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1. Introduction

This paper continues our study, begun in [MS], of the relationship between the
ideals of an algebraA and of a subalgebraR such thatR ⊂ A is a faithfully flatH -Galois
extension, for some finite-dimensional Hopf algebraH . In that paper we defined thre
basic Krull relations, Incomparability (INC),t-Lying Over (t-LO), and Going Up (GU),
analogous to the classical Krull relations for prime ideals; we also defined three new
Krull relations. We say thatH itself is said to have one of the Krull relations if the relati
holds for all faithfully flatH -Galois extensions. We showed in [MS] thatH has one of the
three “dual” Krull relations if and only if the dual Hopf algebraH ∗ of H has the origina
relation (hence the name).

An important example of Hopf Galois extensions is given by Hopf crossed pro
A = Rσ # H . Moreover, Galois extensions can be useful in studying crossed prod
since they satisfy a “transitivity” property which crossed products lack. That is, ifK is a
normal Hopf subalgebra ofH with Hopf quotientH , then, in general, one cannot wri
A = Rσ # H = (Rσ K) #τ H , by an example of [S2]. Another basic example of a H
Galois extension is given by a Hopf algebraA with a normal Hopf subalgebraR of finite
index such thatA is faithfully flat overR: for thenR ⊂ A is faithfully flat H -Galois.
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A fundamental question in this area is to determine which Hopf algebras satis
various Krull relations. As a consequence of our work in [MS], we established resul
two main classes of Hopf algebras:

(1) All six Krull relations hold ifH is semisolvable and semisimple.
(2) If H is pointed, thenH satisfies Going Up and the three dual Krull relations.

(1) depended on our main result on Krull relations, the Transitivity Theorem, w
enabled us to go from a normal Hopf subalgebraK of H and the corresponding Hop
quotientH up to H itself; it also depended on known facts about the Krull relation
smash products with group algebraskG [LP] or their duals(kG)∗ [CM]. (2) followed by
reducing to the coradicalH0 of H , and using known facts about smash products of poi
Hopf algebras by [Ch,CRW,Q]. We note that Incomparability and Lying Over remain
for pointed Hopf algebras, even for restricted enveloping algebras in characteristicp > 0.

The object of this paper is to extend the work of [MS], by first proving that the K
relations are preserved under various changes of the Hopf algebraH , and then by applying
these results together with some recent constructions of Hopf algebras in order to gi
examples of Hopf algebras for which some or all of the Krull relations hold.

We first prove that any of the six Krull relations can be lifted toH from a Hopf subalge
braK of H containing the coradicalH0 of H . Dually this implies that ifI is a Hopf ideal
of H contained in the Jacobson radical ofH , then any Krull relation will lift from the quo-
tient H/I to H . We then study twisting the Hopf algebraH , either by a Hopf 2-cocycle
σ :H ⊗ H → k or by a dual 2-cocycleΩ ∈ H ⊗ H . We show that the three dual Kru
relations are preserved by twistingH to Hσ , and dually that the three basic Krull relatio
are preserved by twistingH to HΩ .

As a consequence we are able to show that all six relations hold for pointed Hop
bras which are coradically graded; such Hopf algebras include the Taft algebras, as
the Borel subalgebras of Lusztig’s Frobenius kernelsuq(g), g a semisimple Lie algebra
and the finite-dimensional pointed Hopf algebrasu(D) defined in [AS] when the linking
elements have trivial relations. We show that the Drinfel’d doubleD(H) will always have
the dual Krull relations providedH has all six Krull relations; in particular this is tru
whenH = kG, a group algebra, or more generally ifH = kG #τ

σ kF , a bicrossed prod
uct constructed from a factorizable groupL = FG. For bismash productsH = kG # kF ,
D(H) satisfies all six of the Krull relations. Finally any triangular Hopf algebra will h
the three basic Krull relations.

More specifically, in Section 2 we review the definitions of the basic Krull relationt-
lying over, for some natural numbert (t-LO), going up (GU), and incomparability (INC
and of the dual notionst-coLO, coGU and coINC. We define two new relations strong
and strong coGU, which are stronger versions of going up and co going up, which w
require in the paper. We also give a precise statement of some of the major result
[MS] which we shall need.

Section 3 concerns the question mentioned above of lifting the Krull relations fr
Hopf subalgebraK ⊂ H such thatK contains the coradicalH0 of H , to H itself (Theo-
rem 3.4). More generally we consider two different Galois extensionsA andB, of the same

base ringR, for two different Hopf algebrasH andK , and compare the Krull relations in
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R ⊂ A andR ⊂ B. The application to a quotient Hopf algebraH/I whereI is a nilpotent
Hopf ideal, concerning which of the Krull relations hold forH if they hold for H/I , is
obtained by dualizing the coradical result (Theorem 3.5).

Section 4 is then a discussion of the examples on coradically graded Hopf alg
using the results of Section 3.

Our second main topic, in Section 5, concerns when the Krull relations are preser
twisting. We first review twistings of Hopf algebras and ofH -comodule algebras by a Hop
2-cocycleσ of the Hopf algebra; in this case the multiplication ofHσ is twisted but the
comultiplication remains the same. AnyH -comodule algebraA can also be twisted byσ .
As a preliminary step, we prove that ifR ⊂ A is anH -Galois extension, thenRσ ⊂ Aσ

is anHσ -Galois extension; moreover,Hσ -SpecR = H -SpecR (Theorem 5.3). We the
prove that any one of coINC,t-coLO, or strong coGU is preserved under these twist
(Theorem 5.6). We also consider the dual situation, of twisting the comultiplicationH

via Ω ∈ H ⊗H ; in this caseHΩ has the same multiplication asH but its comultiplication
is twisted. Dualizing the previous result we see that any one of INC,t-LO, or strong GU
is preserved under these twistings (Theorem 5.7). Using Theorems 5.6 and 5.7 it f
that if H is a graded Hopf algebra with identity componentK = H(0), then any one of the
Krull relations lifts fromK to H (Theorem 3.6).

In Section 6 we apply the work in Sections 3 and 5 to the examples concerning
fel’d doubles and twists. Here we may use some known facts about obtaining Hopf al
through twisting, such as the results about twisting the Drinfel’d double in [DT,RS], a
twisting bismash products in [BGMj], and the classification theorems of [EG1,EG2
hibiting triangular Hopf algebras as twists.

