Coker d!
n+1.

By Lemma 2.3, ExtiS(X;!) = 0 for any 1 ≤ i ≤ n. Since !S is 3nitely pre-
sented and every P!

i is a direct summand of 3nite direct sum of copies of !S , ev-
ery P!

i is 3nitely presented in mod Sop. So X is 3nitely presented in mod Sop by [3,
Proposition 1:6].

Let

0 → !S
�0→ I0

�1→ I1
�2→· · · �i→ Ii → · · ·

be an FP-injective resolution of !S ultimately closed at n. Then Im �n =
⊕m

j=1 Im �ij

with 0 ≤ ij ≤ n − 1. Since X is 3nitely presented in mod Sop; ExtjS(X; Ii) = 0 for
any j ≥ 1 and i ≥ 0. So Extn+1

S (X;!) ∼= Ext1S(X; Im �n) = Ext1S(X;
⊕m

j=1 Im �ij) ∼=
⊕m

j=1 Ext1S(X; Im �ij) ∼= ⊕m
j=1 Extij+1

S (X;!) = 0 (since 1 ≤ ij + 1 ≤ n). We conclude
that ExtiS(X;!) = 0 for any 1 ≤ i ≤ n + 1. Similar to the above argument we show
that Extn+2

S (X;!) ∼= ⊕m
j=1 Extij+2

S (X;!) = 0.
Since ExtiR(A;!) = 0 for any 1 ≤ i ≤ n, by Theorem 2.2 we have the following

exact sequence:

0 → Extn+1
S (X;!) → A �A→A!! → Extn+2

S (X;!) → 0:

But Extn+1
S (X;!) = 0 = Extn+2

S (X;!), so A is !-re9exive. The proof is complete.

Remark. [5, Theorem 3:8] is an immediate corollary of Theorem 2.4.

Corollary 2.5. Under the assumptions of Theorem 2:4; if A ∈ mod R satis:es
ExtiR(A;!) = 0 for any 0 ≤ i ≤ n; then A = 0.

Proof. By Theorem 2.4.

Theorem 2.6. Under the assumptions of Theorem 2:4; suppose R! is >at. If A ∈
mod R satis:es ExtiR(A; R) = 0 for any 0 ≤ i ≤ n; then A = 0.

Proof. The proof is analogous to that of [5, Theorem 3:10]. For the sake of complete-
ness, we give here the proof.
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Suppose A ∈ mod R satis3es ExtiR(A; R) = 0 for any 0 ≤ i ≤ n. We use "i(A) to
denote the ith syzygy module of A for any i ≥ 0 and (−)∗ to denote HomR(−; R).

Since R is a left coherent ring and A ∈ mod R; "i(A) ∈ mod R. So there is an exact
sequence P1 → P0 → "i(A) → 0 with P0; P1 3nitely generated projective. By [1,
Theorem 2:8], for any i ≥ 0 we have the following exact sequence

ExtiR(A; R) ⊗R! → ExtiR(A;!) → TorR1 (X;!);

where X = Coker (P∗
0 → P∗

1 ). Because R! is 9at, TorR1 (X;!) = 0. So ExtiR(A;!) = 0
for any 0 ≤ i ≤ n, which implies A = 0 by Corollary 2.5. The proof is complete.

Recall from [4] that the strong Nakayama conjecture is true for a ring R if the
condition of ExtiR(A; R) = 0 for a 3nitely generated left R-module A and any i ≥ 0
implies A = 0. We know that a left noether ring is a left coherent ring, and if R is a
left noether ring then a left R-module is 3nitely generated if and only if it is 3nitely
presented.

In completely similar proofs to those of Theorems 2.4 and 2.6, we get a generaliza-
tion of [5, Theorem 3:10] (also cf. [4, Theorem 2]) as follows.

Corollary 2.7. Let R be a left noether ring and S any ring. If there is an (R; S)-
bimodule R!S which satis:es conditions (C1r); (C2r) and (C3r) and R! is >at and
!S has an ultimately closed injective resolution; then the strong Nakayama conjecture
holds over R.

Let A be an abelian category and B a full subcategory of A. An object X ∈ A is
called an embedding cogenerator for B if every object in B admits an injection to some
direct product of copies of X in A, that is, RejY (X ) (=

⋂{Ker h | h : Y → X }) = 0 for
any Y ∈ B.

