Principal Submatrices IX: Interlacing Inequalities for Singular Values of Submatrices*

R. C. THOMPSON
University of California
Santa Barbara, California
Communicated by Alan J. Hoffman

INTRODUCTION

This paper is the ninth in a continuing series studying the submatrices of a matrix. Our main objectives in the previous papers in the series has been to examine, simultaneously, all of the k-square principal submatrices of an n-square matrix A. Usually A has been symmetric or Hermitian, and much of our effort has centered around the well-known fact asserting that the eigenvalues of an $(n-1)$-square principal submatrix of Hermitian A always interlace the eigenvalues of A. In this paper we study the singular values of the submatrices (not necessarily principal submatrices) of an arbitrary matrix A. Although we study not necessarily principal submatrices, this paper is included in the Principal Submatrices series because (as our proofs will show) the singular values of an arbitrary submatrix of matrix A may be approached through an examination of the principal submatrices of $A A^{*}$. (Here A^{*} is the Hermitian adjoint of A.)

We now give a brief summary of certain particular cases of our results that merit special attention. Let A be an $n \times n$ real or complex matrix, and let $\alpha_{1} \geqslant \alpha_{2} \geqslant \cdots \geqslant \alpha_{n}$ be the singular values of A. (They are defined to be the eigenvalues of the positive semidefinite matrix $\left(A A^{*}\right)^{1 / 2}$.) Let $B=A_{i j}$ be the $(n-1)$-square submatrix of A obtained by deleting row i and column j, and let $\beta_{1} \geqslant \beta_{2} \geqslant \cdots \geqslant \beta_{n-1}$ be the singular values of B. Our first theorem yields, as a special case, these interlacing inequalities:

[^0]\[

$$
\begin{align*}
& \alpha_{1} \geqslant \beta_{1} \geqslant \alpha_{3} \\
& \alpha_{2} \geqslant \beta_{2} \geqslant \alpha_{4} \\
& \ldots \tag{1}\\
& \alpha_{t} \geqslant \beta_{t} \geqslant \alpha_{t+2}, \quad 1 \leqslant t \leqslant n-2 \\
& \ldots \\
& \alpha_{n-2} \geqslant \beta_{n-2} \geqslant \alpha_{n} \\
& \alpha_{n-1} \geqslant \beta_{n-1}
\end{align*}
$$
\]

That inequalities (1) are the best that can be asserted is shown by (a special case of) Theorem 2. It follows from Theorem 2 that, if arbitrary nonnegative numbers $\beta_{1} \geqslant \cdots \geqslant \beta_{n-1}$ are given satisfying (1), there will always exist unitary matrices U and V such that the singular values of $(U A V)_{i j}$ are $\beta_{1}, \ldots, \beta_{n-1}$. (Of course, A and $U A V$ always have the same singular values $\alpha_{1}, \ldots, \alpha_{n}$.) Thus nothing more than (1) can hold in general, when looking at a fixed submatrix. Further results can be obtained, however, by examining all the submatrices of A of fixed degree. Now let $\beta_{i j, 1} \geqslant \cdots \geqslant \beta_{i j, n-1}$ denote the singular values of $A_{i j}$. We obtain the following estimates on the mean square of the t th singular value of all the $(n-1)$-square submatrices $A_{i j}$ of A :

$$
\begin{align*}
& \left(\frac{1}{n}\right)^{2} \alpha_{t}^{2}+\frac{2(n-1)}{n^{2}} \alpha_{l+1}^{2}+\left(\frac{n-1}{n}\right)^{2} \alpha_{t+2}^{2} \leqslant \frac{1}{n^{2}} \sum_{i, j=1}^{n} \beta_{i j, t}^{2} \\
& \leqslant\left(\frac{n-1}{n}\right)^{2} \alpha_{t}^{2}+\frac{2(n-1)}{n^{2}} \alpha_{i+1}^{2}+\left(\frac{1}{n}\right)^{2} \alpha_{t+2}^{2} \\
& 1
\end{aligned} \quad \begin{aligned}
\left(\frac{1}{n}\right)^{2} \alpha_{n-1}^{2}+\frac{n-1}{n} \frac{1}{n} \alpha_{n}^{2} & \leqslant \frac{1}{n^{2}} \sum_{i, j=1}^{n} \beta_{i j, n-1}^{2} \tag{2}\\
& \leqslant\left(\frac{n-1}{n}\right)^{2} \alpha_{n-1}^{2}+\frac{n-1}{n} \frac{1}{n} \alpha_{n}^{2}
\end{align*}
$$

In (2) we have displayed convex combinations of $\alpha_{t}^{2}, \alpha_{t+1}^{2}, \alpha_{t \mid 2}^{2}$ which serve as upper and lower bounds for the mean square of the t th singular value ($t \leqslant n-2$) of the different $(n-1)$-square submatrices $A_{i j}$ of A. (By (1), this mean lies between $\alpha_{t}{ }^{2}$ and α_{t+2}^{2}.) In (3), we have similar, though not precisely the same, convex combinations of $\alpha_{n-1}^{2}, \alpha_{n}^{2}$, and 0
yielding bounds for the mean square of the $\beta_{i j, n-1}$. These results, (2) and (3), will appear as special cases of Theorem 3.

