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1. Introduction

This paper continues our study, begun in [MS], of the relationship between the prime
ideals of an algebrd and of a subalgebrR such thatR C A is a faithfully flat #-Galois
extension, for some finite-dimensional Hopf algeldfa In that paper we defined three
basic Krull relations, Incomparability (INC};Lying Over ¢-LO), and Going Up (GU),
analogous to the classical Krull relations for prime ideals; we also defined three new “dual”
Krull relations. We say thaH! itself is said to have one of the Krull relations if the relation
holds for all faithfully flat H-Galois extensions. We showed in [MS] thfdthas one of the
three “dual” Krull relations if and only if the dual Hopf algebf&* of H has the original
relation (hence the name).

An important example of Hopf Galois extensions is given by Hopf crossed products
A = R, # H. Moreover, Galois extensions can be useful in studying crossed products,
since they satisfy a “transitivity” property which crossed products lack. That i§,if a
normal Hopf subalgebra off with Hopf quotientH, then, in general, one cannot write
A=R,#H = (R,K) #, H, by an example of [S2]. Another basic example of a Hopf
Galois extension is given by a Hopf algebtawith a normal Hopf subalgebrA of finite
index such tha# is faithfully flat overR: for thenR C A is faithfully flat H-Galois.
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A fundamental question in this area is to determine which Hopf algebras satisfy the
various Krull relations. As a consequence of our work in [MS], we established results for
two main classes of Hopf algebras:

(1) Allsix Krull relations hold if H is semisolvable and semisimple.
(2) If H is pointed, ther satisfies Going Up and the three dual Krull relations.

(1) depended on our main result on Krull relations, the Transitivity Theorem, which
enabled us to go from a normal Hopf subalgelireof H and the corresponding Hopf
quotientH up to H itself; it also depended on known facts about the Krull relations in
smash products with group algebiéas [LP] or their duals(kG)* [CM]. (2) followed by
reducing to the coradicdly of H, and using known facts about smash products of pointed
Hopf algebras by [Ch,CRW,Q]. We note that Incomparability and Lying Over remain open
for pointed Hopf algebras, even for restricted enveloping algebras in charactgristic

The object of this paper is to extend the work of [MS], by first proving that the Krull
relations are preserved under various changes of the Hopf aléglanad then by applying
these results together with some recent constructions of Hopf algebras in order to give new
examples of Hopf algebras for which some or all of the Krull relations hold.

We first prove that any of the six Krull relations can be liftedddrom a Hopf subalge-
braK of H containing the coradically of H. Dually this implies that iff is a Hopf ideal
of H contained in the Jacobson radicalff then any Krull relation will lift from the quo-
tient H/I to H. We then study twisting the Hopf algebfa, either by a Hopf 2-cocycle
o:H ® H— k or by a dual 2-cocycle? € H ® H. We show that the three dual Krull
relations are preserved by twistiifyto H,, and dually that the three basic Krull relations
are preserved by twisting to H*.

As a consequence we are able to show that all six relations hold for pointed Hopf alge-
bras which are coradically graded; such Hopf algebras include the Taft algebras, as well as
the Borel subalgebras of Lusztig’s Frobenius kerngl&), ¢ a semisimple Lie algebra,
and the finite-dimensional pointed Hopf algebrd@®) defined in [AS] when the linking
elements have trivial relations. We show that the Drinfel’d doubié?) will always have
the dual Krull relations provided! has all six Krull relations; in particular this is true
when H = kG, a group algebra, or more generallyAf = k® #° kF, a bicrossed prod-
uct constructed from a factorizable grolip= FG. For bismash productdl = k¢ #kF,

D(H) satisfies all six of the Krull relations. Finally any triangular Hopf algebra will have
the three basic Krull relations.

More specifically, in Section 2 we review the definitions of the basic Krull relatiens
lying over, for some natural numbe(z-LO), going up (GU), and incomparability (INC),
and of the dual notionscoLO, coGU and colNC. We define two new relations strong GU
and strong coGU, which are stronger versions of going up and co going up, which we will
require in the paper. We also give a precise statement of some of the major results from
[MS] which we shall need.

Section 3 concerns the question mentioned above of lifting the Krull relations from a
Hopf subalgebr&k c H such thatk contains the coradically of H, to H itself (Theo-
rem 3.4). More generally we consider two different Galois extensioasdB, of the same
base ringR, for two different Hopf algebra&l and K, and compare the Krull relations in
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R C A andR C B. The application to a quotient Hopf algebi&/ I where! is a nilpotent
Hopf ideal, concerning which of the Krull relations hold f&k if they hold for H/I, is
obtained by dualizing the coradical result (Theorem 3.5).

Section 4 is then a discussion of the examples on coradically graded Hopf algebras,
using the results of Section 3.

Our second main topic, in Section 5, concerns when the Krull relations are preserved by
twisting. We first review twistings of Hopf algebras andibfcomodule algebras by a Hopf
2-cocycleos of the Hopf algebra; in this case the multiplication &§ is twisted but the
comultiplication remains the same. Aij-comodule algebra can also be twisted by.

As a preliminary step, we prove that ¥ C A is an H-Galois extension, theR, C A,

is an H,-Galois extension; moreoveH,-SpecR = H-SpecR (Theorem 5.3). We then
prove that any one of colNG;coLO, or strong coGU is preserved under these twistings
(Theorem 5.6). We also consider the dual situation, of twisting the comultiplicatiéh of

via 2 € H ® H; in this caseH ** has the same multiplication & but its comultiplication

is twisted. Dualizing the previous result we see that any one of IN@), or strong GU

is preserved under these twistings (Theorem 5.7). Using Theorems 5.6 and 5.7 it follows
that if H is a graded Hopf algebra with identity compon&ht= H (0), then any one of the

Krull relations lifts fromK to H (Theorem 3.6).

