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INTRODUCTION 

This paper is the ninth in a continuing series studying the submatrices 

of a matrix. Our main objectives in the previous papers in the series 

has been to examine, simultaneously, all of the K-square principal sub- 

matrices of an n-square matrix A. Usually A has been symmetric or 

Hermitian, and much of our effort has centered around the well-known 

fact asserting that the eigenvalues of an (n - I)-square principal submatrix 

of Hermitian A always interlace the eigenvalues of A. In this paper we 

study the singular values of the submatrices (not necessarily principal 

submatrices) of an arbitrary matrix A. Although we study not necessarily 

principal submatrices, this paper is included in the Principal Submatrices 

series because (as our proofs will show) the singular values of an arbitrary 

submatrix of matrix A may be approached through an examination of 

the principal submatrices of AA *. (Here A* is the Hermitian adjoint of A.) 

We now give a brief summary of certain particular cases of our results 

that merit special attention. Let A be an 12 x n real or complex matrix, 

and let tci > cc2 3 . . * > GC, be the singular values of A. (They are defined 

to be the eigenvalues of the positive semidefinite matrix (AA*)1/2.) Let 

B = Aij be the (n - 1)-square submatrix of A obtained by deleting row 

i and column j, and let B1 3 /~‘e > - * * > /3n_1 be the singular values of B. 
Our first theorem yields, as a special case, these interlacing inequalities: 

* The preparation of this paper was supported by the U.S. Air Force Office of 

Scientific Research. under Grant 698-67. 
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Un-l>Pn-1. 

That inequalities (1) are the best that can be asserted is shown by 

(a special case of) Theorem 2. It follows from Theorem 2 that, if arbitrary 

nonnegative numbers pi > * * - 3 Pn_1 are given satisfying (l), there will 

always exist unitary matrices U and V such that the singular values of 

(UA V)ii are PI,. . . , Pn-1. (Of course, A and UA V always have the same 

singular values ui, . . . , a,.) Thus nothing more than (1) can hold in general, 

when looking at a fixed submatrix. Further results can be obtained, 

however, by examining all the submatrices of A of fixed degree. Now 

let pii,i > * - - 3 ,Bij,n_l denote the singular values of Aij. We obtain 

the following estimates on the mean square of the tth singular value of 

all the (PZ - 1)-square submatrices Aij of A: 
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In (2) we have displayed convex combinations of ut2, uf+i, CC~“,~ which 

serve as upper and lower bounds for the mean square of the tth singular 

value (t < n - 2) of the different (PZ - 1)-square submatrices Aij of A. 

(By (l), this mean lies between CC: and c$+~.) In (3), we have similar, 

though not precisely the same, convex combinations of ui_,, un2, and 0 
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yielding bounds for the mean square of the Bij,n_l. These results, (2) 

and (3), will appear as special cases of Theorem 3. 

Let 

fi@) = (1 - Pi,1) . . . @ - &,d (4) 

be the singular value polynomial of Aij. This is the polynomial whose 

roots are the squares of the singular values of Aij. Let 

f(2) = (2 - CQ) * * * (A - q&2) (5) 

be the corresponding polynomial for A. As a particular instance of 

Theorem 4, we obtain 

It is interesting to contrast formula (6) with the well-known result asserting 

that the sum of the characteristic polynomials of all the principal (n - l)- 

square submatrices of A is just the derivative of the characteristic polynom- 

ial of A. 

RESULTS 

As we shall be studying rectangular matrices, we give first the definition 

of the singular values of a rectangular matrix. 

DEFINITION. Let A be an m x n matrix. The singular values 

al 3 u2 b ’ ’ * 3 %nin(m,n) (7) 

of A are the common eigenvalues of the positive semidefinite matrices 

(AA*)1’2 and (A*A)lj2. 