In fact, it is possible that any finite-dimensional Hopf algebraH satisfies all of the Krull
relations; no counterexamples are known. More generally it is not known whether I
true for any finite extensionR ⊂ A, although it is true ifR is Noetherian [Le]. Moreover
LO can fail even for finite extensions of Noetherian rings [HO].

2. The Krull relations revisited

In this section we first review the Krull relations from [MS], and introduce new vers
of several of them which we shall need in this paper. We then state more precisely s
the other results from [MS] we shall need, such as the Transitivity Theorem.

ThroughoutH is a finite-dimensional Hopf algebra over a fieldk, andR ⊂ A denotes
a faithfully flat H -Galois extension. As in [MS, 1.1, 2.3], we say that an idealI of R is
H -stableif IA = AI , and let(I : H) denote the largestH -stable ideal ofR in I . I is an
H -prime idealof R if I �= R, and wheneverJK ⊂ I , for J,K H -stable ideals ofR, either
J ⊂ I or K ⊂ I .

To avoid confusion, we will usually writeP for a prime in Spec(A), Q for a prime in
Spec(R), andI for anH -prime inH -Spec(R). We recall [MS, Lemma 2.2]:

Lemma 2.1. (1) The mapf : Spec(R) → H -Spec(R) given byQ �→ (Q : H) is well de-

fined and surjective.
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(2) The mapg : Spec(A) → H -Spec(R) given byP �→ P ∩ R is well defined and sur
jective.

As in [MS], we say thatP ∈ Spec(A) lies overQ ∈ Spec(R) if and only if (Q : H) =
P ∩ R. We will also say thatP ∈ Spec(A) lies overI ∈ H -Spec(R) if and only if I =
P ∩ R. By Lemma 2.1, anyP ∈ Spec(A) lies over someQ ∈ Spec(R); conversely for
anyQ ∈ Spec(R), there exists someP ∈ Spec(A) such thatP lies overQ. Similarly any
P ∈ Spec(A) lies over someI ∈ H -Spec(R); conversely for anyI ∈ H -Spec(R), there
exists someP ∈ Spec(A) such thatP lies overI .

We note that the definition ofP lying overQ reduces to the standard definition of lyin
over in non-commutative rings, that is thatQ is minimal overP ∩R, under some additiona
assumptions; see [MS, 4.7].

We may use diagrams, as in [P], to represent many of the Krull relations. Thu
example, the diagram in 2.2(3) means that givenQ2 ⊂ Q1 in Spec(R) andP2 ∈ Spec(A)

which lies overQ2, there exists someP1 ∈ Spec(A) such thatP2 ⊂ P1 andP1 lies over
Q1. In the following definition, (1)–(3) and(1)′–(3)′ appear in [MS]. It is shown in [MS
4.3] that(1)′–(3)′ are the duals of (1)–(3), in the sense that a condition (i) is true forH if
and only if (i)′ is true forH ∗. (4) and(4)′ are new;(4)′ will be useful since it is defined
only in terms ofR and notA.

Definition 2.2 (The Krull relations).

(1) TheH -Galois extensionR ⊂ A hast-lying over(t-LO) if for any Q ∈ Spec(R), there
existP1, . . . ,Pn ∈ Spec(A), wheren � dimH , such that allPi lie overQ, and such
that(

⋂n
i=1 Pi)

t ⊂ (Q : H)A:

{Pi}t
. .

.

Q

(2) R ⊂ A hasincomparability(INC) if for any P2 ⊂ P1 in Spec(A) with P2 �= P1, then
P2 ∩ R �= P1 ∩ R.

(3) R ⊂ A hasgoing up(GU) if

P1

..
. ...

Q1 P2

| ��

Q2

(4) R ⊂ A hasstrong going up(S-GU) if

P1

..
. ...

I1 P2

| ��
I2
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(1)′ R ⊂ A hast-co-lying over(t-coLO) if for anyP ∈ Spec(A), there existQ1, . . . ,Qm ∈
Spec(R), wherem � dimH , such thatP lies over allQj , and such that(

⋂m
j=1 Qj)

t ⊂
P ∩ R.

P

. .
.

{Qj }t

(2)′ R ⊂ A hasco-incomparability(coINC) if for any Q2 ⊂ Q1 in Spec(R) with Q2 �=
Q1, then(Q2 : H) �= (Q1 : H).

(3)′ R ⊂ A hasco-going up(coGU) if

P1
..

. |
Q1 P2
... ��

Q2

(4)′ R ⊂ A hasstrong co-going up(S-coGU) if

Q1

..
. ...

I1 Q2

| ��

I2

Note that(1)′, (2)′ and(4)′ only depend onR; althoughP ∈ Spec(A) appears in(1)′ it
can be replaced byP ∩ R, hence byI ∈ H -Spec(R) using Lemma 2.1.

Definition 2.3. We say the Hopf algebraH has one of the Krull relations above if forall
faithfully flat H -Galois extensionsR ⊂ A, the given Krull relation holds.

To illustrate the Krull relations, consider a smash product extensionR ⊂ A = R # H

whereR is prime, or more generallyH -prime. IfH hast-LO and INC, thenP is a minimal
prime ofA precisely whenP ∩ R = 0, A hasn � dimH minimal primes, sayP1, . . . ,Pn,
and ifN := ⋂

i Pi, thenNt = 0 andN is the largest nilpotent ideal ofA [MS, 4.7].
We now relate the two Krull relations strong GU and strong coGU to the previous

We require the following result.

Theorem 2.4 [MS, Theorem 4.3].For each of the Krull relations(1)–(3) and (1)′–(3)′,
H has a basic relation(i) if and only ifH ∗ has the dual relation(i) ′.

Lemma 2.5. For any finite-dimensional Hopf algebraH , H has strongGU ⇔ H ∗ has

strongcoGU. Moreover:
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(1) If H has strongGU, thenH hasGU (that is,2.2(4) implies2.2(3)).
(1)′ If H has strongcoGU, thenH hascoGU (that is,2.2(4)′ implies2.2(3)′).
(2) If H hasGU, and either strongcoGU or t-coLO, thenH has strongGU (that is,

2.2(3) together with either2.2(4)′ or 2.2(1)′ imply 2.2(4)).
(2)′ If H hascoGU, and either strongGU or t-LO, thenH has strongcoGU (that is,

2.2(3)′ together with either2.2(4) or 2.2(1) imply 2.2(4)′).

