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Abstract

A Lorentzian manifold is defined here as a smooth pseudo-Riemannian manifold with a metric tensor of
signature(2n + 1, 1). A Robinson manifold is a Lorentzian manifold of dimension> 4 with a subbundle
N of the complexification off M such that the fibers oN — M are maximal totally null (isotropic) and
[SecN, SecN] C SecN. Robinson manifolds are close analogs of the proper Riemannian, Hermite manifolds.
In dimension 4, they correspond to space-times of general relativity, foliated by a family of null geodesics without
shear. Such space-times, introduced in the 1950s by Ivor Robinson, played an important role in the study of
solutions of Einstein’s equations: plane and sphere-fronted waves, the Gédel universe, the Kerr solution, and thei
generalizations, are among them. In this survey article, the analogies between Hermite and Robinson manifolds ar
presented in considerable detail2002 Elsevier Science B.V. All rights reserved.
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1. Introduction and motivation from physics

There is an interesting class of Lorentzian manifolds that bear a close analogy to the Hermite manifolds
of proper Riemannian geometry. They have been introduced and studied by physicists in the work on
solutions of Einstein’s equations, especially those representing gravitational waves. Ribasen
manifolds, as we propose to call them, are little known to pure mathematicians. This may be due, in part,
to the fact that physicists, in their work, used a local, coordinate-dependent description of those manifold
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and did not pay enough attention to the geometrical motivation and interpretation of their results. A good
summary of this research by physicists is in [14].

In this article, which is largely an expository survey, we describe the main geometrical structures
underlying Robinson manifolds and emphasize their analogies with Hermite manifolds.

1.1. Motivation from physics

Let E andB be the vectors representing, respectively, the electric and magnetic fields in the Minkowski
space-timeR* of special relativity theory. Introducing = E + iB, one can write Maxwell’s equations in
empty space in the Riemann-Silberstein form (see [30] and [35, p. 344])

0 .

|5F =curlF and divF=0. D)
Among the solutions of (1) especially simple are tié fields characterized by? = 0. The property of
F to be null can be linearized: it is equivalent to the statement

there exists a unit vectar such than x F =iF. (2

Introducing an orientation iR* defined by the form da dx A dy A dz so that Hodge duality of 2-forms
is given by

*x(dt Adx) =dy Adz, =(dyAdz)=—drAdx, etc,
putting

F =F.(dt Adx —idy Adz)+cycl. and « =df —n,dx —n,dy —n_ dz,
one has

*F =iF 3)
and can write (1) and (2) in the equivalent form

dF =0, 4
and

there exists a 1-form # 0 such thak A F =0, (5)

respectively.

The virtue of conditions (3)—(5) is that, without change of form, they are meaningful on every oriented,
4-dimensional Lorentzian manifoldM, g). (In fact, conformal geometry of Lorentzian signature is
enough and one can generalize tomadimensional manifold by assuming, in addition, thatis a
decomposable-form.) A 4-dimensional Robinson manifold can be provisionally defined as a Lorentzian
manifold admitting a nowhere zero, complex-valued 2-fafhsuch that conditions (3)—(5) hold. The
vector fieldk associated by with « is null. (Pure mathematicians sagotropic, but this is a misnomer.

The term isotropic was introduced, in this context, by Ribaucour (see Chapter 4 in [11]) in the study of
complex Euclidean geometry:@? is endowed with the quadratic fortay, z2) — z3 + z5, then a rotation

by the anglex transforms the vectarl, i) into (expix, iexpia). This vector is isotropic in the sense that

its direction does not change under rotations. But null directions in higher dimensions are not invariant
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under rotations. Cartan had the good idea of calling such directioR$ aptical, but this name has not
caught on.) The field defines a foliation (physicists say: congruence)oby null geodesics (Mariot’s
theorem; see [27] and the references given there). Ivor Robinson [26] found a necessary condition or
the foliation, which is also sufficient in the analytic case, but not otherwise [31], for the existence of a
nowhere vanishing solutiof of (3)—(5). In the physicists’ language this condition is expressed by saying
thatk should generate snear-free null geodetic (sng) congruence; see Section 5.3.

1.2. Historical remarks and plan of the article

In 1910, Harry Bateman [3] discovered a class of transformations, more general than conformal
changes of the metric, that can be used to transform null solutions of Maxwell’s equations into similar
solutions; this work can be considered to be a precursor of the ‘optical’ ideas we are describing here;
see [28,32] and Theorem 2. In a short note of 1922, Elie Cartan [5] mentioned the existence of four
principal optical (null) directions associated with a non-conformally flat Lorentz 4-manifold. He also
pointed out that, in the case of the Schwarzschild space-time, these directions degenerate to form twi
pairs of double optical directions. Cartan’s observations went unnoticed for almost 50 years. In the
meantime and independently, A.Z. Petrov [22] devised an algebraic classification of the Weyl tensor (of
conformal curvature) of a Lorentzian manifold and F.A.E. Pirani [23] clarified its physical significance.
Using Weyl (two-component) spinors, Roger Penrose [17] sharpened the Petrov classification and gave
new derivation of the four null directions; this is recalled here in Section 3.3. This and subsequent work
by Penrose (see [21] and the references given there) has had a decisive influence on the development
the subject. From the perspective of this article, most significant was the discovery by I. Robinson [26] of
the shear-free property of congruences of null geodesics and their relation to null electromagnetic fields
(Section 5.3). To make the article self-contained and moderately complete, we have included severa
classical theorems related to its subject, with references to literature instead of proofs. In particular, in
Section 5.4 we present the Goldberg—Sachs theorem on the connection between the existamce of
congruences and the degeneracy of the principal null directions in Einstein manifolds, as well as its
generalization to the proper Riemannian case. A theorem due to R.P. Kerr, giving edingruences in
Minkowski space-time is presented in considerable detail in Sections 6 and 7.1. In the last section, we
briefly describe twistor bundles, an important concept that emerged in connection with the ssagy of
congruences. There is a wealth of literature on Penrose’s twistor ideas, in both the Lorentz and prope!
Riemannian cases [2,18,20,21,36]. Recent surveys are in [8].