In Section 6 we apply the work in Sections 3 and 5 to the examples concerning Drin-
fel'd doubles and twists. Here we may use some known facts about obtaining Hopf algebras
through twisting, such as the results about twisting the Drinfel’d double in [DT,RS], about
twisting bismash products in [BGMj], and the classification theorems of [EG1,EG2] ex-
hibiting triangular Hopf algebras as twists.

In fact, itis possible that any finite-dimensional Hopf algeHBraatisfies all of the Krull
relations; no counterexamples are known. More generally it is not known whether INC is
true for any finite extensio® C A, although it is true ifR is Noetherian [Le]. Moreover,

LO can fail even for finite extensions of Noetherian rings [HO].

2. TheKrull relationsrevisited

In this section we first review the Krull relations from [MS], and introduce new versions
of several of them which we shall need in this paper. We then state more precisely some of
the other results from [MS] we shall need, such as the Transitivity Theorem.

ThroughoutH is a finite-dimensional Hopf algebra over a figldandR ¢ A denotes
a faithfully flat H-Galois extension. As in [MS, 1.1, 2.3], we say that an ideaf R is
H-stableif A = AI, and let( : H) denote the largest/-stable ideal ofR in . I is an
H-prime idealof R if I # R, and whenevey K C I, for J, K H-stable ideals oR, either
JCclorKcCl.

To avoid confusion, we will usually writé for a prime in Spe¢A), Q for a prime in
SpecR), and! for an H-prime in H-Spe&R). We recall [MS, Lemma 2.2]:

Lemma 2.1. (1) The mapf : Spe€R) — H-SpecR) given byQ — (Q : H) is well de-
fined and surjective.
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(2) The mapg : SpecA) — H-SpecR) given byP — P N R is well defined and sur-
jective.

As in [MS], we say thatP € SpecA) lies overQ € SpecR) if and only if (Q : H) =
P N R. We will also say thatP € SpecA) lies overl € H-SpecR) if and only if I =
P N R. By Lemma 2.1, anyP € SpecA) lies over someQ € SpegR); conversely for
any Q € SpecR), there exists som& € SpecA) such thatP lies overQ. Similarly any
P € SpecA) lies over some € H-SpecR); conversely for anyl € H-SpegR), there
exists someP € SpegA) such thatP lies over/.

We note that the definition a? lying over Q reduces to the standard definition of lying
over in non-commutative rings, that is th@tis minimal overP N R, under some additional
assumptions; see [MS, 4.7].

We may use diagrams, as in [P], to represent many of the Krull relations. Thus, for
example, the diagram in 2.2(3) means that gigenC Q1 in SpecR) and P; € SpecA)
which lies overQ», there exists som@; € Spe¢A) such thatP, ¢ P, and P; lies over
Q1. In the following definition, (1)—(3) andl)’—(3)’ appear in [MS]. It is shown in [MS,
4.3] that(1)’'—(3)’ are the duals of (1)—(3), in the sense that a condition (i) is truéffar
and only if (i) is true for H*. (4) and(4)’ are new;(4)" will be useful since it is defined
only in terms ofR and notA.

Definition 2.2 (The Krull relationg.

(1) The H-Galois extensiomR C A hast-lying over(¢-LO) if for any Q € SpegR), there
exist Py, ..., P, € SpecA), wheren < dim H, such that allP; lie over Q, and such
that((7_, )’ C(Q: H)A:

(P}

0

(2) R c A hasincomparability(INC) if for any P, C P1 in SpecA) with P, # P, then
P>NR+#P1NR.
(3) R C A hasgoing up(GU) if

P
01 P2
-
02
(4) R C A hasstrong going ugS-GU) if
P
I P>

I
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(1)) R C Ahast-co-lying over(z-coLO) if for any P € SpecA), there exisD1, ..., On €
SpedR), wherem < dim H, such that” lies over allQ ;, and such thag\}_; Q)" C
PNR.

P
{0}

(2)) R C A hasco-incomparability(colNC) if for any Q> C Q1 in SpegR) with Q2 #

Q1,then(Q2: H) #(Q1: H).
(3) R C A hasco-going up(coGU) if

01 / P>
02
(4’ R C A hasstrong co-going ugS-coGU) if

01

Note that(1)’, (2)’ and(4)’ only depend orR; althoughP € SpecA) appears inl)’ it
can be replaced by N R, hence byl € H-Spe¢R) using Lemma 2.1.

Definition 2.3. We say the Hopf algebr&l has one of the Krull relations above if fail
faithfully flat H-Galois extension® C A, the given Krull relation holds.

To illustrate the Krull relations, consider a smash product extenBianA = R # H
whereR is prime, or more generallyf -prime. If H hast-LO and INC, thenP is a minimal
prime of A precisely whenP N R =0, A hasn < dim H minimal primes, sayPs, ..., Py,
and if N :="); P;, thenN’ =0 andN is the largest nilpotent ideal of [MS, 4.7].

We now relate the two Krull relations strong GU and strong coGU to the previous ones.
We require the following result.

Theorem 2.4 [MS, Theorem 4.3]For each of the Krull relationg1)—(3) and (1)’'—(3)’,
H has a basic relatiorfi) if and only if H* has the dual relatiorfi)’.