Let

$$
\begin{equation*}
f_{i j}(\lambda)=\left(\lambda-\beta_{i j, 1}^{2}\right) \cdots\left(\lambda-\beta_{i j, n-1}^{2}\right) \tag{4}
\end{equation*}
$$

be the singular value polynomial of $A_{i j}$. This is the polynomial whose roots are the squares of the singular values of $A_{i j}$. Let

$$
\begin{equation*}
f(\lambda)=\left(\lambda-\alpha_{1}^{2}\right) \cdots\left(\lambda-\alpha_{n}^{2}\right) \tag{5}
\end{equation*}
$$

be the corresponding polynomial for A. As a particular instance of Theorem 4, we obtain

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{n} f_{i j}(\lambda)=\frac{d}{d \lambda} \lambda \frac{d}{d \lambda} f(\lambda) \tag{6}
\end{equation*}
$$

It is interesting to contrast formula (6) with the well-known result asserting that the sum of the characteristic polynomials of all the principal $(n-1)$ square submatrices of A is just the derivative of the characteristic polynomial of A.

RESULTS

As we shall be studying rectangular matrices, we give first the definition of the singular values of a rectangular matrix.

Definition. Let A be an $m \times n$ matrix. The singular values

$$
\begin{equation*}
\alpha_{1} \geqslant \alpha_{2} \geqslant \cdots \geqslant \alpha_{\min (m, n)} \tag{7}
\end{equation*}
$$

of A are the common eigenvalues of the positive semidefinite matrices $\left(A A^{*}\right)^{1 / 2}$ and $\left(A^{*} A\right)^{1 / 2}$.

Since $A A^{*}$ is m-square and $A^{*} A$ is n-square, the eigenvalues of $\left(A A^{*}\right)^{1 / 2}$ and $\left(A^{*} A\right)^{1 / 2}$ do not coincide in full. However, it is well known that the nonzero eigenvalues (including multiplicities) of these two matrices always coincide. It is frequently convenient to define α_{t} to be zero for $\min (m, n)<t \leqslant \max (m, n)$. Then $\alpha_{1}{ }^{2} \geqslant \cdots \geqslant \alpha_{\max (m, n)}^{2}$, and the roots of $A A^{*}$ (respectively $A^{*} A$) are the first m (respectively n) of these numbers.

We are now ready for Theorem 1.
Theorem 1. Let A be an $m \times n$ matrix with singular values (7). Let B be a $p \times q$ submatrix of A, with singular values

$$
\begin{equation*}
\beta_{1} \geqslant \beta_{2} \geqslant \cdots \geqslant \beta_{\min (p, q)} \tag{8}
\end{equation*}
$$

Then

$$
\begin{array}{ll}
\alpha_{i} \geqslant \beta_{i}, & \text { for } i=1,2, \ldots, \min (p, q) \\
\beta_{i} \geqslant \alpha_{i+(m-p)+(n-q)}, & \text { for } \quad i \leqslant \min (p+q-m, p+q-n) \tag{10}
\end{array}
$$

Proof. For an arbitrary matrix M, let $M\left[i_{1}, \ldots, i_{p} \mid i_{1}, \ldots, i_{q}\right]$ denote the submatrix of M lying at the intersection of rows i_{1}, \ldots, i_{p} and columns j_{1}, \ldots, j_{q}.

Suppose that $B=A\left[i_{1}, \ldots, i_{p} \mid j_{1}, \ldots, j_{q}\right]$. To simplify notation let $\omega=\left\{i_{1}, \ldots, i_{p}\right\}$ and $\tau=\left\{j_{1}, \ldots, j_{q}\right\}$ denote the sets of integers giving the rows and columns of A used to form B, and denote B by $B=A[\omega \mid \tau]$.

Let us view B as a submatrix of $U A V$, where U is an m-square unitary matrix and V is an n-square unitary matrix. In this proof we may take $U=I_{m}$ and $V=I_{n}$. (In the next theorem, U and V will become variable.) Then

$$
\begin{equation*}
B=U\left[i_{1}, \ldots, i_{p} \mid 1, \ldots, m\right] A V\left[1, \ldots, n \mid j_{1}, \ldots, i_{q}\right] \tag{11}
\end{equation*}
$$