2. Notation and terminology

Our notation and terminology are essentially standard; see, e.g., [4,12,15]. The exterior algebra
associated with a vector spaéeis AW, the symbols®, A and_ denote the tensor, exterior and interior
products, respectively. We use the Einstein summation convention over repeated indices. The canonice
map of W ~ {0} onto the associated projective spad@¥® is denoted by dir and we writ€P, for
P(C"+1). A quadratic spaceis defined as a paiiV, g), whereV is a finite-dimensional vector space over
k=RorC, andg:V — V*is asymmetric{* = g) isomorphism. To save on notation, we use the same
letter g for themetrictensor g € V* ®sym V* associated with that isomorphism so that, v) = (u, g(v))
andv — g(v, v) is a quadratic form. For the symmetrized tensor product of 1-forms we use the notation
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of classical differential geometry, i.e.,df 8 € V*, then 28 = o ® S + B ® «. This convention allows
us to write the metric tensor as= g(e,)e’ = g,.e’e”, Where(e") is the coframe dual tge,) and
g = g(ey, e,). If N C V, thenN* is the set of all elements df orthogonal to every element of.
The Hodge dual of is denoted bwa.

All manifolds and maps among them are assumed to be smooth (of €fa¥r real-analytic.
Manifolds are finite-dimensional, but not necessarily compact.:IM’ — M is a map of manifolds,
thenTf : TM' — T M is the corresponding tangent (derived) map & C T M is the tangent vector
space taMf atx. The mapf is an immersion (respectively, submersionJ'if, restricted to every tangent
vector space, is injective (respectively, surjective); an injective immersion is an embedding and defines
M’ as a submanifold o#. If w: E — M is a fiber bundle over a manifolt#, thenE, = 7Y p)CE
is the fiber overp e M. A map f: M’ — M gives rise to the induced bundig"*E — M’ such that
(f'E), = E; ) foreveryp e M'.If fis animmersion, the@ M’ is a subbundle of ~17 M. The zero
bundle is denoted b@. A Riemannian manifold M is assumed to be connected; it has a metric tensor
field g which is nhon-degenerate, but not necessarily definite; if it is, tMng) is said to beproper
Riemannian. Agpace-time is a 4-dimensional manifold with a metric tensor of signatiel).

The module overC*(M) of all sections of the vector bundl€ — M is denoted by SeE. If
X e SecT' M, then L(X) is the Lie derivative with respect t&. If « is a differential form onM and
fM — M,thenL(X)a = X odo +d(X Ja) and f*« is the pull-back ofx to M’. We abbreviate/dx
to d,. In Section 4 we summarize the definitions and notions related to CR structures needed in this paper
further details can be found in [10].

To save on notation, we sometimes use the same letter to denote a vectaN spilcesome structure
and a fiber bundlev — M with fibers carrying the same structure. Local section&/ef> M may be
denoted by the same letters as elements of the vector gpace

3. Algebraic preliminaries
3.1. Maximal, totally null subspaces of vector spaces

Consider a complex quadratic spa@dé, g). Recall that a vector subspadéof V is said to benull
if N:NN #¢ andtotally null if N ¢ Nt. Assume now dinV = 2n; if N C V is maximal totally
null (mtn), then N+ = N so that dimV = n. An orientation having been fixed, the Hodge duality map
*: AV — AV can be defined so that =id. If (m1, ..., m,) is a frame in ammtn subspaceV, then

*(MLA--Amy)=xmiA--- Am,. (6)
Theannihilator of N,
N®={ue V*|(m,pn) =0 for everym € N}

is anmtn subspace o¥*. The set of alimtn subspaces of a complex;z-@limensional vector space has
the structure of a complex manifold, diffeomorphic to the symmetric spag@l); its two connected
components correspond to the two signs in (6) characterizingitheubspaces of positive and negative
chiralities, respectively.

Letnow(V, g) be a Euclidean quadratic space, i.e., a real quadratic space such that the form associate
with g is positive-definite. Assume that is of positive even dimension. Amtn subspaceV of the
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complexificationW = C ® V defines a complex orthogonal structufeon (V, g): this is so because
N N N = {0} and one can put

Jw)=iv and J(@)=—iv forveN. (7)

Conversely, an orthogonal complex structuren (V, g) defines themtn subspacev ={ve W | J(v) =
iv}.

Consider now d.orentz space (V, g), defined as a real quadratic space such that the quadratic form
associated witlg is of signaturg2n+1,1),n =1,2,....Let N ¢ W = C® V be anmtn subspace. The
intersectionV N N is the complexification of a null real lin€ c V andN +N =C® K. Thereis areal
null line L such thatV = K+ @ L. The quotientk /K inherits from(V, g) the structure of a Euclidean
quadratic space of dimensiom 2nd there is an orthogonal complex structuren K+ /K, defined by
J(wmodC® K) =iv modC ® K for everyv e C® K. Similarly, N° N N° is the complexification of
a real null line and there is the isomorphism

g:K - ReN°N N° (8)
obtained by restricting:V — V*to K.

3.2. Spinor algebra in dimension 4

Spinor calculus in dimension 4 provides an economical, convenient description of many aspects of
the geometry of Riemannian manifolds of this dimension [15,21]. Since there are so many exhaustive
presentations of this subject, it suffices to give here the rudiments of spinor algebra in a form adapted tc
our purposes.

If the dimension of the real vector spateis 4, then the complex vector spaSeof Dirac spinors
is also four-dimensional. Lete,) be an orthonormal frame . A representatiory of the Clifford
algebra associated witfV, g) in S is given by the ‘Dirac matricesjy,, = y(e,). The endomorphism
Vs = y1y2Ysya anticommutes with the Dirac matrices apfl=id if (V, g) is Euclidean angi? = —id if
(V, g) is Lorentzian. Putting” = ys in the first andl™ = iys in the second case, one hAS =id.