Lemma 2.5. For any finite-dimensional Hopf algebr&, H has strongGU < H* has
strongcoGU. Moreover
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() If H has strongGU, thenH hasGU (that is,2.2(4) implies2.2(3)).

(1)’ If H has strongcoGU, thenH hascoGU (hat is,2.2(4)" implies2.2(3)").

(2) If H hasGU, and either strongcoGU or ¢-coLO, then H has strongGU (that is,
2.2(3) together with eithe.2(4)" or 2.2(1)’ imply 2.2(4)).

(2) If H hascoGU, and either strongsU or ¢-LO, then H has strongcoGU (hat is,
2.2(3)’ together with eithel.2(4) or 2.2(1) imply 2.2(4)").

Proof. The fact thatH has strong GUs H* has strong coGU follows similarly to the
proof that H has GU« H* has coGU in Theorem 2.4. Thus (1) and (2) are the dual
statements t¢1)’ and(2)’, respectively, and so it suffices to show only (1) and (2).

(1) Assume thaD2 C Q1 in Spe¢R) and thatP, € SpecA) lies overQ». Let I; :=
(Q;: H), fori =1,2;thenP, N R = I. By strong GU, there exist®; € SpecA) such
thatP, Cc PrandP1NR=1;.Butly:=(Q1: H). ThusH has GU.

(2) First assumed has GU and strong coGU. Assume thatc I3 in H-SpegR)
and that P, € SpecA) lies over I,. By Lemma 2.1 there exist®, € Spe¢R) with
(Q2: H) =1, = P, N R. By strong coGU, there exist®1 € H-Spec¢R) such that
Q> C Q1and(Q2: H) = I>. Now use GU to findP, € Spe¢A) such thatP, C P1 and Py
lies overQ1. Then Py lies overly, andH has strong GU.

Now assume&d has GU and-coLO. Assume again thd C I7 in H-SpegR) and that
P> € SpecA) lies overl,. By Lemma 2.1 there exis@@ € SpedR) with (Q : H) = I;. By
t-coLO, there exisQ; € H-Spe¢R),i =1,...,m, such that(Q; : H) = I, for all i and
that(( Q;)" C I». Sincel, C I1 =(Q: H) C Q and Q is prime, someD;, call it 0>, is
contained inQ. Now use GU to findP; € Spec¢A) such thatP, ¢ P; and P1 lies overQ.
Then Py lies overl;, andH has strong GU. O

Corollary 2.6. If H is pointed, therH{ has strongGU and strongcoGU.

Proof. As noted in the introduction, any pointed Hopf algebra has 6GthLO, coGU,
and coINC. Thus by Lemma 2.5(2, has strong GU. We may now use Lemma(2)5to
see that” also has strong coGU.O

For later use we note

Remark 2.7. Let§:A - A® H,a — a(q) @ a1y, be anH-comodule algebra with coin-
variant elementsR = A, and assume thak c A is an H-Galois extension. Then
the opposite algebrag®” c A°P form an H°P-Galois extension with comodule structure
§OP: AOP 5 AP R HOP, 0P a?(g ®a?lr;_ Thus if H satisfies any one of the Krull relations
then so doe¢/°P.

Proof. The Galois mapA®? @ gop AP — AP @ HOP, xP ® y°P > (y(0)x)° ® y(ol‘;, is
surjective hence bijective since® A -~ AQ® H,y ® x = yx ® y(1), IS surjective. O

We now state precisely the two main results of [MS] which we require here. The first is
the Transitivity Theorem.
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Theorem 2.8[MS, Theorem 6.7]Let H be a finite-dimensional Hopf algebr&, a normal
Hopf subalgebra off andH := H/HK™.

(1) Assumek hass-LO (respectivelys-coLO) and H hast-LO (respectivelyr-coLO).
ThenH hasst-LO (respectivelyt-coLO).

(2) Assumek hass-coLO and H hast-coLO (respectivelys-LO and¢-LO) for somes
and:. If K and H haveGU (respectivelycoGU), then so doe#/ .

(3) AssumeH hasz-coLO (respectivelyk hast-LO) for somer. If K and H have INC
(respectivelycolNC), then so doedd .

As a consequence of this theorem, if bdfrand H have all of the Krull relations, then
so doesH . Since the Krull relations are known for smash products wthLP] or (kG)*

[CM], and it suffices to prove the Krull relations for smash products, the result mentioned
in the introduction for semisimple semisolvable Hopf algebras follows.

Another case to which the theorem applies is that of a tensor product of two Hopf
algebras{ = K ® L: forthen,K = K ® 1 is a normal Hopf subalgebra &f with quotient
H=H/HK* = L. Thus for example ik satisfiess-LO and L satisfiest-LO, then H
satisfiessz-LO.

For our results on lifting we also need to extend the definitiof/e$table to subcoal-
gebras ofH.

Definition 2.9. Let C ¢ H be a subcoalgebra. Defin(C) := p~1(A ® C); note A(C)
is an R-subbimodule ofA and aC-subcomodule. An ideal in R is calledC-stableif
TA(C)=A(CO)I.

Let (I : C) denote the largest-stable ideal iR which is contained inf. A C-stable
ideall in R, I # R, is calledC-prime, if wheneverK L C I for K, L C-stable ideals oR,
thenK c I or L C I. C-SpecR) is the set of allC-prime ideals inR.

Lemma 2.10 [MS, Lemma 3.3]Let C C H be a subcoalgebra antflan ideal inR. Then
((I:C):H)=(I:H).Moreover, if] is H-stable, it isC-stable.