Since AA* is m-square and A*A is n-square, the eigenvalues of 

(AA*)lj2 and (A*A) Ii2 do not coincide in full. However, it is well known 

that the nonzero eigenvalues (including multiplicities) of these two matrices 

always coincide. It is frequently convenient to define ut to be zero for 

min(m, PZ) < t < max(m, n). Then ccl2 > . . . > M~,,~,,,~, and the roots 

of AA* (respectively A*A) are the first wz (respectively n) of these numbers. 

We are now ready for Theorem 1. 

THEOREM 1. Let A be an m x n matrix z&h singular values (7). 

Let B be a p x q submatrix of A, with singular values 
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xi 3 Pi> 

Pi b ‘%+(m-P)+(n-9lJ 

for i = 1,2,. . . , min(p, q), (9) 

for i<min($+q-m,p+q-92). (10) 

Proof. For an arbitrary matrix M, let M[i,, . . , i,Jjl,. . . , j,] denote 

the submatrix of M lying at the intersection of rows i,, . . , i, and columns 

il> f . . > i,. 
Suppose that B = A [iI,. . . , i,\il,. . . , j,]. To simplify notation let 

cc) = {zj,. . .) i,] and z = {il, . . . , y’,) denote the sets of integers giving 

the rows and columns of A used to form B, and denote B by B = A [W/T]. 

Let us view B as a submatrix of UAV, where U is an m-square unitary 

matrix and V is an n-square unitary matrix. In this proof we may take 

U = I, and V = I,. (In the next theorem, U and V will become variable.) 

Then 

B = U[iI,. . .,i,[l,. . ., m]AV[l,. ., wljl,. . .,jn]. (11) 

Thus 

BB* = U[i,, . . . , i,ll,. . , m]XX*U*[l,. . . , mlil,. . . , i,], (12) 

where 

X=AV[l,..., + I..., i,] (13) 

is m x q. Thus BB* is a principal p-square submatrix of the m-square 

Hermitian matrix UXX*U*. Let 

$2 > x22 > * * * > X;in(m 4) 3 Xkintrn e)+ 1 = * * - = x,2 = 0, (14) 