Thus

$$
\begin{equation*}
B B^{*}=U\left[i_{1}, \ldots, i_{p} \mid 1, \ldots, m\right] X X^{*} U^{*}\left[1, \ldots, m \mid i_{1}, \ldots, i_{p}\right] \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
X=A V\left[1, \ldots, n \mid j_{1}, \ldots, j_{q}\right] \tag{13}
\end{equation*}
$$

is $m \times q$. Thus $B B^{*}$ is a principal p-square submatrix of the m-square Hermitian matrix $U X X^{*} U^{*}$. Let

$$
\begin{equation*}
x_{1}^{2} \geqslant x_{2}^{2} \geqslant \cdots \geqslant x_{\min (m, q)}^{2} \geqslant x_{\min (m, q)+1}^{2}=\cdots=x_{m}^{2}=0 \tag{14}
\end{equation*}
$$

denote the eigenvalues of $X X^{*}$. Thus $x_{1}, \ldots, x_{\min (m, q)}$ are the singular values of X. From the well-known formulas linking the eigenvalues of a Hermitian matrix with the eigenvalues of a principal submatrix, we obtain

$$
\begin{equation*}
x_{i}^{2} \geqslant \beta_{i}^{2} \geqslant x_{i+m-p}^{2} \text { for } i=1,2, \ldots, p \tag{15}
\end{equation*}
$$

Now $x_{1}{ }^{2}, \ldots, x_{\min (m, q)}^{2}, 0(q-\min (m, q)$ times $)$ are the eigenvalues of

$$
\begin{equation*}
X * X=V^{*}\left[i_{1}, \ldots, j_{q}[1, \ldots, n] A * A V\left[1, \ldots, n \mid j_{1}, \ldots, j_{q}\right] .\right. \tag{16}
\end{equation*}
$$

Thus $X^{*} X$ is a principal q-square submatrix of the n-square Hermitian matrix $V^{*} A^{*} A V$. Hence

$$
\begin{equation*}
\alpha_{i}^{2} \geqslant x_{i}^{2} \geqslant \alpha_{i+n-q}^{2} \quad \text { for } \quad i=1,2, \ldots, q . \tag{17}
\end{equation*}
$$

Thus for $i \leqslant \min (p, q)$ we have $\alpha_{i}{ }^{2} \geqslant x_{i}{ }^{2} \geqslant \beta_{i}{ }^{2}$, yielding (9). And for $i \leqslant \min (p+q-m, p+q-n)$ we have $\beta_{i}{ }^{2} \geqslant x_{i+m-p}^{2} \geqslant \alpha_{i+(n-q)+(m-p)}^{2}$, yielding (10).

The proof of Theorem 1 is now complete. We shall present a second proof of Theorem 1 at the end of this paper.

Theorem 2. Let A be an $m \times n$ matrix with singular values (7). Let arbitrary nonnegative numbers (8) be given, satis/ying both (9) and (10). Then m-square unitary matrix U and n-square unitary matrix V exist such that the singular values of the $p \times q$ submatrix

$$
(U A V)\left[i_{1}, \ldots, i_{p} \mid i_{1}, \ldots, j_{q}\right]
$$

of $U A V$ are the numbers (8).

Proof. Define β_{i} to be zero if $i>\min (p, q)$, and define α_{i} to be zero if $i>\min (m, n)$. Now define inductively nonnegative numbers x_{1}, \ldots, $x_{\min (m, q)}$ by

$$
x_{1}=\min \left\{\begin{array}{l}
\alpha_{1} \tag{18}\\
\beta_{1-m+p}
\end{array} \quad \text { if } \quad m-p<1\right.
$$

and

$$
\begin{align*}
x_{i}=\min \begin{cases}\alpha_{i} & \left\{\begin{array}{l}
\beta_{i-m+p} \\
x_{i-1}
\end{array}\right. \\
& \text { for } \quad 2 \leqslant i \leqslant \min (m, q)\end{cases} \\
\qquad \text {, } \quad 2 \leqslant \tag{19}
\end{align*}
$$

(We include β_{i-m+p} in (18) and (19) only if i satisfies the indicated condition.) For all $t>\min (m, q)$, define x_{t} by $x_{t}=0$.