We have the following result which is better than results by Miyashita [8, Corollary
in Section 6] and Iwanaga [6, Theorem 2].

Proposition 2.8. Under the assumptions of Theorem 2:4; suppose 0 → R! → E0
f1→ E1

f2→· · · fi→Ei
fi+1−→ · · · is an FP-injective resolution of R!. Then

⊕n
i=0 Ei is an embedding

FP-injective cogenerator for mod R.

Proof. By [9, Corollary 2:4],
⊕n

i=0 Ei is an FP-injective R-module.
By Corollary 2.5, for any 0 �= A ∈ mod R; ExttR(A;!) �= 0 for some t with 0 ≤ t ≤ n

(otherwise A = 0). From the given exact sequence

0 → R! → E0
f1→E1

f2→· · · fi→Ei
fi+1−→ · · ·

we get the exact sequences

HomR(A; Im fi) → ExtiR(A;!) → 0;

0 → HomR(A; Imfi) → HomR(A; Ei)
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for any i ≥ 1. Because ExttR(A;!) �= 0; HomR(A; Im ft) �= 0 and HomR(A; Et) �= 0.
Therefore, we conclude that HomR(A;

⊕n
i=0 Ei) �= 0 for any 0 �= A ∈ mod R.

Let 0 �= x ∈ A. Since R is a left coherent ring and A ∈ mod R, the 3nitely
generated submodule Rx of A is also in mod R. By the above argument we have
HomR(Rx;

⊕n
i=0 Ei) �= 0. Let 0 �= h ∈ HomR(Rx;

⊕n
i=0 Ei). Since

⊕n
i=0 Ei is FP-

injective, so h can be extended to a homomorphism Kh : A → ⊕n
i=0 Ei with Kh(x)=h(x) �=

0. Thus RejA(
⊕n

i=0 Ei) = 0. We conclude that
⊕n

i=0 Ei is an embedding cogenerator
for mod R.

3. Generalized Gorenstein dimension

The following de3nitions are cited from [2]. But, R and S here are not necessarily
artin algebras. In the following, we assume that R is a left coherent ring and S is a right
coherent ring, and that R!S is a faithfully balanced self-orthogonal (R; S)-bimodule.

De&nition 3.1. A module M in mod R is said to have generalized Gorenstein dimension
zero (with respect to !), denoted by G-dim!(M)=0, if the following conditions hold:
(1) M is !-re9exive.
(2) ExtiR(M;!) = 0 = ExtiS(M!;!) for any i ≥ 1.

De&nition 3.2. For any n ≥ 0; M in mod R is said to have generalized Gorenstein
dimension at most n (with respect to !), denoted by G-dim!(M) ≤ n, if there is an
exact sequence 0 → Mn → · · · → M1 → M0 → M → 0 in mod R with G-dim!(Mi) = 0
for any 0 ≤ i ≤ n.

Remark. For any N ∈ mod Sop, we may give a similar de3nition of G-dim!(N ) as
above.

In [2] Auslander and Reiten showed that if R is an artin algebra, then ! has 3-
nite injective dimension as a left R-module if and only if every module in mod R
has 3nite generalized Gerenstein dimension. In this section we develop their argu-
ments and generalize this result. Under our assumptions, for any n ≥ 0, we prove that
l.FP-idR(!) ≤ n and r.FP-idS(!) ≤ n if and only if every module in mod R and every
module in mod Sop have 3nite generalized Gorenstein dimension at most n.

Lemma 3.3. For a positive integer n; the following statements are equivalent:

(1) Every M in mod R with ExtiR(M;!) = 0 for any 1 ≤ i ≤ n is !-re>exive.
(2) Every N in mod Sop with ExtiS(N;!)=0 for any 1 ≤ i ≤ n satis:es ExtiS(N;!)=0

for any i ≥ 1.