Theorem 2.11 [MS, Theorem 3.7]Let Hy C H1 C --- C H,, = H be the coradical filtra-
tion of H and defing :=m + 1. Then for any ideal of R,

(I:Hp)' c(:H).
Theorem 2.11 extends a result of [Ch] for a pointed Hopf algébnd anH -module
algebraA.
3. Galoisextensions of the same basering and lifting from the coradical
In this section we will show that iK is a Hopf subalgebra aff containing the coradi-

cal Hop, then any Krull relation may be lifted frork to H; dually, any Krull relation may
be lifted to H from a quotient modulo a nilpotent Hopf ideal. These results will follow
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from a more general result, which may be of independent interest. That is, we consider two
Hopf Galois extensions of the same base mdor two different Hopf algebrag/ andK .

Definition 3.1. Let H and K be Hopf algebras with dirf < dimH, and letR be ak-
algebra. Assume that and B are two ring extensions a® such thatR C A is faithfully
flat H-Galois and thaik C B is faithfully flat K-Galois. We say that the tripleR, A, B)
is (H, K)-Krull admissibleif the following two conditions hold:

(1) forallideals/ of R, (I:K):H)=(I: H);
(2) there exists such that for all idealg of R, (I : K)! C ({ : H).

Lemma 3.2. Assume thatR, A, B) is (H, K)-Krull admissible. Then the following dia-
gram is commutative

SpecR)

N

K-SpecR) — H-Spec¢R)

where

SpecR) — K-SpecgR) is given byQ — (Q : K),
SpecR) — H-SpecRr) is given byQ — (Q : H),
@ : K-Spe¢R) — H-SpedR) is given byJ — (J : H).

Moreover, the isomorphis@ respects inclusions in both directions.

Proof. First, @ is defined on all ofK-SpegR) since Q — (Q : K) is surjective by
Lemma 2.1. It is well-defined and the diagram commutes by Definition 3.1(1). To see
that @ is a bijection, first note that it is surjective sinée— (P : H) is surjective by
Lemma 2.1. To see that is injective and respects both inclusions, first note that by defin-
ition, J1 C J2 € K-SpegR) implies® (J1) C @(J2). In the reverse direction, assume that
(J1: H)C (J2: H). Then by 3.1(2),

J{:(JJ_ZK)IC(J]_:H)C(JZZH)CJZ.

Since Jz is K -prime, it follows thatJ; C J>. This argument also shows thétis injec-
tive. O

Proposition 3.3. Assume thatR, A, B) is (H, K)-Krull admissible.

() If R C B hascoINC, thenR c A hascolNC.
(2) If R C B hass-coLO, thenR C A has ls-coLO.



372 S. Montgomery, H.-J. Schneider / Journal of Algebra 288 (2005) 364-383

(3) If R C B has strongcoGU, thenR C A has strongcoGU.

Proof. (1) Let Q1 C Q2 in Spe&R) with (Q1: H) = (Q2: H). Then by Lemma 3.2,
(01:K)=(0Q2:K). ThusQ1 = Q> sinceR C B has coINC.

(2) Let P € SpecA). We wantQ1, ..., O, € SpecR), for somem < dimH, such
that (Q; : H) = P N R for all j and (ﬂ;n:l 0,)% c PN R. Now by Lemma 2.1, there
exist O € Spe¢R) and P € SpecB) such that(Q : H)= PN R and(Q: K) =P NR.
SinceR C B haSS-COE'O, there exisQ1, ..., O, € SpecR), for m < dimH, such that
(Qj:K)=(Q:K)=PnRforall j and(ﬂs.":l 0, C(Q:K).By3.1(1),(Q,;: H)=
(0:H)=PNR,and by 3.1(2)(Q0 : K)' c (0 : H). Thus

m Is
(ﬂQ,-) C(Q:K)'Cc(Q:H)CPNR.
j=1

(3) We need to complete the diagram

01

wherely, I € H-Spe¢R) and Q2 € SpecR) with (Q2: H) = I,. By Lemma 3.2, there
exists Jo C J1 € K-Spe€R) such that(J; : H) = I;, fori = 1,2. Now by Lemma 3.2,
(Q2: H) = I, implies that(Q2 : K) = J2. SinceR C B has strong coGU, there exists
01 € SpecR) such that the diagram

01

is complete. HencéQ1 : K) = J;, and so by 3.1(1)Q1: H) = (J1: H) = I; and we are
done. O

Using Theorem 2.11 [MS, Theorem 3.7], we will apply the preceding proposition to our
case of interest, namely to a Hopf subalgekirac H containing the coradicatly of H.
We let J(H) denote the Jacobson radical Hf, and let: be the index of nilpotency of
J(H*) (that is,t is the smallest > 1 such that/ (H*)" = 0). Note that the length of the
coradical filtration ofH ist — 1.
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Theorem 3.4. Let K be a Hopf subalgebra off such thatHy C K. Let R C A be a
faithfully flat H-Galois extension, with comodule structure mfapt — A ® H, and let
B:=8"YA®K).Then(R, A, B) is (H, K)-Krull admissible. Thus

(1) K hascolINCimplies thatH hascolNC;

(2) K hass-coLO implies thatH has st-coLO, wheret is the index of nilpotency of
J(H™);

(3) K has strongcoGUimplies thatH has strongcoGU.

Proof. First note thatR C B is K-Galois by [S1, 3.11]. By [MS, Lemma 6.3], part (1)
of 3.1 holds. Moreover, by Theorem 2.1, : Ho)' C (I : H), wheret is the nilpotency
index of J(H*). Since(! : K) is K -stable, it is alsaHp-stable by Lemma 2.10 withh =
Ko = Hp; thus(I : K) C (I : Hp). It follows that(/ : K)' c (I : H) and so 3.1(2) holds.
Thus(R, A, B) is (H, K)-Krull admissible. (1)—(3) now follow from Proposition 3.30

The formal dual of Theorem 3.4 applies to quotientgfoby a Hopf ideal contained in
the radical/ (H).