It is plain that $x_{1} \geqslant \cdots \geqslant x_{\min (m, q)}$. We claim that inequalities (17) are satisfied. Plainly, $x_{i} \leqslant \alpha_{i}$ for $i \leqslant \min (m, q)$, and this also holds for $\min (m, q)<i \leqslant q$ since then $x_{i}=0$. We show by induction on i that the lower bounds in (17) are satisfied. To show that $x_{1} \geqslant \alpha_{1+n-q}$, we must show that both of the quantities entering into the minimum in (18) exceed
α_{1+n-q}. Plainly, by (7), $\alpha_{1} \geqslant \alpha_{1+n-q}$. If $m-p<1$ (thus $m=p$), (10) tells us that $\beta_{1} \geqslant \alpha_{1+n-q}$, provided $\mathbf{l} \leqslant \min (q, m+q-n)$. However, if $m+q-n \leqslant 0$, we have $m+\mathbf{1} \leqslant 1+n-q$ and thus automatically $0=\alpha_{1+n-q} \leqslant \beta_{1}$. Hence $x_{1} \geqslant \alpha_{1+n-q}$. Suppose (induction) $x_{i-1} \geqslant$ $\alpha_{i-1+n-q}$. Let $i \leqslant \min (m, q)$. If we show that each of the three quantities entering into the minimum in (19) exceeds α_{i+n-q}, it will follow that $x_{i} \geqslant \alpha_{i+n-q}$. Plainly, by (7), $\alpha_{i} \geqslant \alpha_{i+n-q}$. If $m-p<i$, we obtain from (10) that $\beta_{i-m+p} \geqslant \alpha_{i+n-q}$, provided $i \leqslant \min (q, m+q-n)$. By induction, $x_{i-1} \geqslant \alpha_{i-1+n-q} \geqslant \alpha_{i+n-q}$ (by (7)). Thus $x_{i} \geqslant \alpha_{i+n-q}$, except perhaps if $i>\min (q, m+q-n)$. However, if $i>\min (q, m+q-n)$, then $i+$ $n-q>\min (n, m)$, so that $\alpha_{i+n-q}=0$ and hence automatically $x_{i} \geqslant$ α_{i+n-q}. Therefore $x_{i} \geqslant \alpha_{i+n-q}$ is established if $i \leqslant \min (m, q)$. If $i>$ $\min (m, q)$, then $i+n-q>\min (n-q+m, n) \geqslant \min (m, n)$, so that automatically $0=\alpha_{i+n-q} \leqslant x_{i}$. Therefore inequalities (17) are established.

We now claim that inequalities (15) are satisfied. By (19), $x_{i+m-p} \leqslant \beta_{i}$, for $i+m-p \leqslant \min (m, q)$. Thus the lower inequality in (15) is satisfied, provided $i \leqslant \min (p, p+q-m)$. If $i>\min (p, p+q-m)$, then $i+$ $m-p>\min (m, q)$ and hence $x_{i+m-p}=0$, so that automatically $\beta_{i} \geqslant$ x_{i+m-p}. Thus the lower inequalities in (15) are satisfied. We show by induction on i that $x_{i} \geqslant \beta_{i}$. For $i=1$ this follows immediately from (18), since $\alpha_{1} \geqslant \beta_{1}$. Suppose $x_{i-1} \geqslant \beta_{i-1}$. If we show that each of the three quantities entering into the minimum in (19) exceeds β_{i}, we may conclude that $x_{i} \geqslant \beta_{i}$. We may assume also that $i \leqslant \min (p, q)$, since $\beta_{i}=0\left(\leqslant x_{i}\right)$ for $i>\min (p, q)$. Thus (by (9)) $\alpha_{i} \geqslant \beta_{i}$. If $m-p<i$, $\beta_{i-m+p} \geqslant \beta_{i}$ by (8). By induction $x_{i-1} \geqslant \beta_{i-1} \geqslant \beta_{i}$. Hence the inequality $x_{i} \geqslant \beta_{i}$ for all $i \leqslant p$ is established.

It is a known fact (see [1]), because $x_{1}{ }^{2} \geqslant \cdots \geqslant x_{q}{ }^{2}$ satisfy (17), there exists an n-square unitary matrix V such that the eigenvalues of

$$
\begin{equation*}
X^{*} X=V^{*}\left[j_{1}, \ldots, j_{q} \mid 1, \ldots, n\right] A^{*} A V\left[1, \ldots, n \mid j_{1}, \ldots, j_{q}\right] \tag{20}
\end{equation*}
$$

are

$$
\begin{equation*}
x_{1}{ }^{2}, \ldots, x_{\min (m, q)}^{2}, \ldots, x_{q}{ }^{2} . \tag{21}
\end{equation*}
$$

Here

$$
X=A V\left[1, \ldots, n \mid j_{1}, \ldots, j_{q}\right]
$$

Thus $X X^{*}$ has

$$
\begin{equation*}
x_{1}^{2}, \ldots, x_{\min (m, q)}^{2}, \ldots, x_{m}^{2} \tag{22}
\end{equation*}
$$

as eigenvalues. Because the inequalities (15) are satisfied, there exists an m-square unitary matrix U such that

$$
U X X^{*} U^{*}\left[i_{1}, \ldots, i_{p}\left[i_{1}, \ldots, i_{p}\right]\right.
$$

has cigenvalues $\beta_{1}{ }^{2} \geqslant \cdots \geqslant \beta_{\min (p, q)}^{2} \geqslant \cdots=\beta_{p}{ }^{2}$. It is now immediate that the submatrix

$$
U\left[i_{1}, \ldots, i_{p} \mid 1, \ldots, m\right] A V\left[1, \ldots, n \mid j_{1}, \ldots, j_{q}\right]
$$

of $U A V$ has (8) as its singular values. The proof of Theorem 2 is now finished.

We remark that the nonincreasing condition (8) is actually superfluous. More precisely, we have Theorem $\mathbf{2}^{\prime}$.

Theorem 2'. Let arbitrary numbers $\beta_{1}, \ldots, \beta_{\min (p, q)}$ be given, such that (9) and (10) hold. Then the conclusions of Theorem 2 are valid.