The spaces of ‘chiral’ or Weyl spinors are defined by

Se={peS | p==p}

LetW =C® V and, forvy, vo € V, puty (v +ivy) = y (v1) + iy (v2), theny (w)? = g(w, w)id for every
weW.If p € S andg # 0, then

N(p)={we W]|y(w)ep=0} ()]

is anmtn subspace oW of the same chirality ag.

The transposed endomorphismg define the contragredient representation of the Clifford algebra
in $*, which is equivalent toy: there is the isomorphisng:S — §* such thaty; = By, B! for
w=1...,5. B restricts to a symplectic forra on each of the spaces of Weyl spindis and S_. If
(ea), A=1,2, is a frame inS; and (e”) is the dual frame ins*, thene(es) = e45¢”. The complex
conjugate representation given By is also equivalent tg : there is an isomorphisr@: § — S such
thaty, = Cy,C~* andCC = —id in the Euclidean case ar@dC = id for signature(3, 1). The spinor
¢. = C~1¢ is said (by physicists) to be thoharge conjugate of ¢ € S.
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3.3. Thealgebraic classification of Weyl tensors

The spacess? = ®¢,,57 and $% = ®,,$* are isomorphic to spaces of tensors of rank 4 over
W = C4, with symmetries of self-dual and anti-self-dual Weyl (conformal curvature) tensors, denoted
by C, andC_, respectively. Consider £ ¢ € S%: there is a framée,), A = 1,2, in S; such that the
componenty; 1 =¥ (ey, ..., e1) iS not zero. Given such a frame, lg{z) = ze; + e, € S, 7z € C, and
consider the complex polynomial, of degree 4,

Pr@=v(0@),....0@) =112+ + V2 2.

Let {z1, ..., z4} be the set of all roots of this polynomial; a root of multiplickyappears times in the
set. Then

Y =v1.10" Qym- - Qyme”,  Wherep, = e4p0(z)%, i=1,....4
The spinorsy’ are eigenspinors (with eigenvalue 0) ofy. The algebraic type of ¢ is the sequence

[s1...8c], L<sp <o <sp < 4,51 + -+ - + 5 = 4, of the multiplicities of the roots of,,. In the generic
case, all roots are simplg, = - - - = s4 = 1. Otherwise, one says thatis algebraically degenerate. An
eigenspinor is said to bepeated if its multiplicity s is larger than 1.
The enumeration of the possible degeneracies can be traced back to Cartan [5]; physicists use it nov

in a form due to Penrose [17]:

(i) Type I (non-degeneratgl111], |

(i) Typell [112], l
(iii) Type I [13], IIl—D

(iv) Type D (‘degenerate’)22],
(v) Type N (null) [4]. / l/ l

N

I—=N——>0

The 0 in the Penrose diagram above represents a vanighifige arrows point towards more special
cases. This classification of complex, self-dual Weyl tensors is often associated with the name of Petrov
who, however, recognized only three types (I, Il and Ill). The Weyl tensor of a complex Riemannian
manifold decomposes into its self-dual and anti-self-dual parts; their algebraic types are independent.

In the case of real manifolds, one has to consider separately each signature. We restrict ourselves t
the proper Riemannian and Lorentzian cases.

1. In the proper Riemannian case, the Weyl tensor decomposes into the real, self-dual and anti-self
dual parts; they are independent. The self-dual part is represented by a gpinst that satisfies a
suitable reality condition which implies that the eigenspinors/obccur in pairs(g, ¢.). Therefore,
there are only two types af # O: either these two pairs are distinct (type 1) or they coincide (type D).
Similar remarks apply to the anti-self-dual part of the Weyl tensor. Therefore, the complete algebraic
classification of the Weyl tensor of a proper Riemannian 4-dimensional manifold contains 9 cases; (I,1)
is the most general case and (0,0) represents conformally flat manifolds. Thesc&®esnd (0, x) are
referred to as self-dual and anti-self-dual, respectively.

2. Inthe Lorentzian case, the real Weyl tensor decomposes into its self- and anti-self-dual parts, which
are complexC = C, + C_, wherexC, = +iC,. so thatC, = C_. Therefore, the classification is given
by that of the complex, self-dual Weyl tensor presented above.
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4. Cauchy—Riemann manifolds
4.1. Almost CR manifolds

Definition 1. An almost Cauchy—Riemann manifold M of dimension 2 + 1 is defined as a manifold with
a distinguished subbundl§ of C ® T M, with fibers of complex dimensiom, such that\' N A/ = 0.

One also says thatt has an almost CR structure. The direct sl A is the complexification
of a bundleH c T M with 2n-dimensional fibers, endowed withe Sec End{ such that/? = —idy;
namely,J (w + w) = i(w — w) for everyw € .

The annihilatorA’'° ¢ C ® T*M has fibers of complex dimension+ 1 and V% N A is the
complexification of a real line bundle. Theanonical bundle [9] of the almost CR structure2 =
AN 0 is a complex line bundle ovex1 and

N,={weCRT,M|wow=0, 0£we R, peM}

There is a convenient, equivalent description of an almost CR structure by an atlas of CR compatible
charts: every point oM has a neighborhoold admitting a collection of 1-forms

(e, 2, ..., ") with « real ande A A A" AU A AT #£0 (10)
such that

NP =span{x,u',....u"} foreverypeld. (11)
The pair

(Z/{, (k, ,ul, e, ,u")) (12)

is aCR chart. Given any other CR chatt/’, («’, u'%, ..., u™)), on the overlag/ N4’ one has

/

k' =ax, u’“:b”‘/c+b”‘,3uﬂ, a,B=1,...,n, (13)

wherea is a real function, thés are complex anddetb # 0, whereb = (b*g). An almost CR manifold
can be defined as an odd-dimensional manifold with an atlas of compatible CR charts, their compatibility
being defined by (13). Thé: + 1)-form

o=k AptA- AR, (14)

is a nowhere vanishing local section@f— M defined ori/.
Given (10), one puts

dK:ihaﬁ/’LaA/Zﬁ"‘"'a

where the dots stand for exterior products of pairs of the local basis 1-forms other than the products
u® A i, 1< a, B < n. The transformation (13) induces the change

hiy=ahysc’ oy, 1<, By, 8<n,

wherec = (c“p) is the inverse of the matrik. The matrixi = (h,p) is Hermitean and the signature of
the associated Hermitedmvi form is well-defined: it does not change under the replacement (13). The
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almost CR structure is said to Imen-degenerate if deth # 0; it is called pseudo-convex (sometimes:
strongly pseudo-convex) if the associated Hermitean form is definite.