Proof. The fact thatH has strong GU⇔ H ∗ has strong coGU follows similarly to th
proof thatH has GU⇔ H ∗ has coGU in Theorem 2.4. Thus (1) and (2) are the d
statements to(1)′ and(2)′, respectively, and so it suffices to show only (1) and (2).

(1) Assume thatQ2 ⊂ Q1 in Spec(R) and thatP2 ∈ Spec(A) lies overQ2. Let Ii :=
(Qi : H), for i = 1,2; thenP2 ∩ R = I2. By strong GU, there existsP1 ∈ Spec(A) such
thatP2 ⊂ P1 andP1 ∩ R = I1. But I1 := (Q1 : H). ThusH has GU.

(2) First assumeH has GU and strong coGU. Assume thatI2 ⊂ I1 in H -Spec(R)

and thatP2 ∈ Spec(A) lies over I2. By Lemma 2.1 there existsQ2 ∈ Spec(R) with
(Q2 : H) = I2 = P2 ∩ R. By strong coGU, there existsQ1 ∈ H -Spec(R) such that
Q2 ⊂ Q1 and(Q2 : H) = I2. Now use GU to findP1 ∈ Spec(A) such thatP2 ⊂ P1 andP1
lies overQ1. ThenP1 lies overI1, andH has strong GU.

Now assumeH has GU andt-coLO. Assume again thatI2 ⊂ I1 in H -Spec(R) and that
P2 ∈ Spec(A) lies overI2. By Lemma 2.1 there existsQ ∈ Spec(R) with (Q : H) = I1. By
t-coLO, there existQi ∈ H -Spec(R), i = 1, . . . ,m, such that(Qi : H) = I2 for all i and
that (

⋂
Qi)

t ⊂ I2. SinceI2 ⊂ I1 = (Q : H) ⊂ Q andQ is prime, someQi , call it Q2, is
contained inQ. Now use GU to findP1 ∈ Spec(A) such thatP2 ⊂ P1 andP1 lies overQ.
ThenP1 lies overI1, andH has strong GU. �
Corollary 2.6. If H is pointed, thenH has strongGU and strongcoGU.

Proof. As noted in the introduction, any pointed Hopf algebra has GU,t-coLO, coGU,
and coINC. Thus by Lemma 2.5(2),H has strong GU. We may now use Lemma 2.5(2)′ to
see thatH also has strong coGU.�

For later use we note

Remark 2.7. Let δ :A → A ⊗ H,a �→ a(0) ⊗ a(1), be anH -comodule algebra with coin
variant elementsR = AcoH , and assume thatR ⊂ A is an H -Galois extension. The
the opposite algebrasRop ⊂ Aop form anH op-Galois extension with comodule structu
δop:Aop → Aop⊗H op, aop �→ a

op
(0) ⊗a

op
(1). Thus ifH satisfies any one of the Krull relation

then so doesH op.

Proof. The Galois mapAop ⊗Rop Aop → Aop ⊗ H op, xop ⊗ yop �→ (y(0)x)op ⊗ y
op
(1), is

surjective hence bijective sinceA ⊗ A → A ⊗ H,y ⊗ x �→ y(0)x ⊗ y(1), is surjective. �
We now state precisely the two main results of [MS] which we require here. The fi
the Transitivity Theorem.
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Theorem 2.8 [MS, Theorem 6.7].LetH be a finite-dimensional Hopf algebra,K a normal
Hopf subalgebra ofH andH := H/HK+.

(1) AssumeK has s-LO (respectivelys-coLO) and H has t-LO (respectivelyt-coLO).
ThenH hasst-LO (respectivelyst-coLO).

(2) AssumeK hass-coLO andH has t-coLO (respectivelys-LO and t-LO) for somes
and t . If K andH haveGU (respectivelycoGU), then so doesH .

(3) AssumeH has t-coLO (respectivelyK has t-LO) for somet . If K andH have INC
(respectivelycoINC), then so doesH .

As a consequence of this theorem, if bothK andH have all of the Krull relations, the
so doesH . Since the Krull relations are known for smash products withkG [LP] or (kG)∗
[CM], and it suffices to prove the Krull relations for smash products, the result ment
in the introduction for semisimple semisolvable Hopf algebras follows.

Another case to which the theorem applies is that of a tensor product of two
algebrasH = K ⊗L: for then,K ∼= K ⊗1 is a normal Hopf subalgebra ofH with quotient
H = H/HK+ ∼= L. Thus for example ifK satisfiess-LO andL satisfiest-LO, thenH

satisfiesst-LO.
For our results on lifting we also need to extend the definition ofH -stable to subcoal

gebras ofH .

Definition 2.9. Let C ⊂ H be a subcoalgebra. DefineA(C) := ρ−1(A ⊗ C); noteA(C)

is anR-subbimodule ofA and aC-subcomodule. An idealI in R is calledC-stableif
IA(C) = A(C)I .

Let (I : C) denote the largestC-stable ideal inR which is contained inI . A C-stable
idealI in R, I �= R, is calledC-prime, if wheneverKL ⊂ I for K,L C-stable ideals ofR,
thenK ⊂ I or L ⊂ I . C-Spec(R) is the set of allC-prime ideals inR.

Lemma 2.10 [MS, Lemma 3.3].Let C ⊂ H be a subcoalgebra andI an ideal inR. Then
((I : C) : H) = (I : H). Moreover, ifI is H -stable, it isC-stable.

Theorem 2.11 [MS, Theorem 3.7].Let H0 ⊂ H1 ⊂ · · · ⊂ Hm = H be the coradical filtra-
tion ofH and definet := m + 1. Then for any idealI of R,

(I : H0)
t ⊂ (I : H).

Theorem 2.11 extends a result of [Ch] for a pointed Hopf algebraH and anH -module
algebraA.

3. Galois extensions of the same base ring and lifting from the coradical

In this section we will show that ifK is a Hopf subalgebra ofH containing the coradi
cal H0, then any Krull relation may be lifted fromK to H ; dually, any Krull relation may

be lifted toH from a quotient modulo a nilpotent Hopf ideal. These results will follow
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Hopf Galois extensions of the same base ringR, for two different Hopf algebrasH andK .