Proof. (1)⇒(2) Let N be in mod Sop with ExtiS(N;!) = 0 for any 1 ≤ i ≤ n and let

Pn+1
dn+1−→Pn

dn→· · · d1→P0 → N → 0 be a projective resolution of N in mod Sop. By
symmetric conclusion of Lemma 2.3, ExtiR(Coker d!

n+1; !) = 0 for any 1 ≤ i ≤ n and
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hence Coker d!
n+1 is !-re9exive by (1). Then by Lemma 2.1(2), Ext1S(Coker dn+1; !)=

0. But Extn+1
S (N;!) ∼= Ext1S(Coker dn+1; !), so Extn+1

S (N;!) = 0.
Since 0 → Im d1 → P0 → N → 0 is exact, ExtiS(Im d1; !) = 0 for any 1 ≤ i ≤ n.

Repeating the above argument we have Extn+1
S (Im d1; !)=0 and hence Extn+2

S (N;!)=0.
Continuing this procedure, our assertion follows.

(2)⇒(1) Let M be in mod R with ExtiR(M;!) = 0 for any 1 ≤ i ≤ n and let

Qn+1
fn+1−→Qn

fn→· · · f1→Q0 → M → 0 be a projective resolution of M in mod R.

Then we get an exact sequence 0 → Coker f!
1 → Q!

2
f!

2−→ · · · f!
n+1−→Q!

n+1 → Coker f!
n+1 →

0 in mod Sop. By Lemma 2.3, ExtiS(Cokerf!
n+1; !) = 0 for any 1 ≤ i ≤ n and

thus ExtiS(Coker f!
n+1; !) = 0 for any i ≥ 1 by (2). By the last exact sequence,

ExtiS(Coker f!
1 ; !) = 0 for any i ≥ 1. It follows from Lemma 2.1(1) that M is

!-re9exive.

Lemma 3.4. Suppose r:FP-idS(!) ¡∞. If a module M in mod R satis:es
ExtiR(M;!) = 0 for any i ≥ 1; then G-dim!(M) = 0.

Proof. Suppose r.FP-idS(!) = n¡∞ and suppose N ∈ mod Sop with ExtiS(N;!) = 0
for any 1 ≤ i ≤ n. Then ExtiS(N;!)=0 for any i ≥ 1. By Lemma 3.3, A is !-re9exive
for any A in mod R satisfying ExtiR(A;!) = 0 for any i ≥ 1.

Suppose · · · → Qn
fn→Qn−1 → · · · → Q0 → M → 0 is a projective resolution of M

in mod R. Since ExtiR(M;!) = 0 for any i ≥ 1 by assumption, M is !-re9exive and

there is an induced exact sequence 0 → M! → Q!
0 → · · · → Q!

n−1
f!

n−→Q!
n → · · ·

in mod Sop with all Q!
i in add !S (the full subcategory of mod Sop consisting of the

modules isomorphic to the direct summands of 3nite direct sums of copies of !S).
Because r.FP-idS(!) = n, ExtiS(M!;!) ∼= Exti+n

S (Im f!
n ; !) = 0 for any i ≥ 1. So

G-dim!(M) = 0.

Now we prove the main result of this section, which is a generalization of [2,
Theorem 4:4].

Theorem 3.5. For any n ≥ 0; l:FP-idR(!) ≤ n and r:FP-idS(!) ≤ n if and only if
every module in mod R and every module in mod Sop have :nite generalized Gorenstein
dimension at most n.

Proof. “Only if ” part. Suppose l.FP-idR(!) ≤ n and r.FP-idS(!) ≤ n. Let M ∈ mod R
and 0 → K → Pn−1 → · · · → P1 → P0 → M → 0 be an exact sequence in mod R with
all Pi projective. Since ExtiR(K;!) = Extn+i

R (M;!) = 0 for any i ≥ 1, G-dim!(K) = 0
by Lemma 3.4. So G-dim!(M) ≤ n. Similarly we show that G-dim!(N ) ≤ n for any
N ∈ mod Sop.

“If ” part. Let M ∈ mod R. Then G-dim!(M) ≤ n by assumption. So there is an
exact sequence 0 → Mn → · · · → M1 → M0 → M → 0 in mod R with G-dim!(Mi) = 0
for any 0 ≤ i ≤ n, and hence ExtjR(Mi; !) = 0 for any 0 ≤ i ≤ n and j ≥ 1.
Therefore, Extn+1

R (M;!) ∼= Ext1R(Mn;!) = 0 and l.FP-idR(!) ≤ n. Similarly, we show
that r.FP-idS(!) ≤ n. The proof is complete.
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