If the distribution kek = H is integrablex A d« = 0, then the CR structure is said to tvesial and,
locally, M =R x C". In dimension three, non-triviality of a CR structure is equivalent to its pseudo-
convexity.

4.2. CR manifolds

Definition 2. A Cauchy-Riemann manifold (M, N) is an almost CR manifold characterized by the
bundleN' — M, satisfying the integrability conditiofSec\, SecN] C Sec\.

The integrability condition is equivalent to
dSec\° c Sec\V? A SedC @ T*M).
In terms of a CR chart (12) of S&¢° this is equivalent to
dkAw=0 and @*Aw=0 fora=1,...,n. (15)

Clearly, every 3-dimensional almost CR manifold is a CR manifold; we refer to itGi space.

If the canonical bundlg2 admits, for every/ in the atlas, a closed local sectiannowhere zero on
U, then the integrability conditions (15) follow fromA w =0 andu®* Aw =0, =1, ..., n.

The chart (12) is said to be localgnbedable (sometimes: realizable) if thangential CR equation

dzAw=0 (16)
hasn + 1 solutionszy, .. ., 2,41 such that
span{dzs, ..., dz,41,dz21, ..., 0z, 41} =CR T, M foreveryp elU.

One then has the exact local sectieh= dz; A --- A dz,41 Of the canonical bundle and the map
72U — C'T~R?*2 7 = (z4,...,2,41), IS @an immersion. A CR manifold is locally embedable if it
has a CR atlas of locally embedable charts. Every analytic CR manifold is locally embedable [1].

Let M be now an embedable CR space so that there are two soluti@mslz, of (16) and a real-
valued smooth functio on C2 such that

G(z1,22,71,722) =0 and d7 #0. (17)
One can then take
(0G oG 9G Frel
K:|<—dz1+—dz2>, w=—dz; — — dzo. (18)
9071 022 922 971

4.3. CR submanifolds

Definition 3. Let (M, ') and(M’, V') be CR manifolds of dimensiom2t+ 1 and 2 — 1, respectively.
If M’ is a submanifold of\ with an embedding’ : M’ — M andN’ = (CQ TM')N f~IN, then one
says thatM'’ is aCR submanifold of M [7].

There is a convenient characterization of CR submanifolds in terms of an atlas of CR charts:
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Proposition 1.Let f: M’ — M define M’ as a submanifold of the CR manifold (M, N). Let (12) bea
CR chart on M and w the corresponding local section of the canonical bundle. If, for every such chart,

ffo=0 (19)

and one can find n — 1 linear combinations (u%, ..., w1 of the forms (ut, ..., u") such that
o' = f kAWt A- A1) #£0, then

N=weCTM'|w.iw =0}
defines on M’ the structure of a CR submanifold of (M, N).

Proof. For everyp € M’ the monomorphisn), f, after extension t&C ® T, M" — C ® Ty, M,
restricts to a monomorphismflg — Ny, and the epimorphisni7, f)* restricts to an epimorphism

Nf(p) — NP, Note that(T), f)*(N]?(p) NN, is the complexification of a real line bundle: it coincides
with \;° N A0, Therefore, given a local basis as in (12), one has

(Tpf)*(/c/\ul/\---/\,uf')zo

and one can choose linear combinations of the forms (12) &t p), x being one of them, which are
mapped by(7,, f)* to a basis of\’°. O

5. Hermite and Robinson structures
5.1. Almost Hermite and almost Robinson structures

Definition 4. An N-structure on a Riemannian manifoldM, g) of even dimensior> 4, is a complex
vector subbundlev of the complexified tangent bundlé ® T M such that, for every € M, the fiber
N, is mtn,

It is known that, if(M, g) is proper Riemannian, then an-structure onM is equivalent to that of an
almost Hermite manifold; the orthogonal almost complex structuren M is defined as in (7) (see, e.g.,
Chapter 1X 84 in [12]).

Definition 5. An almost Robinson manifold is a Lorentzian manifold with aN-structure.

In this case, the intersectial N N is the complexification of a line bundl& c T M; its fibers are
null; they are tangent to a foliation @ by null curves. An almost Robinson structure #his said to
be regular if the setM of the leaves of the foliation defined & has the structure of a manifold such
that the natural map : M — M is a submersion. From now on, only such regular structures will be
considered.

5.2. Theintegrability condition

Definition 6. The N-structureN — M on a Riemannian manifolth/, g) is said to bentegrable if
[SecN, SecN] C SecN. (20)
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Dually, the integrability condition is
dSeaV® c SecN° A SedC @ T*M). (21)

In the proper Riemannian case, condition (20) is equivalent to the vanishing of the Nijenhuis (torsion)
tensor of the almost complex structureand, by the celebrated Newlander—Nirenberg theorem, itimplies
that M is a Hermite manifold; see Chapter IX 82 and 4 in [12].

Definition 7. A Robinson manifold is an almost Robinson manifold with an integrablestructure.

Let w be defined as in (14). It characteriz¥s
N,={weCT,M|w.w=0}. (22)

In view of (11), the integrability condition (21) of Robinson manifolds is of the st (15) as for CR
structures.

Theorem 1.Consider a Robinson manifold M of dimension 2n + 2. Let (¢,) be the flow generated by a
vector field k: M — K, where K ¢ TM isthe null line bundle defined by N NN = C ® K, then

(i) the N-structure on M isinvariant with respect to the action of the flow (¢,) and the trajectories of
(¢;) arenull geodesics,

(i) the N-structure on M defines a Cauchy—Riemann structure on the quotient manifold M;

(iii) the 2n-dimensional fibers of the bundle K+/K — M have a complex structure and a positive-
definite quadratic form, induced by g.