Definition 3.1. Let H andK be Hopf algebras with dimK � dimH , and letR be ak-
algebra. Assume thatA andB are two ring extensions ofR such thatR ⊂ A is faithfully
flat H -Galois and thatR ⊂ B is faithfully flat K-Galois. We say that the triple(R,A,B)

is (H,K)-Krull admissibleif the following two conditions hold:

(1) for all idealsI of R, ((I : K) : H) = (I : H);
(2) there existst such that for all idealsI of R, (I : K)t ⊂ (I : H).

Lemma 3.2. Assume that(R,A,B) is (H,K)-Krull admissible. Then the following dia
gram is commutative:

Spec(R)

K-Spec(R)
∼=

H -Spec(R)

where

Spec(R) → K-Spec(R) is given byQ �→ (Q : K),

Spec(R) → H -Spec(R) is given byQ �→ (Q : H),

Φ :K-Spec(R) → H -Spec(R) is given byJ �→ (J : H).

Moreover, the isomorphismΦ respects inclusions in both directions.

Proof. First, Φ is defined on all ofK-Spec(R) since Q �→ (Q : K) is surjective by
Lemma 2.1. It is well-defined and the diagram commutes by Definition 3.1(1). To
that Φ is a bijection, first note that it is surjective sinceP �→ (P : H) is surjective by
Lemma 2.1. To see thatΦ is injective and respects both inclusions, first note that by de
ition, J1 ⊂ J2 ∈ K-Spec(R) impliesΦ(J1) ⊂ Φ(J2). In the reverse direction, assume th
(J1 : H) ⊂ (J2 : H). Then by 3.1(2),

J t
1 = (J1 : K)t ⊂ (J1 : H) ⊂ (J2 : H) ⊂ J2.

SinceJ2 is K-prime, it follows thatJ1 ⊂ J2. This argument also shows thatΦ is injec-
tive. �
Proposition 3.3. Assume that(R,A,B) is (H,K)-Krull admissible.

(1) If R ⊂ B hascoINC, thenR ⊂ A hascoINC.

(2) If R ⊂ B hass-coLO, thenR ⊂ A has ls-coLO.
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(3) If R ⊂ B has strongcoGU, thenR ⊂ A has strongcoGU.

Proof. (1) Let Q1 ⊂ Q2 in Spec(R) with (Q1 : H) = (Q2 : H). Then by Lemma 3.2
(Q1 : K) = (Q2 : K). ThusQ1 = Q2 sinceR ⊂ B has coINC.

(2) Let P ∈ Spec(A). We wantQ1, . . . ,Qm ∈ Spec(R), for somem � dimH , such
that (Qj : H) = P ∩ R for all j and (

⋂m
j=1 QJ )ls ⊂ P ∩ R. Now by Lemma 2.1, ther

exist Q ∈ Spec(R) and P̃ ∈ Spec(B) such that(Q : H) = P ∩ R and(Q : K) = P̃ ∩ R.
SinceR ⊂ B hass-coLO, there existQ1, . . . ,Qm ∈ Spec(R), for m � dimH , such that
(Qj : K) = (Q : K) = P̃ ∩ R for all j and(

⋂m
j=1 QJ )s ⊂ (Q : K). By 3.1(1),(Qj : H) =

(Q : H) = P ∩ R, and by 3.1(2),(Q : K)l ⊂ (Q : H). Thus

(
m⋂

j=1

Qj

)ls

⊂ (Q : K)l ⊂ (Q : H) ⊂ P ∩ R.

(3) We need to complete the diagram

Q1

..
. ...

I1 Q2

| ��

I2

whereI1, I2 ∈ H -Spec(R) andQ2 ∈ Spec(R) with (Q2 : H) = I2. By Lemma 3.2, there
existsJ2 ⊂ J1 ∈ K-Spec(R) such that(Ji : H) = Ii , for i = 1,2. Now by Lemma 3.2
(Q2 : H) = I2 implies that(Q2 : K) = J2. SinceR ⊂ B has strong coGU, there exis
Q1 ∈ Spec(R) such that the diagram

Q1

..
. ...

J1 Q2

| ��

J2

is complete. Hence(Q1 : K) = J1, and so by 3.1(1),(Q1 : H) = (J1 : H) = I1 and we are
done. �

Using Theorem 2.11 [MS, Theorem 3.7], we will apply the preceding proposition t
case of interest, namely to a Hopf subalgebraK ⊂ H containing the coradicalH0 of H .
We let J (H) denote the Jacobson radical ofH , and lett be the index of nilpotency o
J (H ∗) (that is,t is the smallestn � 1 such thatJ (H ∗)n = 0). Note that the length of th

coradical filtration ofH is t − 1.
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Theorem 3.4. Let K be a Hopf subalgebra ofH such thatH0 ⊂ K . Let R ⊂ A be a
faithfully flat H -Galois extension, with comodule structure mapδ :A → A ⊗ H , and let
B := δ−1(A ⊗ K). Then(R,A,B) is (H,K)-Krull admissible. Thus

(1) K hascoINC implies thatH hascoINC;
(2) K has s-coLO implies thatH has st-coLO, where t is the index of nilpotency o

J (H ∗);
(3) K has strongcoGU implies thatH has strongcoGU.

Proof. First note thatR ⊂ B is K-Galois by [S1, 3.11]. By [MS, Lemma 6.3], part (
of 3.1 holds. Moreover, by Theorem 2.11,(I : H0)

t ⊂ (I : H), wheret is the nilpotency
index ofJ (H ∗). Since(I : K) is K-stable, it is alsoH0-stable by Lemma 2.10 withC =
K0 = H0; thus(I : K) ⊂ (I : H0). It follows that (I : K)t ⊂ (I : H) and so 3.1(2) holds
Thus(R,A,B) is (H,K)-Krull admissible. (1)–(3) now follow from Proposition 3.3.�

The formal dual of Theorem 3.4 applies to quotients ofH by a Hopf ideal contained in
the radicalJ (H).

Theorem 3.5. Let I be a nilpotent Hopf ideal ofH and letH = H/I be the quotient Hop
algebra. Then

(1) H has INC implies thatH has INC;
(2) H hass-LO implies thatH hasst-LO, where nowt is the index of nilpotency ofJ (H);
(3) H has strongGU implies thatH has strongGU.