Proof. The proof amounts to showing that, if (9) and (10) are valid for not necessarily decreasing numbers $\beta_{1}, \ldots, \beta_{\min (p, q)}$, then (9) and (10) remain valid if $\beta_{1}, \ldots, \beta_{\min (p, q)}$ are rearranged into decreasing order. More precisely, let σ be a permutation of $1,2, \ldots, s=\min (p, q)$ such that $\beta_{\sigma(1)} \geqslant \beta_{\sigma(2)} \geqslant \cdots \geqslant \beta_{\sigma(s)}$. If $\sigma(i) \geqslant i$, we then have $\beta_{\sigma(i)} \leqslant \alpha_{\sigma(i)} \leqslant \alpha_{i}$. If $\sigma(i)<i$, then for some $j<i$ we have $\sigma(j) \geqslant i$, and hence $\beta_{\sigma(i)} \leqslant$ $\beta_{\sigma(j)} \leqslant \alpha_{\sigma(j)} \leqslant \alpha_{i}$. Thus $\beta_{\sigma(i)} \leqslant \alpha_{i}$ holds for all i. Similarly, for $i \leqslant$ $\min (p+q-m, p+q-n)$, if $\sigma(i) \leqslant i$ then $\beta_{\sigma(i)} \geqslant \beta_{i} \geqslant \alpha_{i+m-p+n-q}$. If $\sigma(i)>i$, then for some $j>i$ we have $\sigma(j) \leqslant i$. But then $\beta_{\sigma(i)} \geqslant \beta_{\sigma(j)} \geqslant$ $\alpha_{\sigma(j)+m-p+n-q} \geqslant \alpha_{i+m-p+n-q}$. Thus $\beta_{\sigma(i)} \geqslant \alpha_{i+m-p+n-q}$ for all $i \leqslant \min (p+$ $q-m, p+q-n$.

It now follows from Theorem 2 that we may find U and V such that the singular values of $\operatorname{UAV}\left[i_{1}, \ldots, i_{p} \mid j_{1}, \ldots, i_{q}\right]$ are $\beta_{\sigma(1)}, \ldots, \beta_{\sigma(\min (p, q))}$; that is, $\beta_{1}, \ldots, \beta_{\min (p, q)}$.

For the next theorems we let $Q_{m p}$ denote the totality of $\binom{m}{p}$ sequences $\omega=\left\{i_{1}, \ldots, i_{p}\right\}$ of integers for which $1 \leqslant i_{1}<\cdots<i_{p} \leqslant m$, and we let $Q_{n q}$ denote the totality of sequences $\tau=\left\{j_{1}, \ldots, j_{q}\right\}$ of integers for which $1 \leqslant j_{1}<\cdots<j_{a} \leqslant n$. We let

$$
\begin{equation*}
A[\omega \mid \tau]=A\left[i_{1}, \ldots, i_{p} \mid j_{1}, \ldots, j_{q}\right] \tag{23}
\end{equation*}
$$

be the $p \times q$ submatrix of A at the intersection of the rows ω and the columns τ, and we let

$$
\beta_{\omega \tau, 1} \geqslant \beta_{\omega \tau, 2} \geqslant \cdots \geqslant \beta_{\omega \tau, \min (p, q)}
$$

be the singular values of (23). As before, we let $\beta_{\omega \tau, l}=0$ for $t>\min (p, q)$.
Theorem 3. Define rational numbers $\varphi_{0}, \ldots, \varphi_{m-p}$ and $\psi_{0}, \ldots, \psi_{n-q}$ by the polynomial identities

$$
\begin{align*}
& \prod_{i=p}^{m-1}\left(\frac{\lambda+i}{1+i}\right)=\sum_{t=0}^{m-p} \varphi_{t} \lambda^{m-p-t} \tag{24}\\
& \prod_{i=q}^{n-1}\left(\frac{\lambda+i}{1+i}\right)=\sum_{t=0}^{n-q} \psi_{t} \lambda^{n-q-t} \tag{25}
\end{align*}
$$

For $i \leqslant \min (p, q)$, define rational numbers $d_{0}, \ldots, d_{\min (m+n-p-q, n-i)}$, and $d_{0}{ }^{\prime}, \ldots, d_{\min (m+n-p-q, n-i)}^{\prime}$ (depending on i) by the polynomial identities

$$
\begin{equation*}
\left(\sum_{r=0}^{\min (m-p, q-i)} \varphi_{r} \lambda^{m-p-r}\right)\left(\sum_{s=0}^{n-q} \psi_{s} \lambda^{n-q-s}\right)=\sum_{\rho=0}^{\min (m+n-p-q, n-i)} d_{\rho} \lambda^{m+n-p-q-\rho}, \tag{26}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(\sum_{r=0}^{\min (m-p, q-i)} \varphi_{m-p-r} \lambda^{m-p-r}\right)\left(\sum_{s=0}^{n-q} \psi_{n-q-s} \lambda^{n-q-s}\right) \\
= & \sum_{\rho=0}^{\min (m+n-p-q, n-i)} d_{\rho}^{\prime} \lambda^{m+n-p-q-\rho} . \tag{27}
\end{align*}
$$