Theorem 3.5. Let I be a nilpotent Hopf ideal off and letH = H/I be the quotient Hopf
algebra. Then

(1) H has INC implies thaHl has ING
(2) H hass-LO implies thatH hasst-LO, where now is the index of nilpotency of(H);
(3) H has strongGU implies thatH has strongGU.

Proof. Sincel c J(H), H/I maps surjectively t&{/J(H), and so
H* D> H* > (H"o=(H/J(H))".

Letting K = H*, we see that this theorem is precisely the dual of Theorem 3.4. The result
follows by Theorem 2.4 and Lemma 2.50

We now apply both Theorem 3.4 and its duaNaraded finite-dimensional Hopf alge-
bras. ThatisH = @@0 H (n), where the grading is both as an algebra and as a coalgebra,
and the antipode is a graded map; see [Sw2, p. 237]. By [Sw2, 11H(0), 2 Hp, the
coradical.

Theorem 3.6. Let H be a finite-dimensiona¥-graded Hopf algebra and le&k = H (0). If
K has any one of the Krull relatiors2(1), (2), (4) or 2.2(1)’, (2)', (4)’, then so doeé#l.
Moreover, ifK has all of the Krull relations, then so doés.

Proof. The projectiont : H — K is a surjective Hopf algebra map with nilpotent kernel
@n>1H(")v and Hp C K. The first part of the theorem now follows from Theorems 3.4
and 3.5. The second part follows from the first part together with Lemma Z35.
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As an example of such a Hopf algebra, we could begin with any Hopf algélsach
that Hp is a Hopf subalgebra, and consider its coradical filtrafiflp}. Let gr(H) be the
associated graded Hopf algebra; thagig,H) = @nZOH(n)’ whereH (n) = H,/Hy—1.
Thengr(H) is a graded Hopf algebra, with the same coradicdlias

Corollary 3.7. Assume thaf{ is pointed. Then d¢iH) has all of the Krull relations.

Proof. gr(H) is also pointed wittgr(H)o = Ho = kG for some finite grougs. SincekG
has all of the Krull relations (see the discussion after 2.8), Theorem 3.6 appties.

When H is graded andd (n) = H,,/H,_1, H is said to becoradically graded Thus
Corollary 3.7 says that a coradically graded Hopf algebra satisfies all of the Krull relations.

4. Applications|: Pointed Hopf algebras

In this section we give some explicit examples of pointed graded Hopf algebras to which
the results of the last section apply.

Example 4.1. Let T,, be the Hopf algebras described by Taft in [Tf]. That is,debe a
primitive nth root of unity ink. Then

T, =k<g,x |g"=1 x"=0, xg :a)gx),

whereg is group-like andx is a (1, g)-skew primitive. ClearlyH = T, is pointed with
coradicalHy = k(g); moreover, sincély is spanned by, _; together with all monomials
in x of degreé, it follows thatH (k) is spanned by all non-zero monomialsiof degree.
ThusH is coradically graded, and so satisfies all of the Krull relations by Corollary 3.7.

In fact, we could have seen thgt satisfies all of the Krull relations directly from [MS],
since it is known that,* = T,,; that is, T}, is also copointed.

Example 4.2. Let ¢ be a semisimple Lie algebra ovél, and letu,(g) be the finite-
dimensional quantum group of Lusztig, fgr a primitive nth root of 1 in C. Write
uq(g) = Cle;, fi, ki) wherele;, fi ki |i =1,...,n} are the usual generators foy(g)
[K, IV.5.6] and letH = u, ()= be a Borel subalgebra. That &,= C(e;, k;). ThenH is
coradically graded withHy = C(k;), a group algebra. By Corollary 3.H has all of the
Krull relations. Note that whep = sl,, H is isomorphic to a Taft algebra (Example 4.1).

Example4.3. Consider the pointed Hopf algebra&D) defined in [AS, 5.17] in terms of a
linking datumD of finite Cartan type; these algebras can be considered as generalizations
of u,(g). u(D) is coradically graded if all the linking elemeritg; = 0. Thus in this case

u(D) satisfies all of the Krull relations by Corollary 3.7.
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Another Hopf algebra for which all of the Krull relations are satisfied is given by mod-
ified supergroup algebras, as described in [AEG]; these are based on the definition of
supergroups due to Kostant [Ko]. First, a (finite-dimensional) supergroup is constructed
from a finite groupG and a finite-dimensional representatitnof G. Let AV be the
exterior algebra oV and letH = AV #kG. Then’H becomes a cocommutative Hopf
superalgebra by letting be odd,G be even, and eache V be (graded) primitiveH is
called asupergroupin [Ko], although in his formulation/\V is viewed asU(g), where
g = Visan odd Lie superalgebra. Moreover, every finite-dimensional cocommutative Hopf
superalgebra ovet is of this form.

To describe the modified supergroup algeBfraconsider as above and assume in
addition thatG contains a central group-like elemensuch thag? = 1 andgxg = —x for
all x € V. We defineH by letting H = H as an algebra, but changing the comultiplication
onH by definingAg (x) :=x® 14+ g ® x for all x € V, and lettingA g (y) = A (y) for
all y € G. With this definition,(H, Ay) becomes an ordinary Hopf algebra, thedified
supergroup algebra

Alternatively, H can be described as follows: note th&b = k(i) acts onfH viau -x =
—x forall x € V andu - y =y for all y € G. We may thus form the Radford biproduct
‘H = H * kZy; it is an ordinary Hopf algebra, and may be identified with the quotient
H/HLT, wherel = k(gu).