Proof. SinceI ⊂ J (H), H/I maps surjectively toH/J(H), and so

H ∗ ⊃ H ∗ ⊃ (H ∗)0 = (
H/J(H)

)∗
.

LettingK = H ∗, we see that this theorem is precisely the dual of Theorem 3.4. The
follows by Theorem 2.4 and Lemma 2.5.�

We now apply both Theorem 3.4 and its dual toN-graded finite-dimensional Hopf alge
bras. That is,H = ⊕

n�0 H(n), where the grading is both as an algebra and as a coalg
and the antipode is a graded map; see [Sw2, p. 237]. By [Sw2, 11.1.1],H(0) ⊇ H0, the
coradical.

Theorem 3.6. LetH be a finite-dimensionalN-graded Hopf algebra and letK = H(0). If
K has any one of the Krull relations2.2(1), (2), (4) or 2.2(1)′, (2)′, (4)′, then so doesH .
Moreover, ifK has all of the Krull relations, then so doesH .

Proof. The projectionπ :H → K is a surjective Hopf algebra map with nilpotent kern⊕
n�1 H(n), andH0 ⊂ K . The first part of the theorem now follows from Theorems
and 3.5. The second part follows from the first part together with Lemma 2.5.�
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As an example of such a Hopf algebra, we could begin with any Hopf algebraH such
thatH0 is a Hopf subalgebra, and consider its coradical filtration{Hn}. Let gr(H) be the
associated graded Hopf algebra; that is,gr(H) = ⊕

n�0 H(n), whereH(n) = Hn/Hn−1.
Thengr(H) is a graded Hopf algebra, with the same coradical asH .

Corollary 3.7. Assume thatH is pointed. Then gr(H) has all of the Krull relations.

Proof. gr(H) is also pointed withgr(H)0 ∼= H0 = kG for some finite groupG. SincekG

has all of the Krull relations (see the discussion after 2.8), Theorem 3.6 applies.�
WhenH is graded andH(n) = Hn/Hn−1, H is said to becoradically graded. Thus

Corollary 3.7 says that a coradically graded Hopf algebra satisfies all of the Krull rela

4. Applications I: Pointed Hopf algebras

In this section we give some explicit examples of pointed graded Hopf algebras to
the results of the last section apply.

Example 4.1. Let Tn be the Hopf algebras described by Taft in [Tf]. That is, letω be a
primitive nth root of unity ink. Then

Tn = k
〈
g,x | gn = 1, xn = 0, xg = ωgx

〉
,

whereg is group-like andx is a (1, g)-skew primitive. ClearlyH = Tn is pointed with
coradicalH0 = k〈g〉; moreover, sinceHk is spanned byHk−1 together with all monomials
in x of degreek, it follows thatH(k) is spanned by all non-zero monomials inx of degreek.
ThusH is coradically graded, and so satisfies all of the Krull relations by Corollary 3

In fact, we could have seen thatTn satisfies all of the Krull relations directly from [MS
since it is known thatT ∗

n
∼= Tn; that is,Tn is also copointed.

Example 4.2. Let g be a semisimple Lie algebra overC, and letuq(g) be the finite-
dimensional quantum group of Lusztig, forq a primitive nth root of 1 in C. Write
uq(g) = C〈ei, fi, ki〉 where{ei, fi, ki | i = 1, . . . , n} are the usual generators foruq(g)

[K, IV.5.6] and letH = uq(g)�0 be a Borel subalgebra. That is,H = C〈ei, ki〉. ThenH is
coradically graded withH0 = C〈ki〉, a group algebra. By Corollary 3.7,H has all of the
Krull relations. Note that wheng = sl2, H is isomorphic to a Taft algebra (Example 4.1

Example 4.3. Consider the pointed Hopf algebrasu(D) defined in [AS, 5.17] in terms of
linking datumD of finite Cartan type; these algebras can be considered as generaliz
of uq(g). u(D) is coradically graded if all the linking elementsλij = 0. Thus in this case

u(D) satisfies all of the Krull relations by Corollary 3.7.
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Another Hopf algebra for which all of the Krull relations are satisfied is given by m
ified supergroup algebras, as described in [AEG]; these are based on the defini
supergroups due to Kostant [Ko]. First, a (finite-dimensional) supergroup is constr
from a finite groupG and a finite-dimensional representationV of G. Let

∧
V be the

exterior algebra ofV and letH = ∧
V # kG. ThenH becomes a cocommutative Ho

superalgebra by lettingV be odd,G be even, and eachx ∈ V be (graded) primitive.H is
called asupergroupin [Ko], although in his formulation

∧
V is viewed asU(g), where

g = V is an odd Lie superalgebra. Moreover, every finite-dimensional cocommutative
superalgebra overC is of this form.

To describe the modified supergroup algebraH , considerH as above and assume
addition thatG contains a central group-like elementg such thatg2 = 1 andgxg = −x for
all x ∈ V . We defineH by lettingH = H as an algebra, but changing the comultiplicat
onH by defining∆H (x) := x ⊗ 1+ g ⊗ x for all x ∈ V , and letting∆H (y) = ∆H(y) for
all y ∈ G. With this definition,(H,∆H ) becomes an ordinary Hopf algebra, themodified
supergroup algebra.

Alternatively,H can be described as follows: note thatkZ2 = k〈u〉 acts onH via u ·x =
−x for all x ∈ V andu · y = y for all y ∈ G. We may thus form the Radford biprodu
H̃ = H ∗ kZ2; it is an ordinary Hopf algebra, andH may be identified with the quotien
H̃/H̃L+, whereL= k〈gu〉.

Now K := ∧
V # k〈g〉 is a normal Hopf subalgebra ofH , with quotient Hopf algebra

H/HK+ ∼= k(G/〈g〉).

Corollary 4.4. Let H be a modified supergroup algebra as above. ThenH satisfies all of
the Krull relations.

Proof. Let K be as above;K is pointed and coradically graded and so satisfies a
the Krull relations. SinceH = H/HK+ ∼= k(G/〈g〉) is a group algebra, it also satisfi
all the Krull relations. Thus by the Transitivity Theorem 2.8,H satisfies all of the Krull
relations. �

5. The Krull relations under twistings

In this section we first consider what happens to the Krull relations when the mu
cation of a Hopf algebraH is twisted by a cocycleσ , and then turn to the case when t
comultiplication ofH is twisted by a dual cocycleΩ ∈ H ⊗ H . TwistingH by a cocycle
σ was studied in [Do].