denote the eigenvalues of XX*. Thus x1,. . . , x,~~(%,~) are the singular 

values of X. From the well-known formulas linking the eigenvalues of 

a Hermitian matrix with the eigenvalues of a principal submatrix, we 

obtain 

~~~>/?~~>x,2+,_~ for i=1,2 ,..., p. (15) 

Now x12,. . > Xiin(m,q)r 0 (q - min(m, q) times) are the eigenvalues of 

X*X = V*[jI,. . .,j$,. . .,n]A*AV[l,. . .&,. . .,i*]. W 
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Thus X*X is a principal q-square submatrix of the n-square Hermitian 

matrix V*A *A V. Hence 

xi2 2 xi2 3 ci,F+,_g for i = 1,2,. . , q. (17) 

Thus for i < min($, q) we have ccl2 > xi2 >, Pi’, yielding (9). And for 

i < min(p + q - m, 9 + q - n) we have Pi2 > x:+,-p 3 d+(n--p)+(m--pp 

yielding (10). 

The proof of Theorem 1 is now complete. We shall present a second 

proof of Theorem 1 at the end of this paper. 

THEOREM 2. Let A be an m x n matrix with singular values (7). Let 

arbitrary nonnegative numbers (8) be given, satisfying both (9) and (10). 

Then m-square unitary matrix U and n-square unitary matrix V exist 

s,uch that the singular values of the p x q submatrix 

(UAV) [;I,. , i,lil,. . . > i,l 

of UAV are the numbers (8). 

Proof. Define fii to be zero if i > min(p, q), and define ui to be zero 

if i > min(m, n). Now define inductively nonnegative numbers x1,. . . , 

X*nin(m,g) bY 

Ix1 
xl = min ~/?_,+, if m - p < 1 (19) 

and 

I % 
xi = min 

I 

pi_nz+p if m - p < i, 

Xi-1 

for 2 < i < min(m, q). (19) 

(We include ,6+,+, in (18) and (19) only if i satisfies the indicated condi- 

tion.) For all t > min(m, q), define xt by xt = 0. 

It is plain that xi 3 . . . > x,~~(~,~). We claim that inequalities (17) 

are satisfied. Plainly, xi < ai for i < min(m, q), and this also holds for 

min(m, q) < i < q since then xi = 0. We show by induction on i that 

the lower bounds in (17) are satisfied. To show that x1 > al+n_-9, we must 

show that both of the quantities entering into the minimum in (18) exceed 
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~1+n-L7. Plainly, by (7), GC~ > Mu++*. If m -9 < 1 (thus m = p), (10) 

tells us that pi > ~i+,+~, provided 1 < min(q, nz + q - n). However, 

if m + q - n < 0, we have m + 1 < 1 + PZ - q and thus automatically 

o=cc 1+n-Q < 81. Hence xi > ~(i+~_~. Suppose (induction) xi-i 3 

%-1+7+-n. Let i < min(m, q). If we show that each of the three quantities 

entering into the minimum in (19) exceeds u~+,+~, it will follow that 

xi 3 CQ+,+~. Plainly, by (7), cci > CZ~+~_~. If m - ~3 < i, we obtain from 

(10) that p._ z n+D > CC~++~, provided i < min(q, m + q - n). By induction, 

xi-1 3 xi-i+n_n 3 Cli+n-a (by (7)). Thus xi > Ki+n-_n, except perhaps if 

i > min(q, m + q - 92). However, if i > min(q, m + q - PZ), then i + 

n - q > min(n, m), so that t~~+~__~ = 0 and hence automatically xi 3 

u~+~_~. Therefore xi 3 ai+n_n is established if i < min(m, q). If i > 

min(m, q), then i + n - q > min(n - q + m, n) > min(m, ti), so that 

automatically 0 = CQ+~_~ < xi. Therefore inequalities (17) are established. 

We now claim that inequalities (15) are satisfied. By (19), x~+,,+~ < fii, 

for i + m - p < min(m, q). Thus the lower inequality in (15) is satisfied, 

provided i < min(p, p + q - m). If i > min($, p + q - m), then i + 

m - p > min(m, q) and hence x~+~_~ = 0, so that automatically Bi > 

Xi+??%-%Y Thus the lower inequalities in (15) are satisfied. We show by 

induction on i that xi 3 pi. For i = 1 this follows immediately from 

(18), since c~i 3 pi. Suppose Xi-1 3 pi-i. If we show that each of the 

