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Silent mating type information regulation 1 (SIRT1) is implicated in tumorigenesis through its effect
on autophagy. In gastric cancer (GC), SIRT1 is a marker for prognosis and is involved in cell invasion,
proliferation, epithelial-mesenchymal transition (EMT) and drug resistance. Autophagy can func-
tion as a cell-survival mechanism or lead to cell death during the genesis and treatment of GC.
This functionality is determined by factors including the stage of the tumor, cellular context and
stress levels. Interestingly, SIRT1 can regulate autophagy through the deacetylation of
autophagy-related genes (ATGs) and mediators of autophagy. Taken together, these findings support
the need for continued research efforts to understand the mechanisms mediating the development
of gastric cancer and unveil new strategies to eradicate this disease.
� 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Both silent mating type information regulation 1 (SIRT1) and
autophagy have dual effects (cell survival or death) in gastric can-
cer (GC) progression and treatment under different conditions.
Sirtuin proteins (silent mating type information regulators;
SIRTs) were first isolated in yeast. There are 7 members in the
SIRT family (SIRT1-SIRT7) and they are class III histone deacety-
lases (HDACs) with different functions, structure, and intracellular
distribution [1]. SIRT1 is the most studied family member. It
deacetylates histones and many non-histone targets and mediates
tumor development, energy homeostasis, autophagy, DNA damage
repair, life-span extension, neurodegeneration, age-related
disorders, obesity, heart disease and inflammation among others
[2–10]. Expression of SIRT1 is a prognosis indicator for many can-
cers including GC [11,12]. Several studies have reported that SIRT1
plays a role in invasion, proliferation, epithelial-mesenchymal
transition or chemoresistance in GC cells [13–16] and is therefore
instrumental for GC progression and an important target for
treatment.

Autophagy is an important regulator of cell physiology and
abnormalities in this process can lead to disease such as GC. This
intracellular degradation process transports cytoplasmic cargo to
the lysosome for degradation and can be of three types: macroau-
tophagy, microautophagy and chaperone-mediated autophagy.
Here, we focus on macroautophagy, hereafter referred to as autop-
hagy. Autophagy is necessary for cell homeostasis. Prolonged or
heightened induction of autophagy however can result in autopha-
gic cell death or type II programmed cell death (PCD), while mod-
erate induction of autophagy is key for cell survival [17]. There is
growing evidence that autophagy can have an effect on the efficacy
of chemotherapy or immunotherapy of tumor cells [18–20].
However, the molecular mechanisms mediating this effect are
not completely understood. Interestingly, recent studies report
that autophagy induced after irradiation, anticancer drugs or other
agents could function as a tumor suppressor [21–24] or promote
tumor growth [25–33] in GC cells. Therefore, autophagy plays a
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Table 1
Expression of SIRT1 and its prognostic significance in cancer.

Tumor types Expression Prognosis Ref.

CRCC High Poor [50]
Breast cancer High Poor [52,62]
GEJ cancer High Poor [53]
Colorectal adenocarcinoma High Poor [54,63]
HCC High Poor [56,64–67]
GC High Poor [12,48]
GC High Good [57]
Soft-tissue sarcomas High Poor [58,68]
NSCLC High Poor [59,69]
PDAC High Poor [61]
Colorectal cancer High Good [76]
Colorectal cancer Low Good [74,75]
GC Low Good [49]
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role in the genesis of GC and may be a key target for therapeutic
intervention.

Interestingly, SIRT1-mediated autophagy is important for cell
proliferation, metabolism, and resistance to stress [34–39]. SIRT1
can mediate autophagy through the deacetylation of a number of
transcription factors, including histone H4 (at lysine residue 16;
H4K16ac) [37,40], FoxO1 [40], FoxO3 [41], E2F1 [42,43], S6K [44],
NF-jB [45], p53 [46], tuberous sclerosis complex 2 (TSC2) [47].
Following deacetylation, the transcription factors then activate
autophagy-related genes and can also induce autophagy by
deacetylating ATGs5, 7 and 8 under nutrient deprivation condi-
tions [35]. Here, we review the role of SIRT1 in the induction and
regulation of autophagy and describe its importance in GC progres-
sion and treatment.
Melanoma High n [77]
HNSCC High Good [78]
Prostate cancer High Poor [70]
Thyroid cancer High n [79]
Ovarian and cervical cancers High Poor [71]
Medulloblastoma High Poor [72]
Lymphoma High Poor [73]
AML High n [80]