Now K := AV #k(g) is a normal Hopf subalgebra @, with quotient Hopf algebra
H/HKt=k(G/(g)).

Corollary 4.4. Let H be a modified supergroup algebra as above. Thegatisfies all of
the Krull relations.

Proof. Let K be as aboveK is pointed and coradically graded and so satisfies all of
the Krull relations. Sinced = H/HK+ = k(G/(g)) is a group algebra, it also satisfies
all the Krull relations. Thus by the Transitivity Theorem 28, satisfies all of the Krull
relations. O

5. TheKrull relationsunder twistings

In this section we first consider what happens to the Krull relations when the multipli-
cation of a Hopf algebra& is twisted by a cocycle, and then turn to the case when the
comultiplication ofH is twisted by a dual cocycl€ € H ® H. Twisting H by a cocycle
o was studied in [Do].

First, recall from [Sw1] that for a Hopf algebr&l, a (left) 2cocycleon H is a
convolution-invertible map : H ® H — k satisfying the equality

o(hw,lw)ohele,m)=0oc(a,ma)oh, lgme) (5.1)
forall h,l, m € H. We assume also thatis normal, that is,

oh,)=0(,h)=¢(h) forallhe H.
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We may now form a new Hopf algebrd, by leaving the coalgebra structure Hf
unchanged but twisting the algebra structuresbyrhat is, H, has new multiplication

ho =0 l)heloo  (ha) @), (5.2)

forall 4,1 € H. One can also define a new antipode.
Also, given a rightH -comodule algebra, we may form the algebrad,,, with twisted
multiplication

a- b=0"Yaqw.bw)awbo)

foralla,b e A. ThenA, is a rightH,-comodule algebra, using the same comodule struc-
ture map as for. We note that we neesl~! here because of the mixture of a left cocycle
with a right comodule.

A reference for the above facts is [KS, 10.2.3]; see also [M, Section 7.5] for a discussion
of A, . We first show that twisting preserves Galois extensions.

Theorem 5.3. Let R C A be anH-extension, letr be a cocycle orf{, and consider the
twisted algebrad,. ThenR, = R, and an ideall of R is H-stable if and only if it is
H,-stable. Moreover,

(1) Rc Ais H-Galois ifand only ifR Cc A, is H,-Galois

(2) RcC Ais H-cleft if and only ifR C A, is H,-cleft moreover, ifA = R #, H, then
Ay = R#,0 Hy, wheret® =1 %o 1;

(3) H-Spe&R) = H,-SpecgRr).

Proof. First, sinceR = A7 = AS°H itis easy to see that, a = ra anda -, r = ar for
anyr € R,a € A. It follows thatR, = R. Moreover, ifI is any ideal ofR andAI = 1A,
then clearlyA -, I =1 -, A. Thus the fact about stability follows.

(1) Consider the two canonical Galois mapsfoandA,;thatis,f:AQr A —> AQH
viaa @ b ab) @ by andp® i A; Qr A — As @ Hy Viaa @b a -5 bo) ® by =
a©bo ® beyo~Haw, ba)).

Define®, v:AQ H—~> A® H by

Pa®h)=ap® Gfl(a(l), Sha))o (hay, She)ha
and
W (a®h)=a@) ® 0 (aq). Sha)o  (She). ha)ha.

We claim that¥ = @1 and that8 = @ o °. Thusg is bijective if and only if3~1 is
bijective. To show this we require the cocycle condition (5.1), and, in addition, the identities

o (hy, Sh2)o 1 (She), hay) =¢e(h), (5.4)
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o H(Shy, h@)o (ha), Shay) = e(h). (5.5)

Identity (5.4) appears in [BM,Do]; see also [KS]. (5.5) can be obtained from (5.4) as fol-
lows: apply (5.4) to the left cocycle—1 on H°°P and use tha$ycor = S. Then

o X (ha. Sh@)o (Sha. ha) = e(h).

Now replace: by Sk and we have (5.5).
We can now show thak = @ 1. First,
(W o®)(a®h)
=¥ (a ® 0 (aw, Sh@)o (hy, Sh)h)
= a(0)0) ® 7 (@), Shwm)o (Shaw, hae)oaw, Sha)
x o (ha, Sh@)hw@@

= aq) ® o' (aqy, Shay)o L(Sh), he)o  *(az, Sha) (hay, She)ha)
= a©) ® 0 (Shz), ha)a (ha), Sh)hs)
=a®h,

using (5.4) in the last step. Similarly, using (5.5), we see that

(PoW)(a®h)
= @ (a0 ® o (aq), Sh1))o~(Sh), h@)h)
= a0 ® o (aw, Sha)o  (Sh@, h@)o Haow, Sha )
x o (h@), Shay@)h@@
= a0 ® 0 (a@), Sh))o ~(Sh), h@)o~aqw, She)o (h@, She)h
= a0 ® o (az, Shy)o awy, Sh)ha =a @ h.

Thus¥ = &1, Finally we check tha = ® o 87, using (5.1):

?(B°(a®h))
= ®(abo ®beo aw, b))
= abo ® 0 M aombow: Sb3)e baw, Sba@)o aw, ba)ba @
=a@bo) ® 0 Hawbw), Sbs)o (ba), Sbhay)o Haz, be)be)
=a©bo ® 0 (aw, ba)She)o (), Sbs)o (ba), Sba)be)
= a)bo ® 0~ Haq. ba)Sh)be)
=abo) ®ba) =pa®Db).
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This proves (1).