Then

$$
\begin{align*}
\sum_{\rho=0}^{\min (m+n-p-q, n-i)} d_{\rho} \alpha_{i+\rho}^{2} & \leqslant \frac{1}{\binom{m}{p}} \frac{1}{\binom{n}{q}} \sum_{\omega \in Q_{m p}, r \in Q_{m q}} \beta_{\omega r, i}^{2} \\
& \leqslant \sum_{\rho=0}^{\min (m+n-p-q, n-i)} d_{\rho}^{\prime} \alpha_{i+\rho}^{2} \tag{28}
\end{align*}
$$

Proof. Let $X_{\tau}=A V\left[1, \ldots, n \mid j_{1}, \ldots, j_{q}\right]$, and let

$$
x_{\tau, 1}^{2} \geqslant x_{\tau, 2}^{2} \geqslant \cdots \geqslant x_{\tau, \min (p, q)}^{2} \geqslant x_{\tau, \min (p, q)+1}^{2}=\cdots=x_{\tau, m}^{2} \quad(=0)
$$

be the roots of $X_{\tau} X_{\tau}{ }^{*}$. Then by (15) we have

$$
x_{\tau, i}^{2} \geqslant \beta_{\omega \tau, i}^{2} \geqslant x_{\tau, i+m-p}^{2}, \quad 1 \leqslant i \leqslant p
$$

Using Theorem 16 of $[1]$, we see that, for $i \leqslant p$ (and so for $i \leqslant \min (p, q)$),

$$
\sum_{r=0}^{m-p} \varphi_{r} x_{\tau, i+r}^{2} \leqslant \frac{1}{\binom{m}{p}} \sum_{\omega \in Q_{m p}} \beta_{\omega \tau, i}^{2} \leqslant \sum_{r=0}^{m-p} \varphi_{m-p-r} x_{\tau, i+r}^{2}
$$

Since $x_{\tau, i+r}=0$ whenever $i+r>\min (m, q)$, we get

$$
\begin{equation*}
\sum_{r=0}^{\min (m-p, q-i)} \varphi_{r} x_{\tau, i+r}^{2} \leqslant \frac{1}{\binom{m}{p}} \sum_{\omega \in Q_{m p}} \beta_{\omega \tau, i}^{2} \leqslant \sum_{r=0}^{\min (m-p, q-i)} \varphi_{m-p-r} x_{\tau, i+r}^{2} \tag{29}
\end{equation*}
$$

By (17), $\alpha_{i} \geqslant x_{\boldsymbol{\tau}, i}^{2} \geqslant \alpha_{i+n-q}^{2}$ for $1 \leqslant i \leqslant q$, and hence, by Theorem 16 of [1],

$$
\begin{equation*}
\sum_{s=0}^{n-q} \psi_{s} \alpha_{i+s}^{2} \leqslant \frac{1}{\binom{n}{q}} \sum_{\tau \in Q_{n q}} x_{\tau, i}^{2} \leqslant \sum_{s=0}^{n-q} \psi_{n-q-s} \alpha_{i+s}^{2} \tag{30}
\end{equation*}
$$

for $i \leqslant q$.
Summing (29) over τ and dividing by $\binom{n}{q}$, upon using (30) we obtain

$$
\begin{align*}
\sum_{r=0}^{\min (m-p, q-i)} \varphi_{r} \sum_{s=0}^{n-q} \psi_{s} \alpha_{i+r+s}^{2} & \leqslant \frac{1}{\binom{m}{p}} \frac{1}{\binom{n}{q}} \sum_{\omega \in Q_{m p}, r \in Q_{n q}} \beta_{\omega r, i}^{2} \\
& \leqslant \sum_{r=0}^{\min (m-p, q-i)} \varphi_{m-p-r} \sum_{s=0}^{n-q} \psi_{n-q-s} \alpha_{i+r+s}^{2} \tag{31}
\end{align*}
$$

for $i \leqslant \min (p, q)$.
On the left side of (31), the coefficient of $\alpha_{i+\rho}^{2}$ is

$$
\sum_{r=0, r+s=\rho}^{\min (m-p, q-i)} \sum_{s=0, r+s=\rho}^{n-q} \varphi_{r} \psi_{s} \text { for } 0 \leqslant \rho \leqslant \min (m+n-p-q, n-i) .
$$

However,
$d_{\rho}=\sum_{r=0, r+s=\rho}^{\min (m-p, q-i)} \sum_{s=0, r+s=\rho}^{n-q} \varphi_{r} \psi_{s}$ for $0 \leqslant \rho \leqslant \min (m+n-p-q, n-i)$.
Thus the lower bound in (28) is established.