Proof. (i) Let (k, u?, ..., u") be asin (11); in view of the reality af, the integrability condition (21) is
equivalent to

dc =k A p+ioggu” N (23)
and
d,u“:lc/\g“-l—uﬁ/\rﬁ“, a=1,...,n, (24)

wherep, ¢* andt“ are one-forms and thes are functions such thats = 65, . It follows from (22)
that the invariance oN with respect ta(¢,) is equivalent toL (k)w|w; this relation follows from (23)
and (24). Moreover, Eq. (23) implies

k A L(k)k =0. (25)

In view of (8) one can take = g(k) so thatL (k)x = (L(k)g)(k) = Vi« this shows that (25) is equivalent
to the geodetic conditioW k| k.
(i) It follows from (i) that the distributionN ¢ C ® T M descends to a distributioh” € C ® T M; its
fibers are of complex dimensionand V"N A = 0. Moreover, the integrability oV implies that of\/.
(iii) Only the complex structure requires a construction: since

K+ =ReN + N),

one can put/(w+w modK) =i(w —w) modK forwe N. O
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Note that ifk andk’ are two sections ok — M, nowhere vanishing on open subsetandU’ of M,
respectively, thek’ = fk, wheref is a nowhere zero function di N U’. If (¢,) and(¢;) are the flows
generated by andk’, respectively, then, ot N U’, the invariance oV with respect td¢,) is equivalent
to that with respect tg¢;) and the trajectories of these two flows coincide.

There is a local converse to Theorem 1. Adtbe a(2n + 1)-dimensional CR manifold characterized
by differential forms as described in Section 4. Put

m=pn:M=MxR—> M. (26)

and denote by, u?, ..., u" the pull-backs byr to M of the corresponding forms ai. Let v be the
canonical coordinate dR andk = 9, € SecT M. The collection of forms

(K, do, b, oot mh /1") (27)
is a (local) basis of S€€ ® T*M); let
(lvkazla---aZnazlv"'vzn)

be the dual basis. We shall construct a Robinson manififldg, N) so that (11) holds. With respect to
the basis (27), the metric is

g =gk +gk)dv+ g(Z)p" + g(Za) 2.

Note that sincek € SedN + N)*, one hasg(k) = g(k,D)«; therefore g(k, 1) # 0. Defining A =
g) + gk, D)dv+ g(Zy, Hu* + g(Zy, 1)n* so thatk s = 2g(k, 1), putting gep = 28(Zy, Zg) = &pa,
one obtains

g=kh+ gapn®it’. (28)
This concludes the proof of

Proposition 2. Locally, every Robinson (2n + 2)-manifold (M, g, N), having M as the associated CR
manifold, is of the form (26) with a metric given by (28), where the forms «, 1, ..., u” are obtained by
pull-back of the corresponding forms on M, the functions g,z : M — C are such that, for every p e M,
the form g, (p)z*z” is Hermitean positive-definite, A isany real 1-formon M such that k 1A is nowhere
O0and N°=sparix, ut, ..., u"}.

5.3. Four-dimensional Robinson manifolds: space-times with a non-distorting foliation by null
geodesics

The case of dimension 4 is well known, but, since it is also the most important one, it is worth-while
to review it briefly here. In a sense made precise below, in this case, unlike as in higher dimensions, all
information about the Robinson structure is encoded in the properties of the ndle

Let (M, g) be a space- and time-oriented Robinson manifold of dimension 4 with the biyneleM
of mtn spaces. The fibers of the bundte- /K — M are two-dimensional ‘screen spaces’. According to
part (iii) of Theorem 1, each screen space has a complex structure, whihts case, is equivalent to a
conformal structure and an orientation; this being preserved by the flow is equivalent to [28]

Lk)g=pg+KkRE+ER«K (29)
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for some functionp and 1-formé&. Physicists say that generates a shear-free congruence of null
geodesics. The expression ‘shear-free’ reflects the non-distorting property property of the flow: it
preserves the conformal structure of the screen spaces. Conversely, given afowifdiell directions,

the space and time orientationsMfinduce an orientation in the screen spaces; together with the induced
Euclidean metric this determines a complex structlirim each screen space. This complex structure
defines the bundle&y = {w e C® K+ | J(w modC ® K) = iw modC ® K} with mtn fibers. Eq. (29)
implies [SecK, SecN] C SecN; in dimension 4 this is enough to establish the validity of (15). In view

of this, we shall often denote biM, g, K) a Robinson space-time determined by the burdlef null

lines satisfying (29). As a consequence of Proposition 2 one has

Corollary 1. Let M be a CR space. Put M = M x R, denote by v a coordinate on R, put k = 9,,
K = spark, pull-back to M the forms characterizing the CR structure on M to obtain the pair («, u).
Let p: M — R* and let A bea 1-formon M such that k JA # 0. If

g§=Kkk+ pup, (30)

then (M, g, K) isa Robinson space-time and every Robinson space-time can be locally so described, as
alift of M.

Problem 1. Characterize the CR spaces that admit lifts to Einstein—Robinson space-times.

Theorem 2.Let (M, g, K) be a Robinson space-time so that g is of the form (30) and the N-structure is
characterized by N° = sparix, 1}. Given a function p : M — R* and a 1-form & on M such that

k(L +£)#0, (31)
define

g =p(g+«é).
Then

() (M, ¢g’, K) isa Robinson manifold,
(ii) if F satisfies (3)—(5)on (M, g, K), then it also satisfies these equationson (M, g’, K).