(2) Assume thatA is H-cleft, via the H-comodule map/ : H — A with convolution
inversey —1. We claim thatd,, is H,-cleft, via the same map® = y on vector spaces, but
with convolution invers&y?)~1(h) = y ~1(h))o (hq), Sh(z)). First, the fact thay is an
H,-comodule map follows sincH = H, as coalgebras andl= A, as comodules. Also,
sincey is a comodule mag(y (h)) =y (ha)) ® h(z) ands (y ~1(h)) = y “L(h(2)) ® Shq,
wheres is the comodule structure map Af It follows that

$((r) ) = y L(hay) ® Shao (hay, She).

Now in Hom(H, A,),

y(h@) o (¥) )
=y(hw)o ) o) oo Hyhaw . ) o))
=y (hw@)y " h@@)o  hay@), Shay@)o (how: She @)
=y(h@)y H(he)o (h), Sh)o (h), Sha)
=y(hw)y Hh@) =M1

SinceH is finite-dimensional, alsey?)~1 is the left inverse of/, and soA, is H,-cleft.

To see that the new cocycté is as described, first recall that cleft extensions are always
crossed products. Thus, = R #,« H, for some Hopf 2-cocycle®: H, ® H, — R,
where theH, -comodule structure oR #,o H, is givenbyid® Ay, =id ® Ap.

Chooser #g ands #h in A= R#, H, and consider their multiplication iA, :

(r#g) o (s#h)
= (r#ga) (s #ha)o (2@ h2)
=r(gw 9T, ha) #23h@o (8w, he)
=r(gw )T, ha) #0183, h2)o (8@ h3)8®h@wo (8@, hs)
=r(gw )T, hw)o 1 g@. he) #8@ o ha).

But considered as elementsR¥;. H,, their product is
(r#g)s#h) =r(gw 912 - hw)#83) o ho)-

Thust? (g, h) = t(g1). h)o gw). h@).

Alternatively the cocycle can be expressed in terms of the cleft yjnémspectively
y?)-

(3) The identification of the stable parts of Spec follows from the remarks at the begin-
ning of the proof, once we know (1).0
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Theorem 5.6. Let H, be any cocycle twist aff. Then

(1) any one of the Krull relationsoINC, t-coLO, and strongcoGUiis true for H < it is
true for H,;
(2) if H hascoGUandz-LO, thenH, also hascoGU.

Proof. (1) follows from Theorem 5.3(3), because the three dual Krull relations colNC,
t-coLO, and strong coGU are defined only in terms of idealR o&s noted in the remark
after Definition 2.2.

(2) follows from (1) and Lemma 2(8)'. O

We now consider dual cocycle twists, as in [Dr]. That is,d&tc H ® H be a dual
cocycle for H. Then H® has the same multiplication & but has new comultiplica-
tion Ag(h) = 2Ay (k)27 L. This construction is the formal dual of the construction of
the cocycle twists in Section 4, in the following sense#ifis finite-dimensional, then
(H*)* = (H,)*. For if o is a 2-cocycle orH, theno corresponds to an invertible element
€ H*® H* = (H ® H)*, and we may twist the comultiplication di* by 2. The
explicit correspondence betweerands? is given by

o(h,l)= Zszl(h)gz(l).

Analogously ifA is an H-comodule algebra, the# is an H*-module algebra, and we
can consider it either as twisted byor by 2.
Using this reformulation we may state the dual version of Theorem 5.6.

Theorem 5.7. Let H? be any dual cocycle twist ¢i. Then

(1) any one of the Krull relationtNC, ¢-LO, and strongGU is true for H < it is true for
H*?;
(2) if H hasGU andr-coLO, thenH* also hasGU.

Remark 5.8. In the terminology of [MS, Definition 8.8]H is calledstrongly semisimple
if for all left H-module algebrag with ring of invariantsk = A, and anyP € Sped,
PN R isasemiprime ideal aR. Similarly H is calledstrongly cosemisimpl&for all right
H-comodule algebrad with ring of coinvariantsR = A, and anyP € SpecA, P N R
is a semiprime ideal oR. Theorem 5.3(3) implies thdf is strongly cosemisimple if and
only if H, is strongly cosemisimple, and thus dually ti#ats strongly semisimple if and
only if H% is strongly semisimple.

By [MS, Theorem 8.11 and Corollary 8.14, is strongly cosemisimple if and only if
for every H-module algebra, every H-semiprime ideal oR is semiprime; equivalently,
for all H-module algebrag, the prime radicaP (R) is alwaysH -stable. Thus this stability
property is preserved by twisting with a cocyele

Similarly from [MS, Theorem 8.10 and Corollary 8.14, is strongly semisimple if
and only if for everyH-semiprime H-module algebrar, the smash produck # H is
semiprime. Thus this property is preserved by twisting with a dual cogycle
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6. Applications|I: Triangular Hopf algebrasand the Drinfeld double
We first consider triangular Hopf algebras.

Theorem 6.1. Let k be an algebraically closed field of characterisficand let H be a
(finite-dimensionaltriangular Hopf algebra. TherHd has the Krull relationdNC, ¢-LO,
and strongGU.