three quantities entering into the minimum in (19) exceeds Pi, we may 

conclude that xi 3 pi. We may assume also that i < min(p, q), since 

pi = 0 (< xi) for i > min(p, q). Thus (by (9)) ai 3 pi. If m - p < i, 

P.- 2 m+D > pi by (8). By induction xi_l 3 pi-i >, pi. Hence the inequality 

xi 3 pi for all i < $J is established. 

It is a known fact (see [I]), because xi2 3 . . . 3 xa2 satisfy (17), there 

exists an n-square unitary matrix I/ such that the eigenvalues of 

x*x = : 

are 

Here 

V”[j,,. . .,j$,. . .,n]A”AV[l,. . .,+,. . .,j*], (20) 

X12,. . . , &injm,&. . . , x, 2 . (21) 

X=AV[l,..., nlji )...) i,]. 

Thus XX* has 

(22) 
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as eigenvalues. Because the inequalities (15) are satisfied, there exists 

an m-square unitary matrix U such that 

uxx*u* [iI,. . . , i&, . . . ) i,] 

has eigenvalues pi2 3 * * * > P&p q, > * * . = bp2. It is now immediate 

that the submatrix 

U[i,,. ., i,lI,. . ., m]AV[l,. . .,nlj,,. . .,iQ] 

of UAV has (8) as its singular values. The proof of Theorem 2 is now 

finished. 

We remark that the nonincreasing condition (8) is actually superfluous. 

More precisely, we have Theorem 2’. 

THEOREM 2'. Let arbitrary numbers PI,. . . , &,incp,q, be given, such 

that (9) and (10) hold. Then the conclusions of Theorem 2 aye valid. 

Proof. The proof amounts to showing that, if (9) and (10) are valid 

for not necessarily decreasing numbers Pi,. . . , &,incp,ql, then (9) and (10) 

remain valid if pi,. . . , /lminfe,qj are rearranged into decreasing order. 

More precisely, let CT be a permutation of 1, 2,. . . , s = min($, q) such that 

P o(l) 3 PO(2) 3 . . . 3 Pa(s). If o(i) 3 i, we then have poci, < CC,(~) < tci. 

If o(i) < i, then for some j < i we have a(i) 3 i, and hence pgCi) < 

/L(i) < c%(j) \ < xi. Thus poCij < tci holds for all i. Similarly, for i < 

min(p + q - m, p + q - n), if o(i) < i then PO(i) > Pi 3 Ui+m_p+n-a. If 
o(i) > i, then for some j > i we have o(i) < i. But then poCij 3 poCi, 3 

~,(j)+~-~+~-~ 3 ui+m-p+n-n. Thus A,(i) 3 ai+m-p+n-p for all i < min(P + 
s-mP+q-4. 

It now follows from Theorem 2 that we may find U and I/ such that 

the singular values of UA V [iI,. . , i,ljl, . . , i,] are fi,( r), . . . , /lo~min~p,q~~ ; 

that is, PI.. . . , Pmin(p,q). 

For the next theorems we let Qms denote the totality of 
0 
T sequences 

w = {ii,. .) i,} of integers for which 1 < i, < . . . < i, < m, and we 

let Qna denote the totality of sequences r = {ii,. . . , i,} of integers for 

which 1 < ir < . . - < j, < n. We let 

A [olt] = A [ii,. . .) i&. . .) j,] (23) 
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be the p x q submatrix of A at the intersection of the rows w and the 

columns z, and we let 

P wr.1 > Pwr,B 3 ’ . . 3 Pwr,min(p,q) 

be the singular values of (23). As before, we let Pwr,t = 0 for t > min(p, 4). 

THEOREM 3. Define rational numbers po,. . . , qn+, and &, . . , z,bn_, 

by the polynomial identities 

(24) 

(25) 

For i < min(p, q), define rational numbers d,, . . . , d,i,(m+n_-P_-q,n_-ij, and 

do’, . . . , dkn(m+n--p-q,m-i) (depending on i) by the polynomial identities 

( 

min(n-p,q-i) 

c 
r=O 

p,$,-p-j [# $J..-g-s) = ‘nin’m+;z-q’“” do$n+n--p-_q-o, 

(26) 

and 

i 

min(m-p,q--z) 

c %-_Z)_Jm-~-~ 
7=0 Ii 

n-q 

2 &+~n-q-s 

s=O i 

min(m+n-p-q,n--i) 

zzz C do~~mtn-P-_q-~. 

p=O 

Then 

min(m+n-p-q,n--i) 

c d,&, 
1 1 

c PL,i 

p=O m~Q,~ti=Qn~ 

mm(m+n-P-q,x-6) 

e 2 do’&,. 
p=O 

Proof. Let X, = AV[l,. . ., sliI,. ., ia], and let 