Proof. (i) One hasg’ = p(kX + pupi), whered’ =1 + & ande A X A u A 1 # 0 by virtue of (31).
Moreover, the bundl&v — M does not change under the replacemer by g'.
(i) The properties (3)—(5) of the forri = Ax A u also do not change. O

The theorem originates with work of Bateman [3]; see also [28]. The geometiy/o§’) may be
rather different from that ofM, g); the electromagnetic fields defined Byin these two space-times
may also be physically distinct. This is illustrated by the following

Example 1.Let R* be the Minkowski space-time. It is convenient to use a global coordinate system
(u, v, w), where the coordinatas v are real andv is complex so that

g = dudv + dw dw. (32)
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Consider theN-structure corresponding to sdan, dw}. If A(u, w) is a function complex-analytic in
w, smoothly depending om, then the complex 2-form

F=A(u,w)du A dw (33)

satisfies Eqgs. (3)—(5) with = du; it describes glane-fronted electromagnetic wave. A depends om
only, thenF is a plane wave.
Consider now the open submanifald of R* defined byv > 0 and put, forn € R*,

p=v2(1—|—%wﬁ))_2, dv + £ =,0_1(1—2mv_1) du + 20 L dv.
Then
g = (1—2mv_1)du2-|—2dudv—|—,odwdu_)

and (M, g') describes the Schwarzschild space-time. The form (33) corresponds now to a wave with
spherical fronts; its amplitude decreases d@s &long the null lines of the expanding congruence
generated by = 9,,.

If the CR structure underlying a Robinson space-titM, g, K) is trivial, then one can choose
coordinates so that = du and u = dw, as in the last example. In such a case physicists saykihat
defines arsng congruencewithout twist. There are many Einstein—Robinson space-times of this kind.
For example, if the functiory (u, x, y) satisfies the Laplace equaticif f + aff = 0, then theplane-
fronted gravitational wave,

g = f(u,x,y)du?®+ 2dudv + dx? + dy?,

has vanishing Ricci tensor, but is not flat unlgsss linear inx andy. Its Weyl tensor is of type N. The
plane-fronted waves are among Lorentzian analogs of Kahler manifolds of proper Riemannian geometry:
their bundleN — M is invariant with respect to parallel transport.

Problem 2.1n dimension> 4, develop a theory of Robinson manifolds analogous to Kahler manifolds.

‘Twisting’ congruences, characterized by d « # 0, are more interesting; the Kerr space-time,
describing a black hole arising from the collapse of a rotating star, is a Robinson manifold with a twisting
congruence.

Example 2.1n Minkowski space-time, one of the first twisting shear-free congruences of null lines was
described by Robinson around 1963; it played a major role in the emergence of Penrose’s twistors [18,
19]. Robinson established that the metric tensor

g=(du+i(zdz —Zdz))dv + (v*+1)dzdz, z=ux+iy (34)

is flat and thesng congruence generated Wy is twisting. The complex 2-fornF = A(x, y, u, v)x A
(dx + idy) is self-dual and Maxwell's equationsFd= 0 reduce t0dA/dv = 0 and the equation
Z ,dA =0, whereZ = 9, +1id, — i(x +iy)d, is an operator ofR? introduced by Hans Lewy in 1957;
see [27,34] and the references given there. Lewy constructed a smooth funstich that the equation
Z 4dA = h has no solution, even locally.

The underlying CR geometry oMM = R® with coordinatesu,z = x + iy is given by the pair
(k =du+i(zdz —zdz), u =dx +idy). Two solutions of (16) are; =x +iy andz, = u + %i(x2 +y?)



188 P. Nurowski, A. Trautman / Differential Geometry and its Applications 17 (2002) 175-195

so that Eq. (17) is now that of the hyperquadri@z i- z2) — |z1|2 = 0. The biholomorphic map

21 Zz—i
w1:\/§ Ty W2 = -
Z2+1 Z2+1

transforms the hyperquadric into the 3-sphere of equation

2 2
lwa|® + |wz|* = 1.

This is the most symmetric, non-trivial, 3-dimensional CR geometry: its group of automorphisms is
SU, 1. The CR structure o083 can be viewed as obtained from the complex structuf® ef CP; via the
Hopf map.

Several solutions of Einstein’s equations admit this congruence. As an example, we show this for the
GOodel universe [13]. Take its metric in the form given in [28],

(dX?+dy? —2(Y dU — dX)(Y dV — dX))/Y>.

Its Weyl tensor is of type D: the null vector fields= 9, and/ = 9, generate each amg congruence.
Considerk; the corresponding CR structure BA with coordinategU, X, Y) is given byx = dX — Y dU
and i = dX + idY. Introduce new local coordinate@:,x,y) in R® by u =X, z=x+iy=
VY exp(—3iU). One then obtains = k', u = k' + 2izu’, where

k' =du+i(zdz —zdy), w =dz.
The pair(x’, u') defines the same CR structure as the paiy): it is that of the hyperquadric.

5.4. The Goldberg—Sachs theorem

Consider a 4-manifoldM, g) that is either proper Riemannian or Lorentzian. Krstructure onM
can be (locally) given by a field of chiral spinors: one uses ‘point by point’ the definition (9).

Theorem 3. (i) If the N-structure N(¢) isintegrable, then the chiral spinor ¢ is an eigenspinor of the
Weyl tensor.

(i) If (M, g) is conformal to an Einstein manifold, then N(¢) isintegrable if, and only if, the chiral
spinor field ¢ isa repeated eigenspinor of the eyl tensor.

For space-times, the theorem was established by Goldberg and Sachs [6]. Its extension to the prope
Riemannian case is due to Plékki, Hacyan, Przanowski and Broda [24,25].

Problem 3.Find a generalization of the Goldberg—Sachs theorem to manifolds of dimengion

In the Lorentzian case, it follows from Theorem 3 and the algebraic classification of Weyl tensors
that a space-time which is conformally Einstein, but not conformally flat, can have at most 2 distinct
sng congruences (type D). The following example shows that there are non-conformally flat space-times
admitting 3 such distinct congruences; we do not know whether there are space-timesdtland 4
distinct congruences of this type.
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Example 3.Consider a space-tim& = R* with the real coordinates, v and a complex coordinate.
Let the metric tensor bg = Ak + nit, where

K:du+%i(wdu'1—zi)dw), k:dv—%i(wdu')—u')dw), = (w+ w)dw.