Proof. By [EG2], for any triangular Hopf algebra, the Jacobson radiqd) is a Hopf
ideal. ThusH = H/J(H) is a semisimple triangular Hopf algebra. By [EG1], it follows
that H = kG*, the twist of a group algebra by a dual cocy&lec kG ® kG. Applying
Theorem 5.7, we see tha& has INC,z-LO, and strong GU, sincéG has these three
properties. The theorem now follows from Theorem 3.5

An alternate proof of Theorem 6.1 may be given using supergroups. For, in [EG2],
it is shown that if H is triangular then it is a dual cocycle twist of a supergroup. Thus
Theorem 6.1 would follow immediately from Theorem 5.7 and Corollary 4.4.

We next consider the general question of when any (or all) of the Krull relations lift
from H and H* to the Drinfeld doubleD(H). We obtain a complete answer for bismash
products of groups and for factorizable Hopf algebras.

We are able to give one general result. We use a result of Doi and Takeuchi that for
anyH, D(H) = (H**°P® H), for some cocycler on H**°P @ H [DT].

Coroallary 6.2. If H has the six Krull relation$NC, s-LO, GU, coINC, ¢r-coLO, andcoGU,
then the doubleD (H) hascolNC, st-coLO, andcoGU.

Proof. By Lemma 2.5,H also has strong GU and strong coGU. By Remark 2.7 and the
discussion following the Transitivity Theorem 2.8, the tensor prodiit®? @ H has all

the Krull relations. Apply [DT] to see thad (H) = (H**°P® H),. The result now follows

by Theorem 5.6. O

We now consider bismash products. Assume that a factorizable group, that is =
FG, whereF andG are subgroups of with F N G = {1}. Then(F, G) form amatched
pair of groupsin the sense of [Tk], and we may thus construct the bismash prdgluct
kG #kF; in this caseH* = k¥ #kG. More generally, the bicrossed product extensions
H = kY # kF are classified by classes of pajits ] in the OpExt group; see Masuoka’s
survey [Ma].

We have already noted that botl; and (kG)* satisfy all of the Krull relations. In
addition,(kG)* always satisfies 1-LO [CM], ankG will satisfy 1-LO whenever it is semi-
simple (by combining [LP] with[FM]).

We will need the following result of [BGM]]: lefd = k¢ #kF be the bismash product
for the factorizable groufh = FG, as described above. ThénH) = D(kL)* for some
dual cocyclesf2.
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Theorem 6.3. Let L = F G be a factorizable group as above. Then

(1) any bicrossed produdtl = k© #. kF satisfies all of the Krull relations, and for any
2, H® satisfies the basic Krull relation$C, -LO, andGU;
(2) if H is the bismash product, thadd(H) satisfies all of the Krull relations.

If also chark = 0 or if chark = p > 0 and p does not divideG|, then in(1) H will satisfy
1-LO and 1-coLO and H** will satisfy 1-LO. In (2) D(H) will satisfy1-LO and1-coLO.

Proof. (1) First, any bicrossed produkt satisfies all the Krull relations by the Transitivity
Theorem 2.8, sinc& = k¢ # 1 is a normal Hopf subalgebra &f with quotientH = k F.
Then H satisfies the basic Krull relations by Theorem 5.7.

(2) By (1), H satisfies all of the Krull relations. Thus by Corollary 612(H) satisfies
the dual Krull relations. By the result of [BGM]] described aboyiH) = D (kL)% for
some dual cocycle2. Since D (kL) satisfies all of the Krull relations) (kL) satisfies
the basic Krull relations by Theorem 5.7. ThD$H ) satisfies all six Krull relations.

In the case wheRkG is semisimple, the facts about 1-LO and 1-coLO follow from the
Transitivity Theorem 2.8(1) together with (1).0

Corollary 6.4. Let H = (k9 # kF)%, let R be an H-semiprimeH -module algebra, and
assume char= 0 or charK = p > 0 and p does not dividgG|. ThenR # H must be
semiprime.

Proof. H satisfies 1-LO by the theorem. Thigs# H is semiprime, by [MS, Proposition
4.5(1)]. O

Bicrossed products are an important class of Hopf algebras, as they are closely related to
the group-theoretical quasi-Hopf algebras defined in [O] and studied further in [ENO,N].
By definition a quasi-Hopf algebra ggoup theoreticalf its category of representations is
a group theoretical catego€(L, w, F, @), whereL is a finite groupF C L is a subgroup,

w:G x G x G— k* is anormalized 3-cocycle, and: F x F — k* is a normalized 2-
cocycle such thab|r = 1 [O]. Herek is algebraically closed of characteristic 0. A major
example is given by the quasi-Hopf version of the bicrossed products above, although in
generalG might not be a group and is replaced by a fixed @atf coset representatives

of F in L. Itis shown in [N] that any group-theoretical quasi-Hopf algeHras gauge-
equivalent to some quasi-Hopf algela= k¢ # k F, whereo andr are defined using.

This means thatf = M, a twist of M, although in this case the twisting elemeat

does not have to be a cocycle. It is an open question as to whether every semisimple Hopf
algebra ove(C is group-theoretical [ENO].

Finally we consider factorizable Hopf algebras. See [RS] for the definition. We use the
result of [RS], which says that # is a factorizable Hopf algebra, thénW H) = (H @ H)*
for some dual cocycle?; see [S3] for another proof.

Coroallary 6.5. Assume thaH is factorizable and satisfies all of the Krull relations. Then
D(H) satisfies all of the Krull relations.
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Proof. First, D(H) satisfies the dual Krull relations by Corollary 6.2. By the Transitivity
Theorem 2.8H ® H also satisfies all of the Krull relations. Now apply the above result of
[RS] together with Theorem 5.7 to see tliatH ) satisfies INCy-LO, and strong GU. O
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