CRCC: clear cell renal cell carcinoma; GEJ: gastroesophageal junction cancer; HCC:
hepatocellular carcinoma; GC: gastric cancer; NSCLC: non-small cell lung cancers;
PDAC: pancreatic ductal adenocarcinoma; HNSCC: head and neck squamous cell
carcinoma; AML: acute myelogenous leukemia. High: high expression of SIRT1 in
exact cancer; low: low expression of SIRT1 in exact cancer; n: no prognostic sig-
nificance for SIRT1 has been reported; poor: poor prognostic factor; good: good
prognostic factor; Ref.: reference.

Fig. 1. SIRT1 can be be a tumor promoter or a tumor suppressor in GC. SIRT1 is a
tumor promoter in GC and a poor prognosis indicator. It induces EMT, inhibits cell
metastasis, promotes MDR, and decreases cellular apoptosis of GC cells. SIRT1 can
also inhibit GC by repressing cell proliferation and tumor growth or inducing a G1-
phase cell-cycle arrest and senescence.
2. SIRT1 in GC

SIRT1 has been reported to play a role in energy homeostasis,
autophagy, DNA damage repair, and life-span extension in a vari-
ety of diseases [4–6,8]. However, its role in the development of
cancers such as GC remains undefined [12,48,49]. The expression
of SIRT1 in cancer cells such as clear cell renal cell carcinoma
(CRCC) [50], breast cancer [51,52], gastro esophageal junction
(GEJ) cancer [53], colorectal adenocarcinoma [54,55], hepatocellu-
lar carcinoma (HCC) [56], GC [12,48,49,57], soft tissue sarcomas
[58], non-small cell lung cancer (NSCLC) [59,60], pancreatic ductal
adenocarcinoma (PDAC) [61] has been documented in the litera-
ture. Here, we summarize the expression of SIRT1 in cancer and
the function of SIRT1 in GC.

2.1. Expression of SIRT1 in established tumors

The level of expression of SIRT1 varies with the tumor type, the
tumor microenvironment and cellular stress. There are several
studies reporting an elevated expression level of SIRT1 in CRCC
[50], breast cancer [52,62], GEJ cancer [53], colorectal adenocarci-
noma [54,63], HCC [56,64–67], GC [12,48], soft tissue sarcomas
[58,68], NSCLC [59,69], PDAC [61], prostate cancer [70], ovarian
and cervical cancers [71], medulloblastoma [72], and lymphoma
[73]. A downregulated expression of SIRT1 has only been reported
for colorectal cancer [74,75] and GC [49]. In all cases, SIRT1 served
as a good prognosis indicator for disease progression (see Table 1).
The histological studies on the level of expression of SIRT1 in dif-
ferent cancers do not establish whether this protein is acting as a
tumor promoter or tumor suppressor in tumorigenesis. Further
studies are needed to define the specific role of SIRT1 in cancer.

2.2. SIRT1 acts as a tumor suppressor in GC

Even though the exact role of SIRT1 in GC remains undefined,
several studies have suggested that SIRT1 is a good prognostic fac-
tor in GC and that SIRT1 can inhibit tumor growth in these tissues
(Fig. 1).

SIRT1 is considered a good prognostic factor in GC because its
expression is negatively correlated with tumor TNM stage, lym-
phatic invasion and positively correlated with improved survival
[57]. Therefore, SIRT1 may act as a tumor suppressor in GC. In addi-
tion, SIRT1 can inhibit GC cells in vitro and in vivo in a nude mouse
xenograft model. Specifically, overexpression of SIRT1 was found
to inhibit cell proliferation and tumor development through the
downregulation of NF-kB activity and inhibition of cyclin D1 sig-
naling [49]. Resveratrol, an agonist of SIRT1, was found to cause
cellular senescence in a SIRT1-dependent manner both in vivo
and in vitro [16]. Together, these studies suggest that SIRT1 can
suppress the development of human GC.
2.3. SIRT1 acts as a promoter in GC

Recent studies have reported a role for SIRT1 promoting GC
growth (Fig. 1). Specifically, Cha et al. [12,48] showed that nuclear
expression of SIRT1 was detected in 73% (130 of 177) of GC
patients. In addition, SIRT1 expression correlated with tumor stage,
lymph node metastasis and tumor invasion. No correlation was
observed with p53 expression or decreased or relapse-free
survival. Therefore, SIRT1 may function as a tumor promoter in GC.