First, recall from [Sw1] that for a Hopf algebraH , a (left) 2-cocycleon H is a
convolution-invertible mapσ :H ⊗ H → k satisfying the equality

σ(h(1), l(1))σ (h(2)l(2),m) = σ(l(1),m(1))σ (h, l(2)m(2)) (5.1)

for all h, l,m ∈ H . We assume also thatσ is normal, that is,
σ(h,1) = σ(1, h) = ε(h) for all h ∈ H .
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We may now form a new Hopf algebraHσ by leaving the coalgebra structure ofH

unchanged but twisting the algebra structure byσ . That is,Hσ has new multiplication

h ·σ l := σ(h(1), l(1))h(2)l(2)σ
−1(h(3), l(3)), (5.2)

for all h, l ∈ H . One can also define a new antipode.
Also, given a rightH -comodule algebraA, we may form the algebraAσ , with twisted

multiplication

a ·σ b = σ−1(a(1), b(1))a(0)b(0)

for all a, b ∈ A. ThenAσ is a rightHσ -comodule algebra, using the same comodule st
ture map as forA. We note that we needσ−1 here because of the mixture of a left cocy
with a right comodule.

A reference for the above facts is [KS, 10.2.3]; see also [M, Section 7.5] for a discu
of Aσ . We first show that twisting preserves Galois extensions.

Theorem 5.3. Let R ⊂ A be anH -extension, letσ be a cocycle onH , and consider the
twisted algebraAσ . ThenRσ = R, and an idealI of R is H -stable if and only if it is
Hσ -stable. Moreover,

(1) R ⊂ A is H -Galois if and only ifR ⊂ Aσ is Hσ -Galois;
(2) R ⊂ A is H -cleft if and only ifR ⊂ Aσ is Hσ -cleft; moreover, ifA = R #τ H , then

Aσ
∼= R #τσ Hσ , whereτσ = τ ∗ σ−1;

(3) H -Spec(R) = Hσ -Spec(R).

Proof. First, sinceR = AcoH = A
coHσ
σ , it is easy to see thatr ·σ a = ra anda ·σ r = ar for

any r ∈ R,a ∈ A. It follows thatRσ = R. Moreover, ifI is any ideal ofR andAI = IA,
then clearlyA ·σ I = I ·σ A. Thus the fact about stability follows.

(1) Consider the two canonical Galois maps forA andAσ ; that is,β :A⊗R A → A⊗H

via a ⊗ b �→ ab(0) ⊗ b(1) andβσ :Aσ ⊗R Aσ → Aσ ⊗ Hσ via a ⊗ b �→ a ·σ b(0) ⊗ b(1) =
a(0)b(0) ⊗ b(2)σ

−1(a(1), b(1)).

DefineΦ,Ψ :A ⊗ H → A ⊗ H by

Φ(a ⊗ h) = a(0) ⊗ σ−1(a(1), Sh(3))σ (h(1), Sh(2))h(4)

and

Ψ (a ⊗ h) = a(0) ⊗ σ(a(1), Sh(1))σ
−1(Sh(2), h(3))h(4).

We claim thatΨ = Φ−1 and thatβ = Φ ◦ βσ . Thusβ is bijective if and only ifβ−1 is
bijective. To show this we require the cocycle condition (5.1), and, in addition, the iden

σ(h(1), Sh(2))σ
−1(Sh(3), h(4)) = ε(h), (5.4)
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σ−1(Sh(1), h(2))σ (h(3), Sh(4)) = ε(h). (5.5)

Identity (5.4) appears in [BM,Do]; see also [KS]. (5.5) can be obtained from (5.4) a
lows: apply (5.4) to the left cocycleσ−1 onH cop and use thatSH cop = SH . Then

σ−1(h(4), Sh(3)

)
σ
(
Sh(2), h(1)

) = ε(h).

Now replaceh by Sh and we have (5.5).
We can now show thatΨ = Φ−1. First,

(Ψ ◦ Φ)(a ⊗ h)

= Ψ
(
a(0) ⊗ σ−1(a(1), Sh(3))σ (h(1), Sh(2))h(4)

)
= a(0)(0) ⊗ σ(a(0)(1), Sh(4)(1))σ

−1(Sh(4)(2), h(4)(3))σ
−1(a(1), Sh(3))

× σ(h(1), Sh(2))h(4)(4)

= a(0) ⊗ σ(a(1), Sh(4))σ
−1(Sh(5), h(6))σ

−1(a2, Sh(3))(h(1), Sh(2))h(7)

= a(0) ⊗ σ−1(Sh(3), h(4))σ (h(1), Sh(2))h(5)

= a ⊗ h,

using (5.4) in the last step. Similarly, using (5.5), we see that

(Φ ◦ Ψ )(a ⊗ h)

= Φ
(
a(0) ⊗ σ(a(1), Sh(1))σ

−1(Sh(2), h(3))h(4)

)
= a(0)(0) ⊗ σ(a(1), Sh(1))σ

−1(Sh(2), h(3))σ
−1(a(0)(1), Sh(4)(3))

× σ(h(4)(1), Sh(4)(2))h(4)(4)

= a(0) ⊗ σ(a(2), Sh(1))σ
−1(Sh(2), h(3))σ

−1(a(1), Sh(6))σ (h(4), Sh(5))h(7)

= a(0) ⊗ σ(a2, Sh(1))σ
−1(a(1), Sh(2))h(3) = a ⊗ h.