This space-time admits three congruences of shear-free null geodesics: those generated by the vect
fields k; = 0, and k, = 9, are twisting and are both equivalent to the Robinson congruence. The
congruence generated by

k3=, — 9, + 2i(w + w) (83 — dy)

is sng and has vanishing twist. The space-tiidé¢, g) has a Weyl tensor of type | and does not admit any
othersng congruences.

5.5. Remarks on the embedability problem

The property of a CR spack! to be embedable is relevant to the local existence of a non-zero, null
solution of Maxwell’s equations on space-times obtained as liftsfofif M is embedable, if the forms
x andu are as in (18), ang is given by (30), thernF = A(z1, z2)x A u satisfies Eqgs. (3)—(5) for every
function A holomorphic in its two arguments. In fact, less is required for the local existence of such an
F: if the canonical bundle oM admits a locally defined closed secti@nthen its pull-back taf can
be taken ag .

It is now known that there are CR spaces that are non-embedable, buirtees@ution of (16) [29];
by the results of [31], extended to higher dimensions in [9], such CR spaces do not admit closed, non-
zero sections of their canonical bundle. Therefore, space-times constructed as lifts of these CR space
do not admit any associated non-zero null solutions of Maxwell’s equations. There are examples of non-
embedable 7-dimensional CR manifolds that have non-zero, closed, sections of their canonical bundle
but it is not clear whether there are such examples in dimensions 3 and 5. Further remarks on this subjec
are in [33].

Lewandowski, Nurowski and Tafel [16] established the following

Theorem 4.1f the CR space M lifts to an Einstein—Robinson space-time, then M islocally embedable.

6. The Kerr theorem

The Kerr theorem provides a method for constructing all integrable analytstructures in
Minkowski space-tim&M, g); even though it is well-known, we present it here because of its importance.
See [20,21,31] for further details and references. Consider the coordinate system and metric (32) as give
in Example 1. The manifold of athtn subspaces of one chirality of the complexified Minkowski space
C*is SQ; /U, = CPy.

Letz € C and define

k; =0, — 20, — 203 — 220y, (353)
Kk, =du — zdw — Zdw — zz dv, (35b)
w,=0dw+zdv, and A,=dv. (35c)
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The map(xo, to, Ao) — (K., i1, A;) IS @ proper Lorentz transformation. It is induced by the homomor-
phismsC — SL,(C) — SOy 1. The pair(k., 11.) defines ammtn subspaceV, such that R&V, N N.) =
dirk,. The subspace corresponding to the ‘point at infinity'G#; = C U {oo} is defined by the pair
(dv, dw) andk,, = 9,. Assume now to be a complexunction on M such that its real and imaginary
parts are real-analytic functions of the coordinates, Rew and Imw. At every pointp of M the pair
(Kz(p)» Mz(py) defines amtn subspace of ® 7, M. According to (15), theV-structure defined by, 1)

is integrable if, and only if,

de, Ak, A, =0 and  qi, Ak, Ap, =0. (36)
A simple calculation shows that Eq. (36) reduce to

dv Adz Ad(u — zw) Ad(w + zv) =0,

dw Adz Ad(u —zw) Ad(w + zv) =0,
and are thus equivalent to

d(u — zw) Ad(w + zv) Adz =0. (37)

By the implicit function theorem, Eq. (37) implies, locally, the existence of a holomorphic function
H (z1, 72, z3) of three complex variables such that

Hu—zw, w4+ zv,z)=0. (38)

This proves a theorem attributed to Kerr:

Theorem 5. Locally, every integrable analytic N-structure in Minkowski space-time R* is given either
by the pair (dv, dw) or by (35), where z : R* — C isa solution of (38) and H is a holomorphic function
of three complex variables such that dH # 0.

DenotingH, = d H/dz3, etc., one obtains by differentiation of (38)
Hik, + (Hy+ zZH), + (H3 — wHy + vHy) dz = 0.

The condition & £ 0 impliesH; —wH; +vH, # 0. If H; = H, = 0, thenz = const and theN -structure
is trivial, i.e., reducible, by a Lorentz transformation of the coordinateg; to du andug = dw. Define

u,=u—zw—zw—zzv and w,=w + zv. (39)
Since
L(k)u,=0 and L(k,)w,=0, (40)

the functionsu, andw, descend to the CR manifold1 obtained fromM as described in Theorem 1.
Moreover, the pailk,, dw,) defines the sam# -structure onM as the paifx,, ). The pair(x,, dw,)
defines the CR structure owt.

Assume now thaH; and/or H, # 0. EqQ. (38) can be written as

H(u,+ 7w, w,, 7) = 0
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and shows thai, is a function ofz, z andu, only. The integrability condition#l A «, A u, = 0 is now
satisfied identically andid, A x, A u, = 0 is equivalent to

0 0

Y w22 o, (41)
0z ou,
Using (41) one obtains

ow Jw ow
dw, = — — —w,— ) dz.
Wz ou, * ( 0z Wz ou, ¢

This shows that the paik_, dz) defines onM the same CR structure as the pair, dw,). Let(9,_, Z,7)
be the frame oo\ dual to the coframéx,, dz, dz) so that

0 d

Eq. (41) is now interpreted as a tangential Cauchy—Riemann equatioay, = 0.
The map(u, v, w) — (i, v, z) is a local diffeomorphism. This is seen by computing the volume form
onM,

idu AdvAdwAdn=iZ _ dw, —v|?du, Adv AdzAdz,
where use has been made of (41). The distributionckés integrable if, and only ifZ _dw, is real.
Dropping the subscripts, one has
Corollary 2. Let (u, v, z) bealocal coordinate systemon M, let w(u, z, 7) be a smooth, complex-valued
function satisfying

o;w — wa,w=0
and put k = du + wdz + wdz, u = dw — vdz. The metric

g=Kkdv+ up (42)
isflat and the vector field k = 9, generates an expanding (div k& # Q) sng congruence.

Example 4.1f w =iz, then (42) assumes the form (34) and corresponds to the Robinson congruence of
Example 2.

7. Twistor bundles

Recall a general idea in geometry: if one wishes to study a structure, but there is no distinguished
structure, then it is appropriate to consider the set of all such structures.