Increasing evidence suggests that microRNAs (miRNAs)
regulate tumorigenesis and metastasis through the post-
transcriptional regulation of gene expression. For example,
miR-204 is significantly downregulated in GC when SIRT1 mRNA
levels are upregulated, which indicates that SIRT1 is a target of
miR-204 in GC [13]. Correspondingly, overexpression of miR-204
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in GC cells was found to inhibit metastasis, decrease anoikis resis-
tance and induce epithelial-mesenchymal transition (EMT) by
inhibiting SIRT1 [13].

In GC, multidrug resistance (MDR) remains a challenge for
effective therapeutic intervention. For example, activating tran-
scription factor 4 (ATF4) promoted GC MDR by up-regulating the
expression of SIRT1. In contrast, inhibition of SIRT1 expression
using small interfering RNAs (siRNA) or a specific inhibitor
(EX-527) restored the efficacy of therapeutic strategies by revers-
ing the GC MDR phenotype promoted by ATF4 [14]. Together, these
results suggest that changes in the level of expression of SIRT1 cor-
relate with the progression and effective treatment of GC.

Using an animal model, Li et al. [15] found that in GC the
expression levels of iNampt, SIRT1 and c-myc proteins were
significantly higher in obese mice than in the lean mice. In addi-
tion, they found that upregulated expression of the pro-survival
Nampt/SIRT1/c-myc positive feedback loop enhanced murine fore
stomach carcinoma cell migration, proliferation and cell cycle pro-
gression while decreasing cellular apoptosis [15]. Therefore, based
on the evidence obtained from the animal models SIRT1 is involved
in the progression of GC. In addition, SIRT1 is important for the
effective treatment of GC, which varies depending on the tumor
stage, tumor microenvironment, activated signaling pathways
and cellular stress levels among others.

2.4. SIRT1 has a dual role in GC

SIRT1 can function as a tumor promoter and a tumor suppres-
sor. It contributes to cancer cell death inhibiting tumor growth.
On the other hand, SIRT1 can also upregulate oncogenic signaling
pathways and create a microenvironment favorable for cancer cell
growth and survival. Brooks and Gu [81] considered this mainly
because of the presence or absence of functional p53. while Song
and Surh [82] considered this dual role of SIRT1 in cancer may be
determined by its subcellular localization. Therefore, more work
is needed to clarify the switching mechanism of the two-edged
sword of SIRT1.

3. Autophagy in GC

Autophagy is an intracellular degradation process to break
down cytoplasmic cargo (superfluous or damaged organelles, mis-
folded or long-lived proteins or invading microorganisms) at the
lysosome. This process yields substrates for energy generation
Fig. 2. Autophagy has both pro-, and anti-tumor effects during the development and the
enhance the efficacy of adjuvant chemotherapy in GC. In parallel, it can promote G
proliferation of cells.
and biosynthesis [18]. Autophagy can be upregulated as a
cell-survival mechanism or lead to cell death [17] during the devel-
opment and treatment of GC, depending on the tumor stage and
cellular context [20,83,84] (Fig. 2). Therefore, autophagy can be a
double-edged sword in GC biology.

3.1. Autophagy can suppress GC

Recent studies have reported that the induction of autophagy is
important for the suppression of GC under certain cellular stress
conditions such as inactivation or mutation of related genes
[22,24,85,86], Helicobacter pylori (HP) infection [87] or exposure
to chemotherapy [88–90].