xZ,I 3 ‘:,Z > * * * 3 XZ,min(p,q) 3 XZ,min(p,q)+l = ’ . ’ = $,,m (= O) 

(27) 
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be the roots of X,X,*. Then by (15) we have 

4,i b Ph,i b 4,i+m-p> 1<i<p. 

Using Theorem 16 of [l], we see that, for i < fi (and so for i < min(p, q)), 

Since x,,~+~ = 0 whenever i + r > min(m, q), we get 

min(m-p,q-i) 

c 
7=0 

min(m-p,q-i) 

2 pl,-p-r2,i+r. (29) 

r-0 

By (17), tci b x,“i > M:+,_~ for 1 < i < q, and hence, by Theorem 16 

of [ll, 

for i < q. 

Summing (29) over -c and dividing by n , upon using (30) we obtain 
0 4 

min(m-p,q-i) 

c 
7=0 

min(m--p,q--I) n-q 

G 2 
Q)m-9-r s.. VL-,-&+r+s (31) 

for i < min(p, q). 
On the left side of (31), the coefficient of c.$+, is 

min(m--p,q--i) n-q 

c 
s=o&? wbs f 

or O<p<min(m+n-p-q,n-ii). 
r=o,r+s=p ) 

However, 

min(m-fi,q-i) n-q 
d,= 2 

,=o~s=p~r*s for 
0 < p < min(m + n -p - q, n - i). 

r=o,*+s=p , 

Thus the lower bound in (28) is established. 
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On the right side of (31) the coefficient of CC:&,, is 

for 0 < p < min(m + n - p - q,12 - i). 

However, 

min(n-_p,g--z) n-_q 

do’= c- c %n-dn-n--s 
r=o,r+s=p s=o,r+s=p 

for 0 ,( p < min(m + n - + - 4, n - i). 

The result is now at hand. 

If $ and q are large and i is small, so that min(m + n - $ - q. n - i) 

= m + n - p - q, formulas (28) provide convex combinations of 

q 
2 2 

, . . . > q+m_-p+n_-q which serve as upper and lower bounds for the mean 

of the p”,,,,. Thus Theorem 3 provides a result sharper than can be estab- 

lished by applying Theorem 1, since Theorem 1 only asserts that the 

Phi lie between ui2 and u~+,,_~+,_~. To see that in fact we have convex 

combinations, notice that (for these values of p, q, i), 

c -do= 2 - 2 c 
p=o p=o r=O,r+s=ps=O,*+.ep 

P& = “2 (8% 2 9% = 1, 
S=O 

since 

Similarly 

m-cm-p-q m+n--9-q m-P fi-_q 

oz do’ = ;F;o c 
2 %n-D--T*n--P--s 

r=o,r+s=p s=o,r+s=p 

When p and q are small and i large, so that min(m + n - p - q, n - i) 
= n - i, formula (28) may be regarded as providing subconvex combina- 

tions of ui2,. . . , un2 (convex combinations of ui2,. . . , un2, 0) which serve 

as bounds for the mean of the Bz,,;. 
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THEOREM 4. Let 

Then 

Proof. Since the matrices BOsIB& are p x p principal submatrices 

of the m x m matrix XzXz*, we find [see I] that 

1 2YT?Z (1 _ &) . . . (1 _ ~~,min(n,g))jlm-min(m,q). 
= (m - p)! dk’-P 

Since X,*X, is a principal q x q submatrix of the n x n matrix A*A, we 

have 

1 d”-” (1 _ a12) . . . (1 _ CC~in(m,n))~~-min(m,~). 
- (n - q) ! dl”-‘l 

Thus 

dm-v dn-a 
= (m : p) ! (n !. q) ! &“-P “- din-q 

An-min(m,fl)f(J). 

The proof is complete. 

We now give the promised second proof of Theorem 1. For any 
m x n matrix A with singular values ui 2 - * - > umjn~m,n, the roots of 
the (m + %)-square Hermitian matrix 
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M= 

are i MI,. . J zt Cl,in(n*,fi)J 0 (with multiplicity n $- m - 2 min(m, n)). 

To see this, observe that 

= iin det(J.1, - klAA*) = ;ln-nL det(;121, ~ AA*). 

The principal (~5 + q)-square submatrix of M, obtained by deleting all 

rows and columns except rows and columns i,, . . . , i,, m + jl,. . . , m + ja, is 

L 

0 A [iI,. . . , i&l,. > i,l 
A[i,,. . .,iJjl,. ., j,]* 0 1. 

Using the inequalities connecting the eigenvalues of a (9 + q)-principal 

submatrix of Hermitian matrix M with the eigenvalues of M, we obtain 

the inequalities (9) and (10). 
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