ThusΨ = Φ−1. Finally we check thatβ = Φ ◦ βσ , using (5.1):

Φ
(
βσ (a ⊗ h)

)
= Φ

(
a(0)b(0) ⊗ b(2)σ

−1(a(1), b(1))
)

= a(0)b(0) ⊗ σ−1(a(0)(1)b(0)(1), Sb(2)(3))σ (b(2)(1), Sb(2)(2))σ
−1(a(1), b(1))b(2)(4)

= a(0)b(0) ⊗ σ−1(a(1)b(1), Sb(5))σ (b(3), Sb(4))σ
−1(a2, b(2))b(6)

= a(0)b(0) ⊗ σ−1(a(1), b(1)Sb(6))σ
−1(b(2), Sb(5))σ (b(3), Sb(4))b(6)

= a(0)b(0) ⊗ σ−1(a(1), b(1)Sb(2))b(3)
= ab(0) ⊗ b(1) = β(a ⊗ b).
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(2) Assume thatA is H -cleft, via theH -comodule mapγ :H → A with convolution

inverseγ −1. We claim thatAσ is Hσ -cleft, via the same mapγ σ = γ on vector spaces, bu
with convolution inverse(γ σ )−1(h) = γ −1(h(3))σ (h(1), Sh(2)). First, the fact thatγ is an
Hσ -comodule map follows sinceH = Hσ as coalgebras andA = Aσ as comodules. Also
sinceγ is a comodule map,δ(γ (h)) = γ (h(1))⊗h(2) andδ(γ −1(h)) = γ −1(h(2))⊗Sh(1),
whereδ is the comodule structure map ofA. It follows that

δ
(
(γ σ )−1(h)

) = γ −1(h(4)) ⊗ Sh(3)σ (h(1), Sh(2)).

Now in Hom(H,Aσ ),

γ (h(1)) ·σ (γ σ )−1(h(2))

= γ (h(1))(0)(γ
σ )−1(h(2))(0)σ

−1(γ (h(1))(1), (γ
σ )−1(h(2))(1)

)
= γ (h(1)(1))γ

−1(h(2)(4))σ
−1(h(1)(2), Sh(2)(3))σ (h(2)(1), Sh(2)(2))

= γ (h(1))γ
−1(h(6))σ

−1(h(2), Sh(5))σ (h(3), Sh(4))

= γ (h(1))γ
−1(h(2)) = ε(h)1.

SinceH is finite-dimensional, also(γ σ )−1 is the left inverse ofγ , and soAσ is Hσ -cleft.
To see that the new cocycleτσ is as described, first recall that cleft extensions are alw

crossed products. ThusAσ
∼= R #τσ Hσ for some Hopf 2-cocycleτσ :Hσ ⊗ Hσ → R,

where theHσ -comodule structure onR #τσ Hσ is given byid ⊗ ∆Hσ = id ⊗ ∆H .
Chooser #g ands #h in A = R #τ H , and consider their multiplication inAσ :

(r #g) ·σ (s #h)

= (r #g(1))(s #h(1))σ
−1(g(2), h(2))

= r(g(1) · s)τ (g(2), h(1)) #g(3)h(2)σ
−1(g(4), h(3))

= r(g(1) · s)τ (g(2), h(1)) #σ−1(g(3), h(2))σ (g(4), h(3))g(5)h(4)σ
−1(g(6), h(5))

= r(g(1) · s)τ (g(2), h(1))σ
−1(g(3), h(2)) #g(4) ·σ h(3).

But considered as elements inR #τσ Hσ , their product is

(r #g)(s #h) = r(g(1) · s)τσ (g(2), h(1)) #g(3) ·σ h(2).

Thusτσ (g,h) = τ(g(1), h(1))σ
−1(g(2), h(2)).

Alternatively the cocycle can be expressed in terms of the cleft mapγ (respectively
γ σ ).

(3) The identification of the stable parts of Spec follows from the remarks at the b

ning of the proof, once we know (1).�
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Theorem 5.6. LetHσ be any cocycle twist ofH . Then:

(1) any one of the Krull relationscoINC, t-coLO, and strongcoGU is true forH ⇔ it is
true forHσ ;

(2) if H hascoGUand t-LO, thenHσ also hascoGU.

Proof. (1) follows from Theorem 5.3(3), because the three dual Krull relations co
t-coLO, and strong coGU are defined only in terms of ideals ofR, as noted in the remar
after Definition 2.2.

(2) follows from (1) and Lemma 2.5(2)′. �
We now consider dual cocycle twists, as in [Dr]. That is, letΩ ∈ H ⊗ H be a dual

cocycle forH . ThenHΩ has the same multiplication asH but has new comultiplica
tion ∆Ω(h) = Ω∆H (h)Ω−1. This construction is the formal dual of the construction
the cocycle twists in Section 4, in the following sense: ifH is finite-dimensional, then
(H ∗)Ω = (Hσ )∗. For if σ is a 2-cocycle onH , thenσ corresponds to an invertible eleme
Ω ∈ H ∗ ⊗ H ∗ ∼= (H ⊗ H)∗, and we may twist the comultiplication ofH ∗ by Ω . The
explicit correspondence betweenσ andΩ is given by

σ(h, l) =
∑

Ω1(h)Ω2(l).

Analogously ifA is anH -comodule algebra, thenA is anH ∗-module algebra, and w
can consider it either as twisted byσ or byΩ .

Using this reformulation we may state the dual version of Theorem 5.6.

Theorem 5.7. LetHΩ be any dual cocycle twist ofH . Then:

(1) any one of the Krull relationsINC, t-LO, and strongGU is true forH ⇔ it is true for
HΩ ;

(2) if H hasGU and t-coLO, thenHΩ also hasGU.

Remark 5.8. In the terminology of [MS, Definition 8.8],H is calledstrongly semisimple
if for all left H -module algebrasA with ring of invariantsR = AH , and anyP ∈ SpecA,
P ∩R is a semiprime ideal ofR. SimilarlyH is calledstrongly cosemisimpleif for all right
H -comodule algebrasA with ring of coinvariantsR = AcoH , and anyP ∈ SpecA, P ∩ R

is a semiprime ideal ofR. Theorem 5.3(3) implies thatH is strongly cosemisimple if an
only if Hσ is strongly cosemisimple, and thus dually thatH is strongly semisimple if and
only if HΩ is strongly semisimple.

By [MS, Theorem 8.11 and Corollary 8.14],H is strongly cosemisimple if and only
for everyH -module algebraR, everyH -semiprime ideal ofR is semiprime; equivalently
for all H -module algebrasR, the prime radicalP(R) is alwaysH -stable. Thus this stabilit
property is preserved by twisting with a cocycleσ .

Similarly from [MS, Theorem 8.10 and Corollary 8.14],H is strongly semisimple i
and only if for everyH -semiprimeH -module algebraR, the smash productR # H is

semiprime. Thus this property is preserved by twisting with a dual cocycleΩ .
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6. Applications II: Triangular Hopf algebras and the Drinfeld double

We first consider triangular Hopf algebras.