Beclin-1 is a marker and regulator of autophagy. High levels of
beclin-1 expression have been reported to be a predictive factor of
a favorable prognosis in GC [91–96], which suggests that autop-
hagy might have a role in suppressing the progression of GC.
Autophagy can also prevent the occurrence of GC. For example,
in the case of infection by HP, upregulation of IFN-c serves to erad-
icate the bacterial infection and autoimmune disease and also acts
as a tumor suppressor in GC by inducing autophagy. Tu et al. [97]
reported that in the course of an HP infection IFN-c lead to
increased expression of beclin-1 which in turn served to induce
autophagy, suppress gastric progenitor cell expansion and reduce
epithelial cell apoptosis. Furthermore, there are reports in the liter-
ature that limited exposure to vacuolating cytotoxin A (VacA),
which is secreted by HP, induced autophagy in human gastric
epithelial cells, limiting toxin-induced cellular damage and pro-
tecting them from carcinogenesis [87,98,99]. In contrast, prolonged
exposure to VacA could disrupt autophagy by preventing matura-
tion of the autolysosome and contribute to inflammation and car-
cinogenesis in human gastric epithelial cells and primary gastric
cells from mice [87,100]. Yahiro et al. [101] reported that VacA reg-
ulates toxin-induced autophagy in gastric epithelial cells by bind-
ing to the low-density lipoprotein receptor-related protein-1
(LRP1), which functions as the receptor of VacA. Interestingly,
VacA-induced autophagy can also suppress GC through the degra-
dation of cytotoxin-associated gene A (CagA) protein, a type IV
secretion effector of HP that is closely associated with the develop-
ment of GC [21]. Together, the evidence in the literature to date
supports the notion that autophagy plays an important role in pre-
venting the occurrence of GC in the advent of a HP infection.

The occurrence of GC also correlates with the inactivation or
inhibition of tumor suppressor genes which induce autophagy.
rapy of GC. It can be induced by tumor suppressor genes, prevents HP infection, and
C by protecting cells against chemotherapy and apoptosis and upregulating the
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For example, klotho is a tumor suppressor gene that is epigeneti-
cally inactivated in GC. Upon restoration of klotho expression, cell
proliferation is inhibited and apoptosis and autophagy are stimu-
lated by the downregulation of insulin-like growth factor-1 (IGF-
1)/insulin receptor substrate 1 (IRS-1)/phos-phoinositide 3-kinase
(PI3K)/Akt/mTOR signaling pathways which regulate both the
apoptosis and autophagy pathways [22]. Moreover, inhibitors of
autophagy were found to block the activity of klotho on cell viabil-
ity, apoptosis induction and cell cycle arrest [22]. Therefore, klotho
has a tumor suppressor activity through its effects on autophagy.
Protocadherin 17 (PCDH17) is another tumor suppressor gene that
is frequently silenced by methylation in GC cell lines, but not in the
normal gastric mucosa. Upon restoration of PCDH17 expression,
GC cell growth was inhibited in vitro and in vivo through the
upregulation of apoptosis and autophagic cell death [24]. Lastly,
ultraviolet (UV) radiation resistance-associated gene (UVRAG) is
an autophagy-related gene that can induce autophagy through its
association with beclin-1. A frameshift mutation in UVRAG was
found to significantly reduce autophagy and increase tumorigenic-
ity in cancer cells [85]. Kim et al. [86] reported the occurrence of
frameshift mutations of the UVRAG gene in GC and the subsequent
decrease in autophagic cell death as well as the inhibition of
PCDH17. Together, these results suggest that autophagy acts as a
tumor suppressor and exerts its anti-proliferative activity partly
by inducing autophagic cell death.

Inducing autophagy could enhance the efficacy of adjuvant
chemotherapy. In the case of GC, recent studies have shown that
some of the anticancer drugs used in the clinic exert their
anti-tumor effect mainly by inducing autophagy. Matrine, evodi-
amine (an alkaloid isolated from evodia rutaecarpa) and E
Platinum (a newly synthesized derivative of oxaliplatin), were
reported to have a wide range of pharmacological effects including
antitumor activity both in vitro and in vivo. However, the molecu-
lar mechanisms mediating their antitumor activity remain unde-
fined. In GC cells, matrine, evodiamine and E Platinum were
found to significantly inhibit the proliferation of two gastric cancer
cell lines, SGC-7901 and BGC-823, induce cell cycle arrest and acti-
vate autophagy which partially contributed to cell death [88–90].
Therefore, autophagy is an active process mediating the antitumor
effects of matrine, evodiamine and E Platinum and can act as a
tumor suppressor.