Given an oriented Riemanniam2nanifold (M, g) (conformal geometry suffices), define itsgistor
bundles P, to have, as the total sets, the collections ofwitt subspaces df ® T M of the + chiralities.
These are bundles with fiber $QU,,, which has a canonical metric and complex structure? ¥ —id,
then complex conjugation i ® TM changes the chirality of theitn subspaces; this induces an
isomorphism of the bundleg, and P_. They are then identified and denoted By such is the case
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when(M, g) is a space-time. The Levi-Civita connection #hinduces a horizontal distribution aPy;
together with the canonical metric on the fibers, this defines a metric and a can¥rstalcture on
P., which need not be integrable. (M, g) is proper Riemannian (respectively, Lorentzian), then so is
P, and its canonicaN-structure defines oR.. the structure of an almost Hermite (respectively, almost
Robinson) manifold.

Theorem 6.If M isa space-time, then the integrability of the canonical N-structure onitstwistor bundle
P isequivalent to C = 0. If M isa 4-dimensional proper Riemannian manifold, then the canonical N-
structure on P, isintegrable if, and only if, C.. = 0.

In the Lorentzian case, the theorem was established by Penrose in the course of work that led tc
his fundamental twistor programme; see [21] and the references given there. The proof in the propet
Riemannian case is due to Atiyah, Hitchin and Singer [2].

7.1. The Kerr theorem revisited

Let (M =R?, g) be the Minkowski space-time. According to Theorem 6, its twistor buitlis a
Robinson manifold so that there is the associated 5-dimensional CR maRifdlte twistor bundleP
is identified with the set of null directions in the tangent spaces at all poind¢.dfs typical fiber is
the ‘celestial sphereS, ~ CP; so thatP = M x CP;. Locally, the bundleP — M can be conveniently
described as follows. L&t:, v, w) be a coordinate system @i, as in (32). A numbert € C defines a null
direction dirk, at (u, v, w), parallel to the vectok, given in (35). A point ofP is given by the sequence
(u, v, w, dirk,) or, equivalently, by the sequence, v, w, z), i.e., by a sequence of 6 real functions;
they provide a convenient coordinate system Rnin these coordinates, the metric tensor Bris
du dv + dw dw + (14 3z7)~2dz dz. The canonicaN-structure onP is given byN? = sparix., i, dz}. Its
integrability is easily checked by computiag = «, A i, A dz and verifying that Egs. (15) are satisfied.
The line bundleV, N Np — P is spanned by dk,.

Consider now the CR manifol@® associated withP as in Theorem 1 and the functions defined in
(39). In view of (40) andL (k,)z = 0, the sequencéu,, w,, z) of 5 real functions descends @ and
provides a coordinate system on that manifold. Its CR structure is embedable: three solutions of (16) are
71=u —zw, z2 = w + zv andzz = z. Consider a regular congruen&eof null lines onM which need
not be shear-free. The setM of these lines is a 3-dimensional manifold. There is the rfiapt — P
that sends an element of the congruencéabto its lift to P,

can

p—2.p

M——M

Theorem 7. The congruence K of null lines on Minkowski space-time is shear-free if, and only if, the
map f: M — P defines on M the structure of a CR submanifold of P.

Proof. Letz: M — C be the function defining the congruenkeof null lines. The mapf on: M — P
sends(u, v, w) to (u,, w,, z) with z evaluated atu, v, w). A section of the canonical bundle of the CR
manifold P is w = d(u — zw) A dw, A dz. According to (37), the pull-backf o 7)*w vanishes if, and
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only if, the null geodetic congruendg is shear-free. Since is a surjective submersion, this holds only
whenever (19) is satisfied.

The image ofP in C? is the hypersurface (‘generalized hyperquadric’) of equation

73— 23+ 2122 — 7122 =0. (43)

Every point of this hypersurface corresponds to a null lin& — M given, in the coordinate system
(u,v,w) onM, by

1(t) = (3(z3+ Z3 + 2aZ2 + 2122) — zaZat, 1, 22 — 21t

so that/(v) = (4, v, w) and d/dt = k,. All null lines in M, except those parallel #&,, can be obtained
by this ‘Penrose correspondence’ betwadérandP. Consider now the embedding

f:C3— CP;, f(z1,22,23) =dir(1+iz3,z1 — iz, 1 — iz3, 21 + i22).

The image ofC? by f is CP; with a CP, removed. The image of the hypersurface (43)fbig an open
and dense submanifold of the manifdRg of null twistor directions

{dir(wy, wa, wa, wa) € CPs | lwa|? + [wa|* — |wa]* — |wal|® =0}. (44)

Penrose [20] proved the following fundamental

Theorem 8.1f M = (S; x S3)/Z, isthe conformally compactified Minkowski space-time, then P = CPs.
Every analytic CR 3-manifold, defining a Robinson structure in M, is obtained as the intersection of
the 5-dimensional CR manifold of projective null twistors (44) with a complex analytic 2-dimensional
submanifold of CPs.

According to Penrose, a non-analytic, shear-free and twisting congruence of null geodesics in
(compactified) Minkowski space-time can be described as corresponding to a complex suriiace
CP;s that ‘touches only one side’ of the manifold of projective null twistBgsso that the real dimension
of Py N X is 3, but the surface cannot be holomorphically extended to the other siflg ske [21,
pp. 220-222].

7.2. The Kerr theorem in the proper Riemannian setting

There is an analog of the Kerr theorem for proper Riemannian self-dual (or anti-self-dual) 4-manifolds.
We only sketch the idea of the theorem in tbeal setting. According to Theorem 6, the twistor bundle
P, of such a self-dual manifold has a canonical integraistructure defining there the structure of a
complex 3-manifold so that there is the fibratié®, — P, = M. Let U be an open subset df and
s:U — P, alocal section ofr such thats(U) is a complex submanifold of, . The restriction ofr
to s(U) induces onU the structure of a Hermite manifold and all local Hermite structures/onan
be so obtained. The insistence on locality is essential: for example, the 4-sphere has no global comple;
structure, but it has local Hermite structures.
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