Theorem 6.1. Let k be an algebraically closed field of characteristic0, and letH be a
( finite-dimensional) triangular Hopf algebra. ThenH has the Krull relationsINC, t-LO,
and strongGU.

Proof. By [EG2], for any triangular Hopf algebra, the Jacobson radicalJ (H) is a Hopf
ideal. ThusH = H/J(H) is a semisimple triangular Hopf algebra. By [EG1], it follow
that H = kGΩ , the twist of a group algebra by a dual cocycleΩ ∈ kG ⊗ kG. Applying
Theorem 5.7, we see thatH has INC,t-LO, and strong GU, sincekG has these thre
properties. The theorem now follows from Theorem 3.5.�

An alternate proof of Theorem 6.1 may be given using supergroups. For, in [E
it is shown that ifH is triangular then it is a dual cocycle twist of a supergroup. T
Theorem 6.1 would follow immediately from Theorem 5.7 and Corollary 4.4.

We next consider the general question of when any (or all) of the Krull relation
from H andH ∗ to the Drinfeld doubleD(H). We obtain a complete answer for bisma
products of groups and for factorizable Hopf algebras.

We are able to give one general result. We use a result of Doi and Takeuchi th
anyH , D(H) = (H ∗cop⊗ H)σ for some cocycleσ onH ∗cop⊗ H [DT].

Corollary 6.2. If H has the six Krull relationsINC, s-LO, GU, coINC, t-coLO, andcoGU,
then the doubleD(H) hascoINC, st-coLO, andcoGU.

Proof. By Lemma 2.5,H also has strong GU and strong coGU. By Remark 2.7 and
discussion following the Transitivity Theorem 2.8, the tensor productH ∗cop ⊗ H has all
the Krull relations. Apply [DT] to see thatD(H) = (H ∗cop⊗H)σ . The result now follows
by Theorem 5.6. �

We now consider bismash products. Assume thatL is a factorizable group, that isL =
FG, whereF andG are subgroups ofL with F ∩ G = {1}. Then(F,G) form amatched
pair of groupsin the sense of [Tk], and we may thus construct the bismash productH =
kG # kF ; in this caseH ∗ = kF # kG. More generally, the bicrossed product extensi
H = kG #τ

σ kF are classified by classes of pairs[σ, τ ] in the OpExt group; see Masuoka
survey [Ma].

We have already noted that bothkG and (kG)∗ satisfy all of the Krull relations. In
addition,(kG)∗ always satisfies 1-LO [CM], andkG will satisfy 1-LO whenever it is semi
simple (by combining [LP] with[FM]).

We will need the following result of [BGMj]: letH = kG # kF be the bismash produc
for the factorizable groupL = FG, as described above. ThenD(H) ∼= D(kL)Ω for some

dual cocycleΩ .
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Theorem 6.3. LetL = FG be a factorizable group as above. Then:

(1) any bicrossed productH = kG #τ
σ kF satisfies all of the Krull relations, and for an

Ω , HΩ satisfies the basic Krull relationsINC, t-LO, andGU;
(2) if H is the bismash product, thenD(H) satisfies all of the Krull relations.

If also chark = 0 or if chark = p > 0 andp does not divide|G|, then in(1) H will satisfy
1-LO and1-coLOandHΩ will satisfy1-LO. In (2) D(H) will satisfy1-LO and1-coLO.

Proof. (1) First, any bicrossed productH satisfies all the Krull relations by the Transitivi
Theorem 2.8, sinceK = kG # 1 is a normal Hopf subalgebra ofH with quotientH ∼= kF .
ThenHΩ satisfies the basic Krull relations by Theorem 5.7.

(2) By (1),H satisfies all of the Krull relations. Thus by Corollary 6.2,D(H) satisfies
the dual Krull relations. By the result of [BGMj] described above,D(H) ∼= D(kL)Ω for
some dual cocycleΩ . SinceD(kL) satisfies all of the Krull relations,D(kL)Ω satisfies
the basic Krull relations by Theorem 5.7. ThusD(H) satisfies all six Krull relations.

In the case whenkG is semisimple, the facts about 1-LO and 1-coLO follow from
Transitivity Theorem 2.8(1) together with (1).�
Corollary 6.4. Let H = (kG #τ

σ kF )Ω , let R be anH -semiprimeH -module algebra, and
assume chark = 0 or charK = p > 0 and p does not divide|G|. ThenR # H must be
semiprime.

Proof. H satisfies 1-LO by the theorem. ThusR # H is semiprime, by [MS, Propositio
4.5(1)]. �

Bicrossed products are an important class of Hopf algebras, as they are closely re
the group-theoretical quasi-Hopf algebras defined in [O] and studied further in [EN
By definition a quasi-Hopf algebra isgroup theoreticalif its category of representations
a group theoretical categoryC(L,ω,F,α), whereL is a finite group,F ⊂ L is a subgroup
ω :G × G × G → k× is a normalized 3-cocycle, andα :F × F → k× is a normalized 2-
cocycle such thatω|F = 1 [O]. Herek is algebraically closed of characteristic 0. A ma
example is given by the quasi-Hopf version of the bicrossed products above, altho
generalG might not be a group and is replaced by a fixed setQ of coset representative
of F in L. It is shown in [N] that any group-theoretical quasi-Hopf algebraH is gauge-
equivalent to some quasi-Hopf algebraM = kQ #τ

σ kF , whereσ andτ are defined usingω.
This means thatH = MΩ , a twist of M , although in this case the twisting elementΩ

does not have to be a cocycle. It is an open question as to whether every semisimp
algebra overC is group-theoretical [ENO].

Finally we consider factorizable Hopf algebras. See [RS] for the definition. We us
result of [RS], which says that ifH is a factorizable Hopf algebra, thenD(H) ∼= (H ⊗H)Ω

for some dual cocycleΩ ; see [S3] for another proof.

Corollary 6.5. Assume thatH is factorizable and satisfies all of the Krull relations. Th

D(H) satisfies all of the Krull relations.
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Proof. First,D(H) satisfies the dual Krull relations by Corollary 6.2. By the Transitiv
Theorem 2.8,H ⊗H also satisfies all of the Krull relations. Now apply the above resu
[RS] together with Theorem 5.7 to see thatD(H) satisfies INC,t-LO, and strong GU. �
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