Autophagy is regulated by several cell cascades such as ATGs,
mitogen-activated kinase, death-associated protein kinase,
beclin-1, and class I phosphatidylinositol 3-kinase
(PI3K)/AKT/mTOR pathways [102]. Other factors besides tumor
suppressor genes and anticancer drugs can also inhibit GC by
inducing autophagy through the activation of molecular and cell
signaling pathways. For example, Sun et al. [23] reported that
expression of the adenovirus vector-mediated XIAP-associated fac-
tor 1 (adeno-XAF1) induced autophagy through the up-regulation
of beclin-1 expression and the inhibition of the Akt/p70S6K signal-
ing pathway in GC cells and xenograft tumors. As a result, tumor
growth was inhibited. Similarly, inhibition of the class I PI3K/AKT
and its downstream target mTOR has been shown to contribute
to autophagy [103,104]. Additionally, there is evidence in the liter-
ature that LY294002 (an inhibitor of class I PI3K) inhibited the via-
bility of SGC7901 cells by up-regulating autophagy through the
activation of the p53 pathway [105]. Therefore, inhibitors of the
class I PI3K/AKT/mTOR signaling pathway have emerged as an
important and attractive therapeutic target for GC therapy because
of their potential to upregulate autophagy. Interestingly, there is
accumulating evidence that tetracycline and its derivatives (doxy-
cycline and minocycline), which have broad antimicrobial activity,
also have anti-cancer properties. Tang et al. [106] reported that
tetracycline inhibited GC cell proliferation and induced autophagy
by activating the adenosine 50-monophosphate-activated protein
kinase (AMPK) signaling pathway which then suppressed its
downstream targets mTOR and p70S6K. Therefore, the upregula-
tion of autophagy contributed to the antitumor effects of
tetracycline.

Together, the evidence in the literature so far supports the
notion that autophagy acts as a tumor-suppressor by mediating
type II PCD in GC cells.

3.2. Autophagy can promote GC

Although there is extensive evidence in the literature that
autophagy suppresses GC, there are also some studies reporting
that autophagy can promote GC.

Even though there is ample clinical evidence supporting that a
high level of expression of beclin-1 correlates with a favorable
prognosis in GC, Ahn et al. [107] reported that beclin-1 is expressed
in 83% of gastric carcinomas, indicating that elevated levels of
expression of beclin-1 might play a role in gastric tumorigenesis
also. Supporting this hypothesis, Yoshioka et al. [108] documented
a high level of expression of the microtubule-associated protein I
light chain 3 (LC3; the mammalian homologue of yeast ATG8), a
protein involved in autophagosome formation, in 58% of GC, sug-
gesting that LC3 expression was advantageous to cancer develop-
ment especially during the early stages of carcinogenesis.
Beclin-1 and LC3 are two important markers and regulators of
autophagy. Together, these studies suggest that authophagy might
contribute to carcinogenesis under some conditions.

Inhibiting autophagy can sometimes enhance the efficacy of
chemotherapy. For example, quercetin [26] (a dietary antioxidant
present in fruits and vegetables), beta-elemene [25], resveratrol
[29] and matrine [28] exhibit both apoptosis and
autophagy-promoting activities in GC cells. However, inhibiting
autophagy could enhance the antitumor effects of these drugs in
the treatment of GC, suggesting that autophagy plays a protective
role against GC cells from death.

Oxaliplatin is a well-studied chemotherapeutic drug, which can
lead to the survival of HCC cells by activating autophagy [109]. In
GC MGC803 cells, oxaliplatin can induce protective autophagy,
which partially blocks apoptosis in these cells [27]. Similarly, cis-
platin, another chemotherapy drug used in the treatment of GC,
induced authophagy and apoptosis in the human GC cell line
SGC7901. In contrast, the use of chloroquine to inhibit autophagy
lead to enhanced apoptosis [33]. Therefore, autophagy can protect
GC cells against cell death induced by cisplatin or oxaliplatin.