On the right side of (31) the coefficient of $\alpha_{i+\rho}^{2}$ is

$$
\begin{aligned}
\sum_{r=0, r+s=\rho}^{\min (m-p, q-i)} & \sum_{s=0, r+s=\rho}^{n-q} \varphi_{m-p-r} \psi_{n-q-s} \\
& \text { for } \quad 0 \leqslant \rho \leqslant \min (m+n-p-q, n-i) .
\end{aligned}
$$

However,

$$
\begin{aligned}
& d_{\rho}^{\prime}=\sum_{r=0, r+s=\rho}^{\min (m-p, q-i)} \sum_{s=0, r+s=\rho}^{n-q} \varphi_{m-p-r} \psi_{n-q-s} \\
& \quad \text { for } 0 \leqslant \rho \leqslant \min (m+n-p-q, n-i) .
\end{aligned}
$$

The result is now at hand.
If p and q are large and i is small, so that $\min (m+n-p-q, n-i)$ $=m+n-p-q$, formulas (28) provide convex combinations of $\alpha_{i}{ }^{2}, \ldots, \alpha_{i+m-p+n-q}^{2}$ which serve as upper and lower bounds for the mean of the $\beta_{\omega \tau, i}^{2}$. Thus Theorem $\mathbf{3}$ provides a result sharper than can be established by applying Theorem 1, since Theorem 1 only asserts that the $\beta_{\omega \tau, i}^{2}$ lie between $\alpha_{i}{ }^{2}$ and $\alpha_{i+m-p+n-q}^{2}$. To see that in fact we have convex combinations, notice that (for these values of p, q, i),

$$
\sum_{\rho=0}^{m+n-p-q} d_{\rho}=\sum_{\rho=0}^{m+n-p-q} \sum_{r=0, r+s=\rho}^{m-p} \sum_{s=0, r+s=\rho}^{n-q} \varphi_{r} \psi_{s}=\sum_{r=0}^{m-p} \varphi_{r} \sum_{s=0}^{n-q} \psi_{s}=1
$$

since

$$
\sum_{r=0}^{m-p} \varphi_{r}=1=\sum_{s=0}^{n-q} \psi_{s}
$$

Similarly

$$
\begin{aligned}
\sum_{\rho=0}^{m+n-p-q} d_{\rho}^{\prime} & =\sum_{\rho=0}^{m+n-p-q} \sum_{r=0, r+s=\rho s=0, r+s=\rho}^{m-p} \sum_{m-p-r}^{n-q} \psi_{n-q-s} \\
& =\sum_{r=0}^{m-p} \varphi_{m-v-r} \sum_{s=0}^{n-q} \psi_{n-q-s}=1
\end{aligned}
$$

When p and q are small and i large, so that $\min (m+n-p-q, n-i)$ $=n-i$, formula (28) may be regarded as providing subconvex combinations of $\alpha_{i}{ }^{2}, \ldots, \alpha_{n}{ }^{2}$ (convex combinations of $\alpha_{i}{ }^{2}, \ldots, \alpha_{n}{ }^{2}, 0$) which serve as bounds for the mean of the $\beta_{\omega \tau, i}^{2}$.

Theorem 4. Let

$$
\begin{aligned}
f_{\omega, \tau}(\lambda) & =\left(\lambda-\beta_{\omega \tau, 1}^{2}\right) \cdots\left(\lambda-\beta_{\omega \tau, \min (p, q)}^{2}\right) \\
f(\lambda) & =\left(\lambda-\alpha_{1}^{2}\right) \cdots\left(\lambda-\alpha_{\min (m, n)}^{2}\right)
\end{aligned}
$$

Then

$$
\begin{align*}
& \sum_{\omega \in Q_{m p, r \in Q_{n q}}} \lambda^{p-\min (p, q)} f_{\omega, \tau}(\lambda) \\
= & \frac{1}{(m-p)!} \frac{1}{(n-q)!} \frac{d^{m-p}}{d \lambda^{m-p}} \lambda^{m-q} \frac{d^{n-q}}{d \lambda^{n-q}} \lambda^{n-\min (m, n)} f(\lambda) . \tag{32}
\end{align*}
$$

Proof. Since the matrices $B_{\omega, \tau} B_{\omega, \tau}^{*}$ are $p \times p$ principal submatrices of the $m \times m$ matrix $X_{\tau} X_{\tau}{ }^{*}$, we find [see 1] that

$$
\begin{aligned}
& \sum_{\omega \in Q_{m p}}\left(\lambda-\beta_{\omega r, 1}^{2}\right) \cdots\left(\lambda-\beta_{\omega \tau, \min (p, q)}^{2}\right) \lambda^{p-\min (p, q)} \\
= & \frac{1}{(m-p)!} \frac{d^{m-p}}{d \lambda^{m-p}}\left(\lambda-x_{i, 1}^{2}\right) \cdots\left(\lambda-x_{\tau, \min (m, q)}^{2} \lambda^{m-\min (m, q)} .\right.
\end{aligned}
$$