There is evidence to support the administration of proteasome
inhibitors in the treatment of GC. For example, the proteasome
inhibitor MG-132 has been shown to inhibit cell proliferation
and induce autophagy [32]. Knockdown of Vps34 (Class III
phosphatidylinositol-3 kinase) or ATG5/7 in turn can inhibit autop-
hagy and therefore enhance the antiproliferative effect of MG-132
in GC cells by promoting cell cycle arrest [32].

3.3. The switching mechanism of the two-edged sword of autophagy in
GC

Autophagy plays an important role in maintaining the cell
homeostasis but it can also function as a cell-survival mechanism
when the cells are under stress conditions, for example during
nutrient deprivation. Inducing autophagy under this conditions
will result in cell death, which is known as autophagic cell death
or type II PCD [17]. The exact role of autophagy in cancer is still
undefined. Rouschop and Wouters [110] suggested that autophagy
suppresses tumor growth during the early stages of tumorigenesis
but promotes tumor cell survival during cancer progression.
Therefore, autophagy seemed to be beneficial for cancer preven-
tion. However, a recent study reported that induction of autophagy
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in tumor cells contributed to resistance to various anti-cancer ther-
apies [111]. Moreover, cancer cells may survive by inducing autop-
hagy when subjected to stress such as during nutrient deprivation
[112]. Therefore, autophagy plays a distinct role in the occurrence
and development of GC but the switching mechanism of the
two-edged sword of autophagy in GC remains undefined.

4. SIRT1 is a deacetylase protein that mediates autophagy

SIRT1 is a deacetylase protein whose expression is regulated by
cellular stress (starvation, glucose deprivation, and calorie depriva-
tion), protein factors (AROS, SUMO, NAD+/NADH, HuR, DBC1, HIC1,
Dif1 and so on), SIRT1 agonists (resveratrol, SRT1720) or SIRT1
inhibitors (tenovins, EX-527 and sirtinol). SIRT1 can target proteins
in the nucleus and the cytosol which are involved in regulating
cancer cell proliferation, DNA damage repair, gene transcription,
survival and autophagy such as histones [113], p53 [114,115],
FoxO1 [116], b-catenin [117,118], Ku70 [119], NF-jB [45], survivin
[120], PTEN [121], E2F1 [43], ATG5, ATG7, and ATG8 [122] as
shown in Fig. 3. There are reports that glucose deprivation can
increase the AMP/ATP ratio which then phosphorylates the
AMP-activated Protein Kinase (AMPK) and activates it [123]. The
activated AMPK can regulate autophagy by either phosphorylating
ULK1 which then activates the PI3K complex [123] or inhibiting
mTOR which inhibits the phosphorylation of the ULK1 complex
[123].

Activation of AMPK can also upregulate SIRT1 in a
NAD-dependent manner [124] (Fig. 4). Interestingly,
SIRT1-mediated autophagy plays a role in proliferation,
metabolism, and resistance to cellular stress [34–39]. For example,
resveratrol was found to protect human umbilical endothelial
vein cells (HUVECs) from oxidative damage caused by the
oxidized low-density lipoprotein (ox-LDL) by upregulating
SIRT1-dependent autophagy via the AMPK/SIRT1 pathway [125].
These results were confirmed using an inhibitor of autophagy
(3-methyladenine; 3-MA) and SIRT1 (EX527) [125]. Resveratrol
can also attenuate endothelial inflammation by inducing autop-
hagy, which in part was mediated through the activation of the
cAMP-PRKA-AMPK-SIRT1 signaling pathway [126]. In HCC cells,
inhibition of SIRT1 was found to impair cell proliferation and
Fig. 3. The SIRT1 pathway. The deacetylase SIRT1 can be induced or inhibited by cellu
(AROS, SUMO, NAD+/NADH, HuR, DBC1, HIC1, Dif1) and some SIRT1 agonists (resveratr
deacetylase which targets histones and many non-histone proteins. As a result, cellular
ubiquitin-like modifier; DBC1, deleted in breast cancer 1; HIC1, hypermethylated in ca
phosphatase and tensin homolog deleted on chromosome ten; ATG, autophagy-related
rapamycin-induced autophagy [127]. Similarly, SIRT1 was found
to be required for the induction of autophagy in human colorectal
(HCT 116) or cervical (HeLa) cancer cells growing under nutrient
deprivation or caloric restriction conditions, while knockdown of
SIRT1 expression prevented the induction of autophagy by resver-
atrol or by caloric restriction in human cancer cells [34].