Since $X_{\tau} * X_{\tau}$ is a principal $q \times q$ submatrix of the $n \times n$ matrix $A^{*} A$, we have

$$
\begin{aligned}
& \sum_{\tau \in Q_{n q}}\left(\lambda-x_{\tau, 1}^{2}\right) \cdots\left(\lambda-x_{\tau, \min (m, q)}^{2}\right) \lambda^{q-\min (m, q)} \\
= & \frac{1}{(n-q)!} \frac{d^{n-q}}{d \lambda^{n-q}}\left(\lambda-\alpha_{1}^{2}\right) \cdots\left(\lambda-\alpha_{\min (m, n)}^{2}\right) \lambda^{n-\min (m, n)} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \sum_{\omega \in Q_{m p}, \tau \in Q_{n q}} f_{\omega, \tau}(\lambda) \lambda^{p-\min (p, q)} \\
= & \frac{1}{(m-p)!} \frac{d^{m-p}}{d \lambda^{m-p}} \lambda^{m-q} \sum_{\tau \in Q_{n q}}\left(\lambda-x_{\tau, 1}^{2}\right) \cdots\left(\lambda-x_{\tau, \min (m, q)}^{2}\right) \lambda^{q-\min (m, q)} \\
= & \frac{1}{(m-p)!} \frac{1}{(n-q)!} \frac{d^{m-p}}{d \lambda^{n-p}} \lambda^{m-q} \frac{d^{n-q}}{d \lambda^{n-q}} \lambda^{n-\min (m, n)} f(\lambda) .
\end{aligned}
$$

The proof is complete.
We now give the promised second proof of Theorem 1. For any $m \times n$ matrix A with singular values $\alpha_{1} \geqslant \cdots \geqslant \alpha_{\min (m, n)}$ the roots of the $(m+n)$-square Hermitian matrix

$$
M=\left[\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right]
$$

are $\pm \alpha_{1}, \ldots, \pm \alpha_{\min (m, n)}, 0$ (with multiplicity $n+m-2 \min (m, n)$).
To see this, observe that

$$
\begin{aligned}
\operatorname{det}\left(\lambda I_{m+n}-M\right) & =\operatorname{det}\left[\begin{array}{cc}
I_{m} & \lambda^{-1} A \\
0 & I_{n}
\end{array}\right] \operatorname{det}\left[\begin{array}{cc}
\lambda I_{m} & -A \\
-A^{*} & \lambda I_{n}
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cc}
\lambda I_{m}-\lambda^{-1} A A^{*} & 0 \\
-A^{*} & \lambda I_{n}
\end{array}\right] \\
& =\lambda^{n} \operatorname{det}\left(\lambda I_{m}-\lambda^{-1} A A^{*}\right)=\lambda^{n-m} \operatorname{det}\left(\lambda^{2} I_{m}-A A^{*}\right) .
\end{aligned}
$$

The principal $(p+q)$-square submatrix of M, obtained by deleting all rows and columns except rows and columns $i_{1}, \ldots, i_{p}, m+j_{1}, \ldots, m+j_{q}$, is

$$
\left[\begin{array}{cc}
0 & A\left[i_{1}, \ldots, i_{p} \mid j_{1}, \ldots, i_{q}\right] \\
A\left[i_{1}, \ldots, i_{p} \mid i_{1}, \ldots, j_{q}\right]^{*} & 0
\end{array}\right]
$$

Using the inequalities connecting the eigenvalues of a $(p+q)$-principal submatrix of Hermitian matrix M with the eigenvalues of M, we obtain the inequalities (9) and (10).

REFERENCES

1 R. C. Thompson, Principal submatrices of normal and Hermitian matrices, Illinois J. Math. 10(1966), 296-308.

2 R. C. Thompson and P. McEnteggert, Principal submatrices II: The upper and lower quadratic inequalities, Linear Algebra 1(1968), 211-243.
3 R. C. Thompson, Principal submatrices III: Linear inequalities, J. Res. Nat. Bur. Standards, Sect. B, 72, 7-22 (1968).
4 R. C. Thompson, Principal submatrices IV: On the independence of the eigenvalues of different principal submatrices, Linear Algebra $\mathbf{Q}(1969)$, 355-374.
5 R. C. Thompson, Principal submatrices V: Some results concerning principal submatrices of arbitrary matrices, J. Res. Nat. Bur. Standards, Section B, 72, 115-125 (1968).
6 R. C. Thompson, Principal submatrices VI: Cases of equality in certain linear inequalities, Linear Algebra $\mathbf{2}(1969), 375-379$.
7 R. C. Thompson, Principal submatrices VII: Further results concerning matrices with equal principal minors, J. Res. Nat. Bur. Standards, Section B, 70, 249-252 (1968).
8 R. C. Thompson, Principal submatrices VIII: Principal sections of a pair of forms, Rocky Mountain J. Math., in press.

[^0]: * The preparation of this paper was supported by the U.S. Air Force Office of Scientific Research, under Grant 698-67.