Together, the evidence to date suggests that SIRT1 can be
directly or indirectly involved in the induction of autophagy under
conditions of nutrient depletion or cellular stress (for example
endoplasmic reticulum stress and oxidative stress) [34].

4.1. SIRT1 regulates autophagy through the deacetylation of ATGs

SIRT1 plays an active role in autophagy through the deacetyla-
tion of ATGs, such as ATGs5, 7 and 8 (Fig. 4). Lee et al. [35] reported
that transient overexpression of SIRT1 induced basal rates of
autophagy in the absence of nutrient deprivation. In contrast,
autophagy is not fully activated in SIRT1�/� mouse embryonic
fibroblasts growing under starvation conditions. In this way,
SIRT1�/� mice were found to be similar to ATG5�/� mice which
are unable to activate autophagy under starvation conditions
[35]. They also demonstrated the molecular mechanisms mediat-
ing autophagy in the presence of SIRT1. SIRT1 initially forms a
complex with ATGs5, 7 and 8 which are the essential components
of the autophagy and mediates their deacetylation in an
NAD-dependent fashion promoting autophagy [35]. Based on these
studies, we considered that acetylation or deacetylation was an
important post-translational modification regulating the induction
of autophagy.

Activation of SIRT1 can induce autophagy and has a protective
role in neurons against neurodegenerative disorders by regulating
mitochondrial homeostasis. For example, Jeong et al. [36] reported
that overexpression of SIRT1 in neurons prevented the accumula-
tion of the prion protein (PrP; 106-126) and neurotoxicity by
inducing autophagy. Correspondingly, downregulation of SIRT1
or ATG5 expression using siRNAs blocked the effect of a SIRT1 acti-
vator and inhibited PrP(106-126)-induced mitochondrial dysfunc-
tion and neurotoxicity [36].

Fluoride has also been reported to activate SIRT1 phosphoryla-
tion and to initiate autophagy by increasing the expression of
lar stress (starvation, glucose deprivation, and calorie deprivation), protein factors
ol, SRT1720) or inhibitors (tenovins, EX-527, sirtinol). SIRT1 is an NAD+-dependent
metabolism is altered. Abbreviations: AROS, active regulator of SIRT1; SUMO1, small
ncer 1; FoxO1, forkhead box, subgroup O1; NF-jB, nuclear factor kappa B; PTEN,

gene.



Fig. 4. SIRT1 regulates autophagy. Glucose/calorie deprivation can induce autophagy through the activation of AMPK by phosphorylation, which induces autophagy through
the activation of the ULKI complex or the inhibition of the mTOR complex to activate class III PI3K complex which then activates the ‘‘Autophagy-related proteins’’ (ATGs 3, 4,
5, 7, 8(LC3), 10, 12, 16) to induce autophagy. On the other hand, AMPK can also activate Sirt1 in a NAD+-dependent manner, which then regulates autophagy through
deacetylation of ATG5, ATG7, ATG8 or increasing deacetylation, activation and nuclear translocation of FoxO1. Then, FoxO1 can upregulates Rab7, a small GTP binding protein
that mediates autophagosome-lysosome fusion, and thereby enhances autophagic flux, resulting in cell death or survival. EX-527 and resveratrol are inhibitor and agonist of
SIRT1, respectively. Rapamycin can induce autophagy by inhibit mTOR. 3-MA, bafilomycin A1 and chloroquine are all inhibitors of autophagy by inhibiting the PI3K III
complex and the fusion with the lysosome, respectively.
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ATGs5, 7 and 8 at the mRNA and protein levels. As a result, amelo-
blasts cells are protected from the fluoride-induced endoplasmic
reticulum stress and enamel formation is not interrupted [39]. In
these cells, resveratrol was found to increase autophagy and
decrease fluoride cytotoxicity through the SIRT1/ATGs5, 7,
8/autophagy pathway both in vivo and in vitro [39].

4.2. The SIRT1-FoxO1-Rab7 axis mediates autophagy

SIRT1 can also induce autophagy by mediating the deacetyla-
tion of FoxO1 under starvation conditions. Specifically, SIRT1 can
induce an increase in autophagic flux and upregulate the expres-
sion of Rab7, a small GTP-binding protein that mediates late
autophagosome–lysosome fusion [38]. Here we describe the evi-
dence to date on the role of the SIRT1-FoxO1-Rab7 axis in autop-
hagy (Fig. 4).

In one study, Hariharan et al. [38,128] showed that SIRT1
expression is upregulated under glucose-deprivation conditions.
As a result, autophagy is stimulated through the deacetylation of
FoxO1, which leads to the nuclear translocation and activation of
the protein in cardiac myocytes. FoxO1 was also shown to increase
the expression of Rab7, an essential factor for the fusion of
autophagosomes and lysosomes [128–130], which completes the
process of autophagy [129]. In these cells, over-expression of
Rab7 stimulated autophagy, while knockdown of Rab7 or FoxO1
or mutation of FoxO1 inhibited autophagy under glucose starva-
tion conditions. Together, the results of this study conclusively
demonstrated glucose deprivation could induce autophagy via
the SIRT1-FoxO1-Rab7 axis (Fig. 4).

Autophagic dysfunction has also been reported in diabetes mel-
litus [131]. Unexpectedly, resveratrol exhibits a protective effect
on diabetic cardiomyopathy in mice through its SIRT1-dependent
regulation of autophagic flux [131]. Extended exposure to resvera-
trol was found to improve oxidative injury in the heart of the dia-
betic mouse heart by upregulating autophagy, promoting SIRT1
activity and increasing Rab7 expression. In contrast, inhibition of
autophagy didn’t influence the activity of SIRT1 or the expression
levels of Rab7 [131]. In parallel, resveratrol was found to reverse
the effects of oxidative stress in H9C2 cells and enhance FoxO1
DNA binding at the Rab7 promoter region in a SIRT1-dependent
fashion [131]. Together, these results highlight the role of the
SIRT1-FoxO1-Rab7 axis in the upregulation of autophagy by
resveratrol.

4.3. SIRT1 regulates autophagy through the deacetylation of other
mediators

SIRT1 has been reported to associate with other regulators of
autophagy [35,132] such as H4K16ac [37,40], FoxO3 [41], E2F1
[42,43], p73 [133], PPAR-c co-activator 1a (PGC1a; also
known as PPARGC1A) [134], S6K [44], NF-jB [45], p53 [46] and
TSC2 [47].

Resveratrol has been shown to inhibit prostate cancer cell pro-
liferation by inducing autophagy in a SIRT1 dependent manner,
while downregulation of SIRT1 significantly attenuated resveratrol
induced autophagy by inhibiting the phosphorylation and activa-
tion of p70-S6 Kinase 1 (S6K1) and the eukaryotic initiation factor
4E binding protein 1 (4E-BP1), two substrates of mTORC1.
Therefore, SIRT1 plays an important role in resveratrol-induced
autophagy in prostate cancer cells by activating S6K [44].
Specifically, SIRT1 can bind to the mTOR inhibitor TSC2 which
represses autophagy [47]. SIRT1 can also inhibit inflammation by
up-regulating autophagy. For example, in THP-1 cells inactivation
of SIRT1 induced inflammation by activating NF-kB which
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impaired autophagy via nutrient-sensing pathways such as the
mTOR and AMPK pathways [135].

5. Conclusion

GC remains a serious health burden worldwide and the
molecular mechanisms mediating its development remain unclear.
SIRT1 and autophagy have a dual role in the development of
GC. SIRT1 has been shown to be required for autophagy
induction through the deacetylation of ATGs and mediators of
autophagy. The evidence to date suggests that SIRT1 can play a
dual role in autophagy in GC-suppression or promotion. The
SIRT1-FoxO1-Rab7-autophagy pathway has a potential protective
role in GC and might lead to novel strategies for therapeutic
intervention in the treatment of GC.
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